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Abstract

Many organizations maintain textual process descriptions alongside graphical process models.

The purpose is to make process information accessible to various stakeholders, including those

who are not familiar with reading and interpreting the complex execution logic of process models.

Despite this merit, there is a clear risk that model and text become misaligned when changes are not

applied to both descriptions consistently. For organizations with hundreds of different processes,

the effort required to identify and clear up such conflicts is considerable. To support organizations

in keeping their process descriptions consistent, we present an approach to automatically identify

inconsistencies between a process model and a corresponding textual description. Our approach

detects cases where the two process representations describe activities in different orders and detect

process model activities not contained in the textual description. A quantitative evaluation with

53 real-life model-text pairs demonstrates that our approach accurately identifies inconsistencies

between model and text.
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1. Introduction

The documentation of business operations using process models has become a quintessential

activity for many organizations [1]. However, organizations typically do not solely rely on process

models for documenting business operations. Realizing that some stakeholders have difficulties

with reading and interpreting process models [1, 2], organizations have recognized the value of

maintaining text-based process descriptions alongside model-based ones [3]. While such textual

descriptions may not be suitable to represent complex aspects of a process in a precise manner [4],

they can be created, maintained, and understood by virtually everyone [5].

Despite these benefits, the usage of two representation formats for the same process can lead

to considerable difficulties [6]. Most notably, there is a high risk of having to deal with inconsis-

tencies between the two representation formats, in particular when different stakeholders develop

or maintain the two representation formats independently from each other [7]. As a result of such

inconsistencies, readers of the different representations may develop different expectations about

what the process aims to establish or how it should be executed. Against the background of the

potentially disastrous implications of inconsistencies, it is an important task of organizations to

keep their process descriptions consistent. However, the associated effort to identify and clear up

conflicts for an entire process repository is hardly manageable in a manual way.

To effectively deal with the problem of inconsistencies between model and text, we present a

technique that automatically detects differences between textual and model-based process descrip-

tions. Specifically, our technique identifies two types of inconsistencies. First, it identifies process

model activities that are not contained in the accompanying textual description. Second, the tech-

nique detects cases where a process model and a textual description describe the process steps in a

conflicting order. Our technique can be used to quickly identify the process models in a collection

that are likely to diverge from their accompanying textual descriptions. This allows organizations

to focus their efforts on the descriptions that can be expected to contain such inconsistencies.

A quantitative evaluation demonstrates that the proposed technique is indeed able to effectively

identify inconsistencies in a collection of model-text pairs obtained from practice.

The remainder of this paper is structured as follows. Section 2 illustrates the problem tackled
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by our approach and discusses the research gap that follows from a review of related work. Section 3

describes the proposed approach to detect inconsistencies. In Section 4, we present a quantitative

evaluation of the approach. Finally, we discuss limitations in Section 5 and conclude the paper in

Section 6.

2. Background

2.1. Problem Illustration

To illustrate the challenges that are associated with the detection of inconsistencies between

textual and model-based process descriptions, consider the model-text pair shown in Figure 1. It

includes a textual and a model-based description of a bicycle manufacturing process. On the left-

hand side, we observe a textual description, which comprises eleven sentences. On the right-hand

side, a corresponding model-based description can be seen, expressed in the Business Process Model

and Notation (BPMN). The model contains nine activities, which are depicted using boxes with

rounded edges. The diamond shapes that contain a plus symbol indicate concurrent streams of

action; the diamond shapes containing a cross represent decision points. The gray shades suggest

correspondences between the sentences and the activities of the process model.

A closer look at the example reveals that many connections between the two artifacts are

evident. For example, there is little doubt that sentence (7) describes the “reserve part” activity or

that sentence (8) describes the “back-order part” activity . In some cases, however, there is clearly

an inconsistency between the two process representations. For instance, there is no sentence that

is related to the “ship bicycle to customer” activity, i.e. that activity is missing from the textual

description. Likewise, we can observe that sentences (4) and (5) occur in a different order than the

corresponding activities in the model.

In other cases it is less straightforward to decide on the consistency – or lack thereof – between

the representations. For example, the text of sentence (9) simply indicates that a part of the

process must be repeated. By contrast, the model includes an activity, “select unchecked part”,

which associates an explicit action with this repetition. Whether or not sentence (9) actually

describes an activity, and thus should be considered an inconsistency, seems to be open for debate.
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(1) A small company manufactures customized 
bicycles.  

(2) Whenever the sales department receives an 
order, a new process instance is created.  

(3) A member of the sales department can then 
reject or accept the order for a customized bike.  

(4) If the order is accepted, the order details are 
entered into the ERP system.    

(5) Then, the storehouse and the engineering 
department (S&E) are informed.  

(6) The storehouse immediately processes the part 
list of the order. 

(7) If a part is available, it is reserved.  

(8) If it is not available, it is back-ordered.  

(9) This procedure is repeated for each item on the 
part list.  

(10) In the meantime, the engineering department 
prepares everything for the assembling of the 
ordered bicycle.  

(11) If the storehouse has successfully reserved or 
back-ordered every item of the part list and the 
preparation activity has finished, the engineering 
department assembles the bicycle.  

Figure 1: A textual and a model-based description of a bicycle manufacturing process

Ambiguous cases that are already difficult to resolve for human readers pose even greater problems

when texts are analyzed in an automatic manner.

The brief illustration of the model-text pair from Figure 1 shows that an appropriate technique

for detecting inconsistencies (i) must be able to recognize structural as well behavioral process

aspects in a natural language text and (ii) must be able to align this information with process

model activities. In the following section, we review prior work in order to investigate to what

extent existing techniques are capable of addressing these challenges.

2.2. Related Work

This paper is an extended version of an earlier conference paper [5]. Compared to [5], we

extended our technique in order to detect two types of inconsistencies, missing activities and con-

flicting orders, separately. To achieve this, we introduce several different predictors that can detect

inconsistencies at the process-level and the activity-level. As such, the presented technique can

detect inconsistencies in a much more fine-granular manner than the technique of [5]. The previous
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work used a single, heuristic-based metric to detect inconsistencies at the process-level and did not

distinguish between different types inconsistencies. Moreover, we revised the anaphora resolution

technique so that it can deal with references to complex business objects, such as compounds

(e.g., “sales department”). In addition, we improved the quantitative evaluation by extending

the data collection and by presenting various new experimental results that reflect the more fine-

granular nature of the improved inconsistency detection technique. Below, we review related work

from the following streams of research: (i) research on the transformation between model and text

and (ii) research on schema and process model matching.

2.2.1. Transformations between Model and Text

Research on the transformation between model and text is concerned with transforming a given

representation into the other one. Prior work has addressed both directions, model-to-text as well

as text-to-model. Transformations of conceptual models into textual descriptions typically aim at

making the information captured by the model available to a wider audience. Among others, such

techniques have been defined for UML diagrams [8], object models [9], and process models [3].

Techniques transforming text into models usually aim at providing support for model creation.

Text-to-model transformation techniques also cover a variety of conceptual models, including UML

class diagrams [10] and entity-relationship models [11]. Several approaches specifically focus on

the elicitation of process models from different types of text documents, such as group stories [12],

use case specifications [13], and process descriptions [14].

Despite the empirically demonstrated usefulness of the discussed transformation techniques,

they do not help to address the challenges associated with detecting inconsistencies. Techniques

for transforming models into texts focus on verbalizing the information from the model. Hence,

they do not provide any means to align the information from a given model-text pair. Techniques

for transforming process descriptions into models do address the problem of inferring structural and

behavioral process information from a natural language text. However, these approaches have been

found to produce incomplete or inaccurate models, which require extensive manual revision [15].

Hence, they are not suitable candidates to support the automatic detection of inconsistencies

between textual and model-based process descriptions. These inaccuracies mainly manifest them-
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selves during the extraction of activities from a process description and the derivation of relations

between them. The approach presented in this paper overcomes these issues by taking process

model activities and their inter-relations as the starting point for the detection of inconsistencies.

2.2.2. Matching

Research on matching is concerned with the task of identifying relations between concepts in

different artifacts [16]. The result of a matching is typically referred to as an alignment. In the past,

researchers have defined a plethora of matching approaches for various domains. The most widely-

covered application areas include schema matching (see e.g. [7, 17, 18]) and ontology matching

(e.g. [19, 20, 21]). In recent years, the potential of matching has also been recognized in the

domain of process modeling [22]. Process model matchers are capable of automatically identifying

correspondences between the activities of two process models. The application scenarios of these

matchers range from harmonization of process model variants [23] to the detection of process model

clones [24]. To accomplish these goals, matchers exploit different process model features, including

natural language [25], model structure [26], and behavior [27].

The work on matching is closely related to the technique defined in this paper. In fact, prior

research has already emphasized the importance of a proper alignment for the detection of incon-

sistencies between model and text [6]. However, to the best of our knowledge, there is no technique

available that can compute an alignment between process models and textual process descriptions.

So far, the required inference of structural and behavioral information from textual descriptions

has not been sufficiently addressed.

The review of existing literature thus reveals that the challenges associated with detecting

inconsistencies between model and text cannot be properly addressed by prior techniques. To

address this research gap, we use the subsequent section to define a technique that is capable of

automatically detecting inconsistencies between model and text-based process representations.

3. Conceptual Approach

This section describes our approach to identify inconsistencies in a model-text pair. Section 3.1

presents an overview of the approach and its main steps. Subsequently, sections 3.2 through 3.5
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describe the individual steps of the approach in detail.

3.1. Overview

Figure 2 illustrates the four main steps of our approach. Our approach takes a process model

and an accompanying textual description as inputs. It first subjects both inputs to a linguistic

analysis. The goal of this analysis is to process sentences and activities in such a way that their

similarity can be accurately assessed. Second, we compute similarity scores that quantify the

semantic similarity between individual activities and sentences. Third, we construct an activity-

sentence alignment. We do so by complementing the similarity scores with a consideration of the

ordering relations that exist between the various process steps captured in model and text. In

the fourth and final step, we detect inconsistencies between the model-based and textual process

description. To achieve this, we use predictors that evaluate the quality of the obtained activity-

sentence alignment. The final result of the approach is a set of predicted inconsistencies, both at

a process-level, as well as at a more fine granular activity-level. We will now look at these steps in

more detail.

Textual process
description

Model-based process
description

1. Linguistic
analysis

3. Alignment
Creation

2. Similarity
computation

4. Inconsistency 
detection

Predicted
inconsistencies

Figure 2: Overview of the proposed approach.

3.2. Linguistic Analysis

In order to create an accurate activity-sentence alignment for a model-text pair, we first subject

the textual process description and the activity labels to a linguistic analysis. In this step we make

use of the Stanford Parser, a widely employed natural language processing tool [28]. Among other

functions, the parser provides base forms of words (i.e. lemmatization), part-of-speech tags, and

grammatical relations.
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The linguistic analysis consists of three parts: (i) anaphora resolution, (ii) main clause extrac-

tion, and (iii) text sanitization. With these three sub-steps, we aim to obtain a representation that

accurately reflects the important parts of a sentence, while omitting details that negatively impact

an accurate determination of the similarity between an activity and a sentence. To illustrate the

three sub-steps, we consider their impact on sentence (8) from the running example. We represent

the original sentence as a bag-of-words1: s8 = {“if ”, “it”, “is”, “not”, “available”, “it”, “is”,

“back-ordered”}.

3.2.1. Anaphora Resolution

A problem that must be tackled when analyzing textual process descriptions is the resolution

of anaphoric references or anaphors. Anaphors are usually pronouns (“he”, “her”, “it”) or de-

terminers (“this”, “that”) that refer to a previously introduced textual unit. These references

represents an important challenge when creating a model-text alignment, because, if unresolved,

they obscure information relevant to the similarity between activities and sentences. As an ex-

ample, consider sentence s8 from the running example and activity a5, “back-order part”. s8 and

a5 both describe the act of back-ordering a “part”, which represents the business object of the

process step. However, s8 does not explicitly describe this business object; the sentence rather uses

the pronoun “it” to refer to the term “part” contained in its preceding sentence. The reference

thus obscures information that affects the similarity between s8 and a5, namely that both describe

actions applied to the same business object. To overcome this problem, we introduce an anaphora

resolution technique that resolves these backward references.

The anaphora resolution technique in our approach sets out to identify the objects contained in

a sentence. We identify objects by considering Stanford Dependencies, which reflect grammatical

relations between words [29]. To identify objects in a sentence, the most important relations to

consider include direct objects and nominal subjects. The direct object relation (dobj) denotes the

business object in active sentences. For instance, in sentence (2), the relation dobj(receives, order)

indicates that “order” is the object being received. Nominal subjects similarly identify business

objects in passive sentences, as seen in sentence (7). There, nsubj(reserved, part) shows that the

1In the interest of readability, we preserve the original order of the words.
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object “part” is reserved. The dobj and nsubj relations identify the noun, i.e. the main term, of a

business object. Business objects, however, can comprise multiple terms, e.g. “customized bicycles”

and “the part list”. To complete the identification of a business object, we therefore also take word

specifiers related to the identified object or nominal subject into consideration. Common types of

specifiers include adjectival modifiers (e.g. “small”, “customized”, “electronic”), possession mod-

ifiers (e.g. “customer’s”, “his”), and compounds (e.g. “sales department”). The most important

grammatical relations for these specifiers include amod (for adjectives), nn (compounds), and poss

(possession modifiers).

Once the business objects of a sentence are identified, we check if all objects in the sentence are

anaphoric references. This is the case when the sentence includes only pronouns and determiners

as business objects. For these sentences, we resolve the references by replacing pronouns with

objects of the preceding sentence. For instance, in sentence s8, we replace the two occurrences

of the pronoun “it” with “part”, which is the business object of the preceding sentence s7. As

a result, we successfully resolve the anaphoric references and obtain the following bag-of-words

representation for s8: {“if ”, “part”, “is”, “not”, “available”, “part”, “is”, “back-ordered”}.

3.2.2. Relevant Clause Extraction

Sentences in a textual description describe actions that are performed in a process, its flow,

and additional information. To accurately align process model activities, it is important to iden-

tify (parts of) sentences related to actions, while excluding parts unrelated to these actions from

consideration. The most problematic cases are sentences with a dependent clause specifying a

condition that contains terms similar or equal to those used in the activity labels. The dependent

clause of sentence s11 represents an example of such a case: “If the storehouse has successfully

reserved or back-ordered every item of the part list and the preparation activity has finished [...]”

This clause has a high term similarity with the activities “reserve part” and “back-order part”.

However, it is clear that these activities are actually described earlier in the textual description.

The conditional statement merely describes the requirement that these activities must have been

completed. To nullify the impact that conditional statements have on similarity scores, we exclude

such dependent clauses by extracting the main clause from the sentence.
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it is not If it is back-ordered available 
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dependent clause main clause 

Figure 3: Simplified parse tree for sentence s8.

In order to differentiate between conditional statements and main clauses, we use parse trees

generated by the Stanford Dependency Parser. In these trees, conditional expressions are repre-

sented as subordinate clauses (SBARs), as seen for the parse tree of sentence s8, shown in Figure 3.

The subordinate clauses of interest start with a term that signals that the clause describes a condi-

tion, e.g. “if ”, ”in case”, or “once”. For these sentences, we extract the remaining clauses from the

parse tree. As a result, the following bag-of-words remains for s8: {“part”, “is”, “back-ordered”}.

3.2.3. Text Sanitization

The final linguistic analysis sub-step involves text sanitization on both (previously processed)

sentences and activity labels. Text sanitization sets out to create a similar and comparable repre-

sentation of activity labels and sentences. The sanitization applied here comprises the removal of

stop words and word lemmatization.

First, we remove stop words from each activity label and sentence. Stop words are common

words that are of little value when considering similarity between texts [30]. We remove closed class

determiners, prepositions, and conjunctions (e.g. “the”, “in”, “to”, “for”) from the activity labels

and sentences. This procedure is in line with many approaches from the domain of process model

matching (see e.g. [31, 32, 33]). Second, we lemmatize the remaining words using the Stanford

Parser. The resulting lemmas represent grammatical base forms of words. By considering lemmas,

it is straightforward to determine whether two words have a similar root. E.g. “sing”, “sang”, and

“sung” are all mapped to the common lemma “sing” [34].
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Text sanitization concludes the linguistic analysis, which is the first main step in our approach.

For sentence s8, this results in the final bag-of-words representation: {“part”, “be”, “back-order”}.

The next step takes the processed activity labels and sentences as input, to quantify their semantic

similarity.

3.3. Similarity Computation

The ability to judge the similarity between a sentence and an activity is critical to the perfor-

mance of our approach. A sentence s and an activity a are considered to be similar if they refer

to the same stream of action. To accurately assess this, we have to take the variability of natural

language expressions from the sentences into account [35]. Hence, we consider two key factors in

the context of our similarity computation: word specifity and semantic word similarity.

Word specificity refers to the discriminatory power of terms in a given context. It is an impor-

tant factor for the similarity computation, since the occurrence of a relatively rare term in a and

s is a much better indicator of the similarity between a and s than the occurrence of two rather

common terms. Consider, for instance, the term “part” from the bicycle manufacturing example.

A brief look at the model and text reveals that this term occurs in a large number of sentences

and activities and, hence, has only little discriminatory power. The term “receive”, by contrast,

only occurs in sentence s2 and in activity a1. Thus, this term is likely to indicate that s2 and a1

describe the same process step, whereas this is not the case for the occurrence of “part” in, e.g.

sentence s6 and the activity “back-order part”. To account for word specificity in the similarity

calculation, we use the inverse document frequency (idf), which assigns a low score to common

terms, and a high score to relatively rare terms. The idf for a term t in the collection of process

model activities A and sentences S, i.e. L = A ∪ S, is given by Equation 1.

idf(t,L) = log
|L|

|l ∈ L : t ∈ l|
(1)

Semantic similarity represents the degree to which terms have a similar meaning. Considering

the semantic similarity of terms allows us to recognize when syntactically different terms are likely

to refer to the same unit. Typically, terms with a high semantic similarity occur as synonyms,
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e.g. “cancel” and “abort”, or hypernyms, e.g. “vehicle” and “car”. A number of different metrics

and implementations exist that quantify the semantic similarity between terms. In this paper, we

employ the semantic similarity measure proposed by Lin, because it has proven to correlate well

with human judgments of semantic similarity [36].

We combine the idf and Lin similarity scores to compute a semantic similarity score for an

activity a and sentence s. in particular, we use the measure proposed by Mihalcea et al. [37], given

by Equation 2.

sim(a, s) =
1

2
(

∑
t∈ωa

maxSim(t, ωs)× idf(t)∑
t∈ωa

idf(t)
+

∑
t∈ωs

maxSim(t, ωa)× idf(t)∑
t∈ωs

idf(t)
) (2)

maxSim(t, ω) = max{Lin(t, t2) | t2 ∈ ω} (3)

Here, maxSim(t, ω) denotes the maximum semantic similarity between a term t and any term

t2 contained in a bag of words ω, as given by Equation 3. This maximum similarity is multiplied

by the idf for each of the terms in ωa and ωs. Ultimately, sim(a, s) yields a score in the range

[0..1], where 1 indicates perfect similarity between the terms of a and s.

The similarity between a sentence and an activity plays an important role in the creation of

an alignment between a process model and a textual description. To improve the correctness of

the generated alignment, our approach also considers the order in which activities and sentences

appear. Section 3.4 describes the details of the alignment creation, which is the third step in our

overall approach.

3.4. Alignment Creation

This section describes how we obtain an optimal alignment between the activities of a process

model and the sentences of a textual description. An alignment σ consists of a number of pair-wise

correspondences between an activity set A and a set of sentences S. Each correspondence relates

a single activity to a sentence, denoted with a ∼ s. Our approach aligns each activity to exactly

one sentence such that it maximizes the sum of similarity scores of the individual correspondences,

while respecting the ordering constraint we describe below. As a result, multiple activities can be
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aligned to the same sentence. We refer to the alignment obtained in this manner as the optimal

alignment σ̂.

The ordering constraint we impose on the optimal alignment aims at excluding individual

correspondences that violate the nature of textual descriptions. Recognizing that descriptions

generally describe process steps in a chronological order [38], the rationale is to only allow for

correspondences that comply with this logic. To this end, we introduce the strict order relation

 ⊂ S × S, which captures the order of the sentences in S. The expression si  sj means that

si precedes sj in the textual description. To describe the order between activities in a process

model, we introduce the partial order relation ≤ ⊂ A × A. This partial order relation ak ≤ al

expresses that activity ak must occur before al in case both activities are executed. Hence, it takes

into account that process models may contain alternative or concurrent execution paths. To avoid

conflicting correspondences as described above, we require that two correspondences ak ∼ sj and

al ∼ si cannot both be included in an alignment σ if ak ≤ al and si  sj .

The consideration of these ordering constraints improves the ability of our approach to identify

the correct correspondences between activities and sentences. With these constraints, the approach

considers the semantic similarity of an activity a and a sentence s, but also their position relative to

other correspondences included in an alignment. As such, the approach identifies correspondences

more accurately, which leads to a better detection of inconsistencies.

Because process models are not purely sequential, finding the optimal alignment is not straight-

forward. Different combinations of activity execution orders must be considered as a possible so-

lution in which the activities are contained in the textual process description. This can result in

a huge number of possible correspondences. Hence, this optimization problem calls for an effi-

cient solving approach. Therefore, to find the optimal alignment σ̂, we adopt a best-first search

algorithm similar to those used in machine translation problems [34]. Instead of aligning one lan-

guage to another, we here align the activities of A with sentences of S. Intuitively, the best-first

search algorithm traverses a search space of partial hypotheses, which consists of activity-sentence

alignments between A and S. The algorithm explores the search space by expanding the partial

hypothesis with the highest possible score. Because the approach exempts unpromising hypotheses
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from expansion, the explored search space is greatly reduced. Since the algorithm merely affects

computational efficiency – not the resulting optimal alignment σ̂ – we abstract from further details

and refer the interested reader to [34, 39] for a detailed description. We use the obtained optimal

alignment σ̂ as input for the final step of the approach: the inconsistency detection step.

3.5. Inconsistency Detection

This section describes the detection of inconsistencies by analyzing the optimal alignments gen-

erated in the previous step of our approach. For this analysis, we make use of so-called predictors.

These predictors are metrics, designed to correlate with characteristics of the generated alignments

that differ between consistent and inconsistent model-text pairs.

Section 3.5.1 introduces the general notion and desired properties of predictors for the detection

of inconsistencies. Then, Section 3.5.2 describes the predictors proposed to detect missing activities

and Section 3.5.3 the predictors that detect conflicting orders between model and text.

3.5.1. Detection using Predictors

Given an optimal alignment σ̂ between an activity set A and a sentence set S, a predictor quan-

tifies the probability that σ̂ does not contain correct correspondences. This notion of a predictor

is inspired by according notions used to analyze alignments in the context of schema and process

model matching [17, 40]. The core premise underlying the predictors is that the similarity scores

in the optimal alignments have different characteristics for consistent and inconsistent model-text

pairs. In a consistent pair, every activity is aligned to a sentence with a high similarity score in

the optimal alignment, while this is not the case for inconsistent model-text pairs. The proposed

predictors adhere to the desired structural properties of matching predictors: generalization and

tunability [41]. Generalization reflects the applicability of predictors to tasks of different granu-

larity levels. In the context of this work, we achieve this by defining predictors that can detect

inconsistencies at two levels of granularity: the activity-level and the process-level. Tunability

refers to the ability to tune predictors such that they put more emphasis on different quality as-

pects of the results. The proposed predictors meet this requirement by allowing users to alternate

between higher precision or higher recall.
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We introduce two sets of predictors, each designed to detect a specific kind of inconsistency

between model and text, i.e. missing activities and conflicting orders. Each set builds on a different

characteristic that distinguishes consistent model-text pairs from model-text pairs with a particular

inconsistency. In particular, to detect missing activities, predictors focus on absolute and relative

similarity scores. For the detection of conflicting orders, predictors instead quantify the impact

of ordering constraints on the correspondences included in an optimal alignment. The following

sections describe these characteristics and the related predictors in detail.

3.5.2. Missing Activities

A model-text pair contains missing activities if the textual process description does not describe

all activities contained in its related process model. In a model-text pair where all the activities

in A are also described by the set of sentences S, then we expect that each activity a ∈ A is

aligned to a sentence s ∈ S with a high similarity score sim(a, s). By contrast, if an activity

a is not described in a textual description, i.e. a is a missing activity, then a is not aligned to a

sentence with a high similarity score. To distinguish between high and low similarity scores, a single

score can be evaluated according to three dimensions: (i) by its absolute value, (ii) by its value

relative to the similarity scores of the activity with other sentences, i.e. a horizontal comparison,

and (iii) by its value relative to the similarity scores of other activities, i.e. a vertical comparison.

We introduce predictors to operationalize each of these perspectives. Each predictor presented

here can be applied on an activity-level to detect individual missing activities and on a process-

level to identify model-text pairs that contain one or more missing activities. The activity-level

predictors can be used to detect inconsistencies at a fine-granular level of detail, whereas process-

level predictors can be used to identify inconsistent model-text pairs with a higher accuracy. This

higher accuracy stems from the fact that it is inherently easier to predict that something is wrong

than to predict what exactly is wrong.

First, we consider the absolute similarity score of a correspondence a ∼ s contained in an

optimal alignment σ̂. A similarity score quantifies the likelihood that activity a and sentence s

describe the same part of a process. So, a higher value straightforwardly implies that activity a

is less likely to be missing. By contrast, a low similarity score indicates that the sentence is not
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so similar to an activity. Such an activity is, therefore, more likely to be missing from the textual

description. To capture this property, we introduce a predictor p-sim. We apply this predictor at

activity- and process-levels as follows:

• p-sim(a): the likelihood that activity a represents a missing activity, given as the similarity

score sim(a, s) of the correspondence a ∼ s ∈ σ̂;

• p-sim(σ̂): the likelihood that a model-text pair contains one or more missing activities, given

by the lowest similarity score sim(a, s) contained in the optimal alignment σ̂.

A second property that influences the confidence to be placed in a correspondence a ∼ s

relates to the difference between sim(a, s) and the similarity between a and other sentences in

S. The similarity between an activity and a sentence is influenced by factors such as terminology

and the amount of additional details that a sentence provides for a given process step. Such

factors can lead to considerable differences in the similarity scores between correct activity-sentence

correspondences. Therefore, we also define predictors that consider a similarity score relative to

other scores in a similarity matrix between A and S. The underlying notion is commonly applied

in schema matching in the form of a dominates property (see e.g. [17, 42]). These predictors build

on the premise that a sentence is more likely to describe an activity a if it is more similar to a

than other sentences are. The left-hand similarity matrix presented in Table 1 illustrates this.

Both activities a2 and a3 are aligned to sentences with a score of 0.5. For a2 it is clear that its

corresponding sentence s2 is the most similar in the textual description. For a3, this clarity is

missing. Two others sentences are as similar to a3 as its corresponding sentence s3. This implies

that s3 is not more similar to a than these other sentences, which reduces the likelihood that the

sentence actually describes the same process step as a. Despite their equal similarity scores, a3 is

more likely to be a missing activity than a2. To capture this, we define the predictor diff-S :

• diff-S (a): the difference between sim(a, s) for a ∼ s ∈ σ̂ and the average similarity score of

a to sentences in S;

• diff-S (σ̂): the lowest value diff-S (a) for any activity in A, i.e. min{diff-S (a) | a ∈ A}.
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Table 1: Examplary similarity matrices with bolded correspondences

s1 s2 s3 s4
a1 0.6 0.3 0.2 0.0
a2 0.2 0.5 0.1 0.1
a3 0.2 0.5 0.5 0.5

s1 s2 s3 s4
a4 0.9 0.3 0.2 0.0
a5 0.2 0.4 0.9 0.1
a6 0.2 0.5 0.5 0.5

The third and final property to consider when evaluating a similarity score compares its value to

other similarity scores contained in an optimal alignment. Like diff-S, this property also considers

sim(a, s) relative to other scores in the similarity matrix in order to cope with the differences

that can exist among the similarity scores of correct correspondences. However, we here perform

a vertical rather than a horizontal comparison. The premise underlying this property is that a

correspondence a ∼ s is less likely to represent a correct correspondence if its similarity score is

much lower than other similarity scores contained in the optimal alignment σ̂. This is illustrated in

the two similarity matrices presented in Table 1. The three correspondences of the left-hand matrix

have an average similarity score of 0.53. For the right-hand matrix, this average score is 0.77. A

score of 0.50 is thus close to the average score of the left-hand matrix. While, by contrast, this

same score is much further below the average score of the right-hand matrix. The correspondence

a6 ∼ s3 is thus much less similar than the average similarity of the correspondences. Therefore, a6

is more likely to be inconsistent than a3, despite their equal similarity scores. We operationalize

this factor with the predictor diff-A as follows:

• diff-A(a): the difference between sim(a, s) for a ∼ s ∈ σ̂ and the average similarity scores of

the correspondences in σ̂;

• diff-A(σ̂): the lowest value diff-A(a) for any activity in A, i.e. min{diff-A(a) | a ∈ A}.

The predictors p-sim, diff-S, and diff-A each predict inconsistencies in the form of missing

activities by quantifying a property that allows us to distinguish between high and low similarity

scores. Section 3.5.3 describes a predictor designed to detect model-text pairs that have conflicting

orders.
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3.5.3. Conflicting Orders

The second type of inconsistency we consider occurs when a process model and an accompanying

textual description describe the steps of a process in different orders. For example, the process

model of the running example shows that the “Inform S & E departments” activity precedes “Enter

details into ERP system”, whereas the textual description states that these activities occur in the

reverse order. The ordering constraints we impose on the creation of alignments bars our approach

from including correspondences between activities and sentences when their orders do not match.

The existence of conflicting orders between model and text, therefore, manifests itself in the form

of large differences between the similarity scores contained in an optimal alignment and potential

similarity scores that could have been achieved without these ordering constraints.

Table 2: Fragment of the similarity matrix for the running example

s2 s3 s4 s5 s6
a2 0.1 0.2 0.2 0.7 0.2
a3 0.1 0.1 0.9 0.2 0.1

To illustrate this, consider the fragment of the similarity matrix in Table 2, where a2 refers

to “Inform S & E departments and a3 to “Enter details into ERP system”. The similarity score

sim(a2, s5) is high (0.7), because both a2 and s4 describe the same process step. The similarity

score for sim(a3, s4) is even higher (0.9), for the same reason. However, since a2 precedes a3 in

the model (a2 ≤ a3) and s4 precedes s5 in the textual description (s4 < s5), a2 ∼ s5 and a3 ∼ s4

cannot both be contained in σ̂ without violating the imposed constraints. As a result, the approach

instead aligns a2 to s3, despite its considerably lower similarity score.

We capture this characteristic difference between consistent and inconsistent model-text pairs

in the predictor max-constrained. This predictor quantifies the maximum difference that exists

between the aligned and potential score for a single activity in a model-text pair. It thus captures

the largest similarity difference caused by imposing ordering restrictions on the optimal alignment.

We operationalize this as follows:

• max-constrained(σ̂): the maximal difference between the potential and aligned similarity

scores for an activity a ∈ A;
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The predictors defined for the detection of missing activities and conflicting orders each quantify

conceptual notions that differ between the similarity scores of consistent versus inconsistent model-

text pairs. In Section 4, we present a quantitative evaluation that demonstrates how well our

approach, which incorporates these predictors, is able to detect inconsistencies in practice.

4. Evaluation

This section presents a quantitative evaluation that demonstrates how well the proposed ap-

proach is able to identify inconsistencies in model-text pairs. We have manually annotated the

inconsistencies in a collection of 53 model-text pairs obtained from practice. This annotation is

referred to as the gold standard against which we compare the results of our approach. Section 4.1

describes this test collection in detail. Subsequently, sections 4.2 through 4.4 respectively describe

the set-up of the evaluation, its results, and a discussion of the strength and weaknesses of our

approach.

4.1. Test Collection

To evaluate our approach, we use a collection of 53 model-text pairs that originate from different

sources, including academia, textbooks, industry, and public sector organizations. The majority

of the model-text pairs were introduced in [14], while we extended this collection with 7 processes

obtained from a new industrial source. Table 3 presents the main characteristics of the model-text

pairs contained in the test collection. The included process models are heterogeneous with regard

to several dimensions, such as size and complexity. Also, the corresponding textual descriptions

vary in several aspects. For instance, they describe the processes from different perspectives (first

and third person) and differ in terms of how explicitly and unambiguously they refer to the process

model content. Finally, it is important to note that the ratio of sentences per activity (S/A)

differs significantly throughout the collection. Some sources use a single sentence on average per

activity, while other sources use up to 7 sentences. This increased ratio follows from the presence of

more informational sentences and details on how certain process steps must be executed (i.e. work

instructions). Due to these varying characteristics, we believe that the collection is well-suited to

achieve a high external validity of the results.
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Table 3: Overview of the test collection

ID Source Type P Pm Pma Po A S S/A

1 HU Berlin Academic 4 1 1 0 9.0 10.3 1.1
2 TU Berlin Academic 2 2 2 0 22.5 34.0 1.5
3 QUT Academic 8 0 0 0 6.1 7.1 1.2
4 TU Eindhoven Academic 1 1 2 0 18.0 40.0 2.2
5 VU Amsterdam Industry 7 1 2 0 4.3 30.1 7.0
6 Vendor Tutorials Industry 3 2 3 2 5.3 7.0 1.3
7 inubit AG Industry 4 1 1 1 9.0 11.5 1.3
8 BPM Practitioners Industry 1 0 0 0 4.0 7.0 1.8
9 BPMN Practice Handbook Textbook 3 2 2 1 5.0 4.7 0.9
10 BPMN Guide Textbook 6 5 7 0 7.0 7.0 2.2
11 Federal Network Agency Public Sector 14 4 6 0 8.0 6.4 0.8

Total - 53 19 26 4 7.6 12.0 1.6

Legend: P = Model-text pairs per source, Pm = Model-text pairs with missing activities,
Pma = Missing activities, Po = Model-text pairs with conflicting orders, A = Activities
per model (avg.), S = Sentences per text (avg.), S/A = Sentences per activity (avg.)

To provide a basis for comparison, we manually identified the inconsistencies in the 53 model-

text pairs. We involved three researchers in the creation of this gold standard. Two of them

independently identified inconsistencies for each model-text pair. The inter-annotator agreement

was high, having only 4 initial disagreements on whether or not an activity was missing. The

cause for discussion involved implicitly described actions, such as seen for the “select unchecked

part” activity in the bicycle manufacturing example. The differences were resolved in a discussion,

involving the third researcher to settle ties. Out of the 406 activities contained in the process

models, 26 are considered to be missing in the textual description. These activities occurred in

19 different model-text pairs. Furthermore, 4 model-text pairs were found to contain conflicting

orders.

4.2. Setup

We evaluate the performance of our approach by comparing its predictions to the manually

created gold standard. We compare the performance in practice of three predictors for the detection

of missing activities, p-sim, diff-S, and diff-A, both at the level of activity and process. For the

detection of model-text pairs with conflicting orders, we evaluate the performance of the max-
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constrained predictor. To demonstrate the usefulness of this predictor, we compare its performance

to a baseline. For this baseline, we create an alignment without imposing ordering constraints and

afterwards check if this alignment violates any ordering constraints. We refer to the heuristic that

identifies these cases as base-check.

Aside from the choice for a certain predictor, the performance of the approach depends for

a major part on the alignments it generates. Our approach to create these alignments consists

of several components, including the linguistic analysis and the inclusion of ordering constraints.

To demonstrate the added value of the individual components, we test the performance of our

approach using different configurations to generate the alignments. They include the following:

• Baseline (BL): As a baseline configuration, we aligned every activity a to the sentence s

with the highest value for sim(a, s);

• Linguistic analysis (LA): For this configuration, prior to the computation of similarity

scores, we applied all linguistic analysis activities described in Section 3.2. We thus subjected

the textual description to (i) text sanitization, (ii) resolved anaphoric references, (iii) and

extracted relevant clauses;

• Ordering constraints (OC): This configuration computes an alignment between activity

set A and sentence set S that achieves a maximal similarity score, while respecting the

ordering constraints implied by the partial order of the process model and the strict order of

the textual description;

• Linguistic analysis + ordering constraints (LA + OC): For the full configuration, we

performed all linguistic analysis activities and imposed ordering constraints on the optimal

alignment σ̂.

We assess the performance of our approach with standard information retrieval metrics. More

specifically, we calculate precision, recall, and F1 score by comparing the generated results against

the manually created gold standard. Precision describes the fraction of predictions that are correct.

Recall represents the fraction of all inconsistencies that are identified by our approach. We define

these metrics in the context of this work as given by Equations 4 and 5.
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precision =
|CI ∩ Cρ|
|Cρ|

(4) recall =
|CI ∩ Cρ|
|CI |

(5)

We use Cρ to denote the set of model-text pairs or activities that are predicted to be inconsistent

with a prediction score in the range [0.00, ρ]. A higher value for ρ thus increases the number of

activities or model-text pairs that are included in Cρ, i.e. that are predicted to be inconsistent.

CI denotes the set of activities or model-text pairs that contain a certain type of inconsistency.

Finally, we also report the F1 score, which provides the harmonic mean between precision and

recall.

4.3. Results

This section presents the results of the quantitative evaluation. Section 4.3.1 assesses the

ability of the predictors to detect inconsistencies. Then, Section 4.3.2 illustrates how the individual

components of the alignment approach contribute to the quality of the obtained results.

4.3.1. Predictor Performance

We computed precision and recall scores for increased values of predictor score ρ for each of

the predictors for the different types of inconsistencies. The precision-recall graphs of Figure 4 and

Figure 5 depict the performance of the approach when detecting missing activities at the activity

level and process level. Both graphs illustrate the trade-off between precision and recall. The rea-

son for a trade-off to exist is that increasing the recall requires the consideration of lower confidence

values. As a result, some activities are erroneously classified as missing, which negatively affects

precision. The maximum results achieved by the predictors are presented in Table 4. This table

also displays the predictor value that achieves the maximum F1 score, which we here refer to as

the optimal predictor value.

Missing Activities The precision-recall graph of Figure 4 shows that our approach is able to

detect missing activities with a good accuracy. The approach reaches a maximum F1 score of 0.44

for the p-sim predictor. At this point, 17 missing activities have been detected (recall = 0.58)

with a precision of 0.36. These results should be considered in light of the relatively low fraction
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Figure 4: Precision-recall graph for the detection of missing activities (activity-level)
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Figure 5: Precision-recall graph for the detection of model-text pairs with missing activities (process-level)

of the total activities that are missing (0.07). The graph shows that beyond a recall of 0.15, p-sim

consistently outperforms the other predictors. The diff-A predictor reaches a maximum precision

of 0.67 and a maximum F1 score of 0.37. The predictor diff-S has the lowest performance, with a

maximum precision of 0.33 and F1 score of 0.21.

The precision-recall graph of Figure 5 shows that the approach performs even better when

detecting model-text pairs with missing activities, particularly using the p-sim predictor. This

predictor correctly identifies more than 40% of the model-text pairs with missing activities with

perfect precision. For increasing recall values, the approach maintains a high precision. The high-
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est obtained F1 score of 0.83 is reached when all incorrect model-text pairs have been detected (i.e.

recall = 1.00), with a precision of 0.70. The diff-A and diff-S predictors display lower prediction

accuracy, they reach maximal F1 scores of 0.69 and 0.58, respectively.

Table 4: Predictor performance evaluation results

Predictor
Maximum
precision

Maximum
F1 score

Optimal
predictor value

p-sim(a) 0.39 0.44 0.74
diff-A(a) 0.67 0.37 1.18
diff-S (a) 0.33 0.21 0.92

p-sim(σ̂) 1.00 0.83 0.74
diff-A(σ̂) 1.00 0.69 0.52
diff-S (σ̂) 1.00 0.58 0.47

base-check(σ) 0.16 0.28 n/a
max-constrained(σ̂) 1.00 0.73 0.18

Conflicting Orders Finally, we evaluated the performance of the max-constrained metric for

the detection of model-text pairs with conflicting orders and compared it to the baseline metric

base-check. We omit the depiction of a precision-recall graph because there are only four cases

with inconsistent orders in the test collection. The max-constrained predictor identifies these cases

with high accuracy. The predictor reaches a maximum precision of 1.00 and successfully identifies

all inconsistent model-text pairs with a precision score of 0.57. This results in a maximum F1-

score of 0.73. Furthermore, we can observe that the max-constrained predictor greatly outperforms

the baseline metric. The reason for this is that base-check yields a considerable amount of false

positives, resulting in a precision of 0.16 and a maximum F1-score of 0.28. These false positives

occur because a correct alignment does not just depend on the term similarity between activities and

sentences, but also on the order in which they are described. As a result, the gold standard contains

a number of model-text pairs in which one or more activities are not aligned to the sentences with

the highest similarity score. In these cases, instead, the activity is generally aligned to a sentence

with a slightly lower score (e.g. a score of 0.58 versus a score of 0.60). The base-check predictor is

not able to differentiate between such cases and cases that truly contain conflicting orders, which

are characterized by much larger differences in similarity scores. By contrast, the max-constrained
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predictor successfully differentiates between small and large differences in similarity scores, which

results in a considerably better performance.

4.3.2. Alignment Configurations

The results presented in the previous sections demonstrate that our approach is able to detect

inconsistencies with high accuracy by using the full configuration for the creation of alignments.

Table 5 presents the performance of the approach for different configurations of the alignment

approach. For the sake of brevity, we depict the highest F1 score achieved by each predictor for a

given configuration.2 The results clearly illustrate that each of the individual components of the

alignment approach contribute positively to the prediction accuracy, since the scores of LA and

OC are higher than the baseline scores reached by BL.

Table 5: Highest F1-measures for different configurations and predictors.

Predictor BL LA OC LA + OC

p-sim(a) 0.22 0.32 0.23 0.44
diff-A(a) 0.20 0.29 0.21 0.35
diff-S (a) 0.15 0.18 0.15 0.23

p-sim(σ̂) 0.62 0.72 0.66 0.83
diff-A(σ̂) 0.61 0.64 0.61 0.69
diff-S (σ̂) 0.54 0.58 0.55 0.58

max-constrained(σ̂) n/a n/a 0.50 0.73

The linguistic analysis improves the performance for all use cases and predictors. Notably, it

increases the maximum performance for the detection of missing activities with 45%, from 0.22

to 0.32. The performance for the detection of model-text pairs with missing activities is similarly

increased from a maximum of 0.63 to 0.72. Though the inclusion of ordering constraints consistently

improves the results in comparison to the baseline configuration, it does not yield gains as large

as the linguistic analysis. For instance, the detection of model-text pairs with missing activities

is improved from 0.63 to 0.66. However, the usefulness of ordering considerations is particularly

apparent when the constraints are incorporated in combination with the linguistic analysis. Then,

2Note that the BL and LA configurations cannot detect inconsistent orders, since these configurations do not
incorporate the ordering restrictions required to identify these.
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the results are improved from 0.32 to 0.44 and from 0.72 to 0.83 for the detection of missing

activities at the activity level and process level, respectively.

4.4. Discussion

The evaluation shows that the approach successfully identifies inconsistencies between model-

text pairs. Especially at the process-level, the approach detects erroneous model-text pairs with

a high prediction accuracy. The lower performance scores for detection at the activity-level can

be attributed to two causes. First, it is inherently easier to detect that inconsistencies exist in a

model-text pair than to identify exactly where these occur. Second, the difference occurs because

the approach creates an alignment optimized for the entire process. For inconsistent model-text

pairs, it can therefore happen that a missing activity also impacts the alignments of other activities

in the process. As a result of such a shift, sometimes the wrong activities are predicted to be missing.

This leads to lower precision at the activity-level, while the prediction accuracy at the process-level

remains unaffected.

The results for the different predictors demonstrate that predictors considering the absolute

similarity values outperforms others both at the the activity- and process-levels. This implies

that the absolute similarity value of an activity-sentence pair has the strongest correlation to

inconsistencies from the considered factors. However, the performance of the other predictors

indicates that the consideration of similarity relative to other scores also has its merits. This

applies in particular to the diff-A metric, which compares similarity scores relative to other scores

included in an optimal alignment. This predictor still achieves considerable prediction accuracy,

despite achieving lower performance scores than the p-sim predictor. The results furthermore

demonstrate that the approach can identify model-text pairs with conflicting orders between the

process steps described in the process model and those in the textual description. The max-

constrained predictor, which compares the maximum difference between a similarity scored in the

optimal alignment and the the potential similarity score for an activity, greatly outperforms the

baseline metric. It is important to note that the conclusions to be drawn from these results are

impaired by the low number of model-text pairs containing such inconsistencies. Nevertheless, the

approach succeeds in detecting these few cases with a high precision.
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The obtained evaluation results have several implications for the application of the proposed

approach in practice. The results reveal that both the linguistic analysis and ordering constraints

consistently improve the accuracy with which inconsistencies are detected. This implies that the

full configuration (BL + LA) should be used to generate alignments between model and text.

The comparison of the different predictors furthermore demonstrates that the p-sim and max-

constrained predictors achieve the best results on our heterogeneous data collection. As such, the

evaluation shows that these predictors should be selected for application in practical settings.

Finally, it is important to note the trade-off between activity-level and process-level predictors

for the detection of missing activities. The former provide more fine-granular results, while the

latter predictors achieve a higher predictive accuracy. Since clearing up inconsistencies will always

involve manual effort, it is, therefore, worthwhile to consider the usage of process-level predictors,

to identify those model-text pairs in a collection that are most likely to contain inconsistencies.

5. Limitations

Our evaluation demonstrated that our approach achieves promising results. However, these

results need to be reflected against the background of some limitations. In particular, we identify

limitations related to the approach and limitations related to the evaluation.

Limitations related to the approach concern three aspects. First, the employed NLP tech-

niques, such as the Stanford Parser and the anaphora resolution technique, are not fully accurate.

Second, the employed Lin similarity may not be able to identify semantic relationships between

synonymous words from highly specific domains. Third, our approach does not take discourse

statements such as “after” or “before” into account. Instead, we use a conservative approach that

only considers the order in the text, because existing techniques that analyze discourse statements

have been shown to produce inaccuracies [15] As a result of these limitations, our approach may

identify wrong alignments. Therefore, the proposed approach remains a prediction approach in-

tended as a means to support users. Nevertheless, as such it greatly helps organizations to quickly

detect inconsistencies between textual and model-based descriptions of their processes. Hence, the

approach reduces the effort required to identify and resolve these differences in large process model
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repositories.

As for limitations related to the evaluation, we would like to point out that the presented

quantitative results are bound to the specifics of the model-text pairs used in the evaluation. The

employed data set is not representative in a statistical sense. In fact, the creation of a statistically

representative sample is hardly feasible, since natural language offers such a high degree of freedom.

Still, we tried to compose a data set that is as heterogeneous as possible by collecting model-text

pairs from a broad variety of external sources. This set included only four model-text pairs with

conflicting orders. This should be taken into account when interpreting the results related to this

type of inconsistency. Inconsistencies in the form of missing activities were better represented in

the data collection, with 26 occurrences. Thus, for this type of inconsistency we are confident that

our evaluation indeed shows a realistic picture of the performance of our approach in practice.

6. Conclusions

In this paper, we presented an approach to automatically detect inconsistencies between tex-

tual and model-based process descriptions. Our approach combines linguistic analysis, semantic

similarity measures, and ordering relations to obtain an alignment between the activities of a pro-

cess model and the sentences of a textual process description. By building on a set of predictors,

our approach detects missing activities as well as conflicting orders between model and text. A

quantitative evaluation with a set of real-world processes against a manually created gold standard

showed that our approach can successfully identify inconsistent model-text pairs. The evaluation

revealed which predictors are particularly useful in real-life settings. It furthermore demonstrated

that tailored natural language processing techniques as well as ordering restrictions positively con-

tribute to the predictive accuracy of the approach.

With respect to future work, we identify four main directions. First, we intend to improve the

predictive accuracy of our approach by addressing the limitations we have identified. One promis-

ing course for this is to make use of domain-specific information in order to overcome problems

caused by the usage of specialized terms from, for example, the health-care domain. Second, we

aim at extending the current approach with respect to its coverage of process dimensions beyond
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the control-flow perspective. For instance, we would like to check the consistency of execution

conditions and other data restrictions. Third, we set out to use the alignments we obtain between

model and text to address use cases beyond the detection of inconsistencies. For example, these

alignments can be used to moderate the evolution of model and text over different versions of a

process. Ultimately, this can lead to the direct propagation of one-sided process updates to the

other mode of representation. In this way, the consistency between multiple process representations

cannot only be checked, but also automatically maintained. This direction relates closely to work

that exists on change propagation and version tracking for process models (cf. [43, 44]). Fourth,

we recognize that organizations also capture process information in formats other than the textual

and model-based descriptions considered in this paper. Common examples include checklists, rules

and regulations, and spreadsheets. Hence, we aim to adapt and apply the techniques developed in

this paper to this broader spectrum of process representation formats.
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