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Abstract

Many process model analysis techniques rely on the accurate analysis of the natural language

contents captured in the models’ activity labels. Since these labels are typically short and diverse

in terms of their grammatical style, standard natural language processing tools are not suitable to

analyze them. While a dedicated technique for the analysis of process model activity labels was

proposed in the past, it su↵ers from considerable limitations. First of all, its performance varies

greatly among data sets with di↵erent characteristics and it cannot handle uncommon grammatical

styles. What is more, adapting the technique requires in-depth domain knowledge. We use this

paper to propose a machine learning-based technique for activity label analysis that overcomes

the issues associated with this rule-based state of the art. Our technique conceptualizes activity

label analysis as a tagging task based on a Hidden Markov Model. By doing so, the analysis of

activity labels no longer requires the manual specification of rules. An evaluation using a collection

of 15,000 activity labels demonstrates that our machine learning -based technique outperforms the

state of the art in all aspects.
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1. Introduction

The considerable number of process models in many organizations has led to the development

of a wide range of automated analysis techniques. A large number of these techniques provides

support to check the correctness of process models [1, 2, 3] and to determine di↵erent types of

quality criteria [4, 5, 6]. Some techniques also support organizations with more advanced analyses.

For example, there are techniques that automatically discover service candidates from process

models [7, 8, 9] or automatically determine where process models from di↵erent organizations

overlap [10, 11].

What many of these techniques have in common is that they depend on an accurate analysis

of the natural language contents of process model activity labels. In this context, the automatic

decomposition of activity labels into their semantic components has been proven to be particularly

helpful [12]. As pointed out in [13, 6], activity labels can comprise three semantic components: an

action, a business object on which the action is performed, and an addition that is providing further

details. As an example, consider the the activity label “Product delivery to client”, which consists of

the action “deliver”, the business object “product”, and the addition “to client”. These components

provide valuable input to analysis techniques. Service discovery techniques, for instance, can use

the information about the components to cluster activities based on their actions and business

objects [9, 14]. In a similar way, techniques determining the overlap between two processes are

capable of explicitly comparing actions and business objects of the di↵erent activities to reason

about their similarity [15, 10, 16].

However, the automated decomposition of activity labels into their semantic components is a

complex task. Due to the shortness and the varying grammatical styles of activity labels, standard

natural language processing tools such as parsers and taggers do not deliver su�ciently accurate

results [12]. One reason for this is that they are not able to recognize when nouns, such as “delivery”

in “Product delivery to client”, actually play the role of an action. Therefore, prior research has

proposed a dedicated technique for decomposing process model activity labels [17]. While this

technique delivers an overall satisfying performance, it also su↵ers from a severe limitation: It

is a rule-based technique. Due to this, its performance varies considerably among data sets with
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di↵erent characteristics. Moreover, it is not capable to detect less frequently occurring grammatical

patterns, which limits its use in practice. Finally, and perhaps most importantly, any adaptation

of the technique, for example because of a di↵erent context or a di↵erent target language, requires

in-depth domain knowledge.

Recognizing these limitations, we propose in this paper a machine learning-based technique for

activity label analysis that overcomes the issues of existing techniques. Our technique conceptual-

izes activity label analysis as a tagging task based on a Hidden Markov Model (HMM) such that

it no longer requires the manual specification of rules. In this way, our technique is more flexible,

more stable, and also better capable to detect less frequent grammatical patterns than the state of

the art. We perform a direct comparison with the rule-based approach from [17] to demonstrate

that our machine learning approach outperforms the state-of-the-art technique in all aspects.

The remainder of this paper is organized as follows. Section 2 introduces the problem in

more detail and highlights the challenges our approach needs to address. Section 3 specifies the

grammatical structure of activity labels. Section 4 presents our machine learning-based technique

for activity label analysis. Section 5 presents the evaluation of our technique. Section 6 reflects on

the limitations of our technique. Section 7 discusses related work before Section 8 concludes the

paper.

2. Problem Illustration

The automated analysis of natural language represents, in general, a notable challenge. The

main reason for this lies in its complexity: The English language encompasses more than 300,000

words, which can be combined to proper sentences in countless ways. Yet, there are highly accurate

tools available which can, for instance, detect the parts of speech of words in natural language

texts [18, 19]. However, as illustrated in prior work [12], these developments cannot be directly

transferred to process models. The natural language used in process models simply di↵ers from

the natural language used in in standard natural language texts. Most notably, because process

model activity labels do not necessarily use verbs to convey actions.

To illustrate the use of natural language in process model activities and the challenges that
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Figure 1: Process model illustrating the challenges of activity label analysis

are associated with its analysis, consider the process model in Figure 1. The depicted process is

concerned with delivering a process performance report and is triggered when a respective request

is received. Then, two concurrent activities take place: The process data is obtained from the ERP

system and prior reports are collected. Once both activities have been completed, the process

performance analysis is conducted. Finally, the performance report is sent to the inquirer.

Besides the process model, Figure 1 also provides information on the semantic components of the

activities. Each activity contains an action, a business object on which the action is performed,

and an optional addition fragment, which is providing further details. The process model from

Figure 1 illustrates that these components can occur in di↵erent linguistic variations. For instance,

in the activity “Obtain process data from ERP system” the action occurs as an imperative verb at

the first position of the label, followed by the business object and the addition fragment. In the

activity “Sending performance report to inquirer” the action is also positioned at the beginning,

but provided as a gerund. In “Collection of prior reports” and “Process performance analysis” the

actions are provided as nouns at the first and the last position of the label. The positions of the

business objects di↵er respectively.

These exemplary activity labels illustrate why the recognition of the semantic activity compo-

nents is so challenging: First, activity labels are very short and, thus, only provide little context for
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automated analysis techniques. Second, actions can occur as nouns, which results in considerable

ambiguity. As an example, consider the activity “Process performance analysis”. An unsophisti-

cated algorithm could recognize the word “process” as an imperative verb and thus erroneously

extract “process” as action instead of “analysis”. This is caused by a frequently occurring phe-

nomenon that is referred to as zero derivation ambiguity, which means that syntactically identical

words can represent a verb as well as a noun. While a first solution for addressing these challenges

has been proposed in prior research [17], the technique su↵ers from a number of limitations that

reduce its value for an application in practice. Because the technique is governed by a specific

set of rules, its performance varies among data sets with di↵erent characteristics and, therefore,

fails to recognize less frequent grammatical patterns. What is more, any adaption of the technique

requires in-depth domain knowledge. This motivates us to present a machine-learning technique

for activity label analysis. More specifically, we employ a Hidden Markov Model to approach the

recognition of semantic activity components as a tagging task : Our technique associates each word

of a given activity label with a corresponding tag describing the semantic role of the word.

As the development of such a tagging technique requires a solid understanding of the grammat-

ical structure of activity labels, the next section introduces the peculiarities of the natural language

of activity labels in detail.

3. Grammatical Structure of Activity Labels

The grammatical structure of activity labels has been subject of various works [20, 17, 6]. The

main finding is that activity labels follow regular structures, which can be described using a set of

labeling styles. In each labeling style, the action is captured in a di↵erent way. Table 1 summarizes

the seven existing activity labeling styles. It shows the structure of each style and an example.

Note that the additional fragment is always optional.

In verb-object labels, the verb is given as an imperative verb at the beginning of the label,

followed by the business object and an optional addition. As examples, consider “Create invoice”

or “Notify Customer”. In action-noun labels, the action is provided as a noun. Since there are

di↵erent possibilities for doing so, there are four di↵erent sub styles. The first is the action-noun
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Table 1: Activity labeling styles

Labeling Style Structure Example

Verb-Object VO AImperative + BO (+ ADD) “Create invoice”

Action-Noun AN (NP) BO + ANoun (+ ADD) “Invoice creation”
Action-Noun AN (ING) AGerund + BO (+ ADD) “Creating invoice”
Action-Noun AN (OF) ANoun + “of ” + BO (+ ADD) “Creation of invoice”
Action-Noun AN (IRR) anomalous “Invoice: Creation”

Descriptive DES (Role +) A3P + BO (+ ADD) “Clerk creates invoice”

No-Action NA anomalous “Invoice”

style (NP). Here, the nominalized action is provided at the end of the label as in “Invoice creation”.

In labels following the action-noun style (ING) the action occurs as a gerund at the beginning of the

label such as in “Creating invoice”. In labels following the action-noun style (OF) the preposition

“of ” is used to separate the nominalized action from the business object. As examples, consider

“Creation of invoice” or “Notification of customer”. All labels that contain a nominalized action

but cannot be assigned to one of the three previously introduced styles are categorized as action-

noun (IRR). In descriptive activity labels, the action is a verb in the third person form. In many

cases, a role is mentioned at the beginning of the label. Examples are “Clerk creates Invoice” or

“Customer approves order”. All labels that do not contain any action are assigned to the no-action

style. Examples typically include single nouns such as “Invoice” or “Error”.

Based on these labeling styles, we define an approach for the automatic analysis of activity

labels in the next section.

4. Analyzing Activity Labels Using Hidden Markov Models

To automatically tag activity labels with their semantic components, we employ a Hidden

Markov Model (HMM). In general, HMMs are used to relate a sequence of observations to a

sequence of hidden states. In our setting, this means that we can use HMMs to relate a sequence

of words from an activity label to a sequence of corresponding semantic components. To achieve

this, HMMs determine the probability of all possible hidden state sequences and select the most

likely one.1 Given an observation sequence O, the probability of a particular hidden state sequence

1For further details about the technical aspects of HMMs, we refer the reader to [21].
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Q, i.e., probability P (O,Q), is calculated as follows:

P (O,Q) = P (Q)⇥ P (O | Q) (1)

Equation 1 illustrates that P (O,Q) results from multiplying two separate probabilities:

1. The probability of encountering the particular sequence of hidden states Q, given as P (Q).

This probability is computed as the Markovian probability that a hidden state sequence starts

with a particular state at index 0, i.e., the state q0, multiplied by the probability that each

subsequent state qi follows its preceding state qi�1, i.e., P (Q) = P (q0) ⇥
Qn

i=1
P (qi | qi�1),

where n = |O|;

2. The probability of encountering that the observations from O are associated with the specific

hidden states from Q, given as P (O | Q). This probability is computed as
Qn

i=1
P (oi | qi),

where P (oi | qi) denotes the probability that the observation oi corresponds to the state qi.

The aforementioned probabilities are all derived from probability matrices, which are con-

structed based on training data. The probabilities used to compute P (Q) stem from a so-called

probability transition matrix and the probabilities associated with P (O | Q) from a so-called emis-

sion probability matrix. In the following, we elaborate on the details of our HMM for tagging

activity labels. In Section 4.1, we first describe the tag set we developed. In Sections 4.2 and

4.3, we describe the transition probability matrix and the emission probability matrix and how we

obtain them from training data. Finally, in Section 4.4, we discuss how we adapted our HMM to

deal with the limited availability of real-world process models as training data.

4.1. Tag Set for Activity Labels

A core aspect of applying HMMs is the establishment of a tag set. Each tag in such a set

corresponds to a particular hidden state that can be associated with an observation. For example,

given the label “Create invoice”, with the observation sequence O = hcreate, invoicei, we require

tags to indicate that “create” corresponds to the verb in a verb-object label and that “invoice”

corresponds to the business object in this labeling style. The design of a suitable tag set plays an
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important role for the performance of our technique. If the tags are too general, the HMM will

fail to recognize certain patterns. If the tag set is too specific, the HMM will require an increasing

amount of training data to extract reliable probabilities. Therefore, we establish a tag set that

includes tags for each possible semantic component that may be contained in labels, e.g., actions,

business objects, and modifiers. Additionally, we create separate tags for each of these components

per labeling style. Table 2 depicts the tag set that results from this, showing the tags for each

(possible) combination of 8 tag items with the 7 labeling styles.

Table 2: Tag set for activity labels

Tag Item AN (NP) AN (ING) AN (OF) AN (IRR) VO DES NA

Action A-NP A-ING A-NOF A-IRR A-VO A-DES -

Business Object BO-NP BO-ING BO-OF BO-IRR BO-VO BO-DES BO-NA

Addition Object AO-NP AO-ING AO-OF AO-IRR AO-VO AO-DES AO-NA

Modifier MOD-NP MOD-ING MOD-OF MOD-IRR MOD-VO MOD-DES -

Connective C-NP C-ING C-OF C-IRR C-VO C-DES C-NA

Prepositions P-NP P-ING P-OF P-IRR P-VO P-DES P-NA

Special Character SC-NP SC-ING SC-OF SC-IRR SC-VO SC-DES SC-NA

Number NUM-NP NUM-ING NUM-OF NUM-IRR NUM-VO NUM-DES NUM-NA

The columns correspond to the seven modeling styles denoted in Table 1, where AN refers to the four Action-Noun styles,

respectively using noun phrases (NP), gerunds (ING), of-based constructs (OF), and irregular constructs (IRR). Furthermore,

VO refers to Verb Object, DES to descriptive, and NA to no-action style.

As shown in the table, we define for each style respective tags for actions, business objects, and

objects that are part of an additional fragment. Consequently, the tag A-NP denotes an action

of an action-noun (np) label, the tag A-ING denotes an action of an action-noun (ing) label, and

so forth. What is more, we introduce tags for action modifiers (e.g. “automatic” or “manually”),

connectives (e.g. “and” or “or”), prepositions (e.g. “for” and “in”), special characters (e.g. “/ ”

and “&”), and numbers. The following activity labels from the process model shown in Figure 1

illustrate the use of the tag set.

Obtain| {z }
A-VO

process| {z }
BO-VO

data|{z}
BO-VO

from|{z}
P-VO

ERP| {z }
AO-VO

system| {z }
AO-VO

Process| {z }
BO-NP

performance| {z }
BO-NP

analysis| {z }
A-NP

Collection| {z }
A-OF

of|{z}
P-OF

prior| {z }
AO-OF

reports| {z }
AO-OF
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Besides the general use of the tag set, these examples also highlight the reason for introducing

separate tags for each style. Consider the first activity label, which follows the verb-object style.

From this example, an HMM could mistakenly learn that business objects are likely to follow

actions. However, in fact, this mainly applies to verb-object labels. The two examples following

di↵erent action-noun style patterns illustrate this vividly. To be able to accurately capture these

di↵erences among labeling styles, we use labeling style-specific tags.

4.2. Transition Probability Matrix

The transition probability matrix captures the probabilities of moving from one state to another.

In the context of tagging activity labels it holds the transition probabilities between tags. To

illustrate the notion of a transition probability matrix, consider the visualization in Figure 2. It

shows an exemplary, simplified transition probability matrix as a probabilistic finite automaton.

The transition probabilities between the states of the automaton denote the probabilities for moving

from one tag to another. According to Figure 2, verb-object labels are more likely (70%) than

action-noun labels (30%). Furthermore, we see that verb-object labels are likely to have an object

(80%) and that half of the verb-object labels with a business object have an addition (which

consists of PRP-VO and AO-VO). For action-noun labels, we observe that they always have an

action (they would be no-action labels otherwise) and that about 60% of action-noun labels have

an addition.

While the probabilities shown in Figure 2 are artificial, the transition probabilities can be

learned by training an HMM on a collection of manually tagged activity labels. In case the training

data is fully tagged, the probabilities can be derived by simply counting [22]. If the data is only

partially tagged, estimation algorithms can be used to compute the probability distributions. The

most common are so-called forward-backward algorithms, such as the Baum-Welch method [21].

4.3. Emission Probability Matrix

The emission probability matrix captures the probability of an observation occurring in a

certain state. In the context of tagging activity labels, the matrix indicates the likelihood of a

given word to be associated with a certain tag. As an example, consider the activity label “Process
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Figure 2: Simplified exemplary probability transition matrix for activity tagging

performance analysis” from Figure 1. Since the word “process” su↵ers from the zero derivation

ambiguity, it may represent an action in a verb-object label or a business object in an action-noun

(NP) label. Thus, we can expect the emission matrix to return probabilities greater than zero for

P (“process”, A�V O), as well as P (“process”, BO�NP ). However, suppose “process” is only rarely

used as an action and “process” is frequently associated with the tag A-NP. Then, the HMM would

conclude that the tags corresponding with an action-noun (NP) label are more likely. Note that

the final decision will be based on considering both the emission and the transition probabilities.

When two alternative tag sequences are equally likely, the probabilities from the emission matrix

particularly contribute to the decision of the HMM. Just as the transition probability matrix, the

specific emission probabilities have to be learned from manually tagged activity labels.

4.4. Adaption for Dealing with Sparse Training Data

Without adaptions, an HMM that strictly follows the computation from Equation 1 is not likely

to perform well. The reason is that P (O,Q) will be zero for any sequence of observations O that

contains words that are unknown to the HMM, i.e. not part of the emission probability matrix.

This problem can be resolved in two ways: by applying a smoothing technique and by increasing

the training data.

Smoothing is an approach that is widely applied in information retrieval [23]. It essentially
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assigns a small probability to unseen words, such that probabilities of zero no longer occur. To

illustrate the e↵ect of smoothing, consider the activity label “Escalate case” and suppose the HMM

has not seen the word “case” before. Without smoothing the probability P (O,Q) would be zero

for any sequence of tags. We thus have to expect a random outcome. When applying smoothing,

the HMM would assign a small probability to “case” being associated with any of tags from our tag

set. Since these probabilities would be all equal, the choice for the most likely tag sequence will not

be random but be driven by the transition probabilities. Assume the HMM found that “escalate”

is often tagged as verb-object action (A-VO). Then, the HMM identifies the tag that most likely

follows A-VO and assigns it to “case”. According to the exemplary transition probability matrix

from Figure 2, “case” will therefore receive the tag BO-VO.

While smoothing helps to deal with unseen data, it can still lead to wrong conclusions. A

safer way to improve the performance of an HMM therefore is to increase the amount of training

data. Looking into the size of the data resources that are used to train accurate Natural Language

Processing tools, such as the Stanford Tagger [18] and the Stanford Parser [24], we can learn that

they use corpora that consist of several million words. Unfortunately, it does not appear to be

feasible to obtain such an amount of data for business process models. The contents of process

models are typically sensitive, which explains why there are hardly any process model collections

publicly available. To deal with this problem of scarce data, we decided to train our HMM on

additional, non-process related resources. More specifically, we parsed an English dictionary and

extracted 4684 infinitive verbs and 7338 singular nouns. We tagged the former as actions for verb-

object labels (i.e. as A-VO) and the latter as business object for every style (i.e. as BO-A, BO-NP,

etc.). What is more, we derived the third person singular, the present participle, and the gerund

forms from the verbs and tagged them respectively (i.e., third person singular verbs as A-DES,

present participle verbs as A-DES, and gerund verbs as A-ING). In the experiments in the next

section, we will show that this augmentation significantly contributes to the performance of our

HMM.
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5. Evaluation

The goal of the evaluation is to demonstrate that the machine-learning technique presented in

this paper outperforms the state of the art in the form of the rule-based technique from [17]. To

this end, we run both techniques on a data set that consists of three large process model collections

from practice and compare their performance. Section 5.1 first introduces the data set. Section

5.2 then elaborates on the details of the evaluation setup. Sections 5.3 and 5.4 present the results.

Section 5.5 discusses the e↵ect the HMM augmentation with non-process related resources. Finally,

Section 5.6 assesses the performance of the technique on previously unseen domains.

5.1. Test Data set

To test our technique we build on an extended version of the data set from [17]. In particular,

we were able to add almost 700 new process models to the original data set (primarily new models

from the telecommunications sector).As a result, the number of activity labels increased from

10,784 to 15,488.

The data collection is well-suited to test the capabilities of our technique since it varies with

respect to multiple dimensions such as label style distribution, domain, and expertise of the mod-

elers. It consists of three di↵erent real-world process model collections, of which 3 summarizes the

main features. They include the following:

• SAP Reference Model (SAP): The SAP Reference Model represents the business processes

of the SAP R/3 system in its version from the year 2000 [25, pp. 145-164]. It contains 604

Event-driven Process Chains (EPCs), which are organized in 29 functional branches such as

sales and accounting. This collection mainly contains action-noun labels (81%).

• Telecommunication collection (TC): The TelCo Collection contains a set of 1000 ADONIS

models from a large telecommunication service provider. With regard to contents, the models

capture various aspects from the domain of customer service management. The major share

of labels follow the verb-object style (93%).

• Academic Collection (AC): The Academic Collection includes 578 process models created

using the Business Process Model and Notation (BPMN). The models cover diverse domains
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and mainly stem from academic training. Most of the labels follow the verb-object style

(74%).

Table 3: Characteristics of test data set

Property SAP TC AC

Process models 604 1000 578

Action-Noun labels 81% 7% 10%

Verb-Object labels 11% 93% 78%

Descriptive labels 0% 0% 7%

No Action labels 8% 0% 5%

Zero-Derivation cases 42% 49% 46%

Activity labels 2,433 8,152 4,903

Average no. of activities per model 4.03 8.15 7.01

Average no. of words per label 3.5 3.51 3.65

Minimum no. of words per label 1 1 1

Maximum no. of words per label 12 16 19

Modeling language EPC ADONIS BPMN

As indicated by the characteristics shown in Table 3, the model collections di↵er in several

dimensions. Most importantly, they di↵er with respect to the label style distribution, the domain,

and the expertise of the modelers.

The most important feature of the considered collections is the opposed distribution of labeling

styles. While the majority of the activity labels in the SAP Reference Model follow the action-noun

style, the TC and the AC collections mainly contain verb-object labels. This is an important feature

since it allows us to learn about the ability of our technique to deal with di↵erent extremes. It should

be noted that the distribution of the labeling styles does not lead to a considerable di↵erence with

respect to the zero-derivation cases. All collections have a comparable and considerable share of

zero-derivation cases (between 42% and 49%). Another important feature of the test data set is the

variety of covered domains. Since di↵erent domains come with di↵erent vocabularies and possibly

even varying use of label patterns, the broad range of covered domains helps us the reason about the

general applicability of our technique. It is important to note that in particular the SAP collection

contains a large of number of highly domain-specific words that are typically not used in standard

texts. Finally, the test data set di↵ers with respect to the expertise of the modelers. While the SAP

Reference Model and the TC collections were created in a professional environment, the AC model

collection was mainly created by students. We expect that this di↵erence in modeling expertise

a↵ects the way natural language is used in activity labels. To account for this heterogeneity in
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the context of our evaluation, we include both professional and non professional process model

collections.

5.2. Setup

To evaluate the performance of our technique, we manually annotated all activities from our test

data set with their label style and the tags from our tag set. Based on this manually annotated and

tagged data set, we conducted a stratified 10-fold cross validation. The idea behind this validation

approach is to randomly split the data set into 10 mutually exclusive subsets of about equal size

and distribution of labeling styles [26]. The HMM is then trained on 9 of the 10 sub sets and

tested on the remaining (unseen) sub set. This process is repeated 10 times such that, in the end,

all data has been used for both training and testing. The advantage of this evaluation method is

that it does not require us to partition the data set into training and testing data. Thus, it neither

compromises the training nor the testing possibilities.

To measure and compare the performance of our technique, we evaluate two key capabilities:

• the capability to correctly recognize labeling styles;

• the capability to correctly identify semantic components.

We quantify the recognition capability using the metrics precision, recall, and F1-measure. In

our context, the precision value is the number of correctly recognized labels of a given style divided

by the total number of labels the technique associated with that style. The recall is the number of

correctly recognized labels of a given style divided by the total number of labels belonging to this

style. Since we aim to obtain high recall and precision values at the same time, we also compute

the F1-measure, the harmonic mean of precision and recall. Note that a correct recognition of

the label style does not necessarily imply the correct identification of the semantic components.

Therefore, we quantify the identification capability by computing the share of semantic components

that have been identified correctly.

Since the technique from [17] does not require any training, we simply run it on our test data set

and compute the two capability metrics. For our machine learning-based technique, we compute
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the two capability metrics for each fold. By averaging them among all 10 folds, we obtain a realistic

picture of its performance.

5.3. Results for Label Style Recognition

The aggregated recognition results for all three process model collections are provided in Table

4. The total numbers for precision, recall, and F1-measure show that our HMM-based technique

clearly outperforms the rule-based technique from [17]. The F1-measure achieved by the HMM-

based technique is about 3 percentage points higher than the F1-measure of the rule-based tech-

nique. This increase results from both an improved recall as well as from an improved precision.

However, the numbers also reveal that the increase in precision has a slightly bigger contribution

to the improved F1-measure. The consideration of precision, recall, and F1-measure for the indi-

vidual labeling styles provides further insights. The numbers show that the di↵erence between the

techniques can be explained by three main factors. First, the HMM-based technique recognizes

action-noun labels with a much higher precision. As discussed in [27], the precise recognition of

action-noun labels is particularly challenging when most labels of a collection actually follow the

verb-object style. Second, the HMM-based technique is better able to recognize descriptive labels

than the rule-based technique. The latter was only able to detect about 25%. At the same time,

the precision was very low (0.29). While the HMM has also di�culties with descriptive labels, the

results are substantially higher. It recognizes slightly more than 70% of descriptive labels with a

moderate precision of 0.63. Third, as opposed to the rule-based technique, the HMM is able to

recognize no-action labels. The reason for the failure of the rule-based technique to do so is that

it is almost impossible to specify a simple rule to recognize such labels. No-action labels often

consist of one or two nouns. Whether these nouns relate to an action is an aspect that the HMM

can learn from empirical data. A general rule, however, is unlikely to think of, let alone allow for

good predictions.

Table 5 shows the detailed results for each process model collection. The numbers reveal a

number of interesting insights. Considering the totals, we can see that the performance of the

HMM is much more stable than the performance of the rule-based technique. The F1-measure

of the HMM-based technique ranges from 0.90 to 0.97, while the performance of the rule-based
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Table 4: Aggregated recognition results

HMM-based technique Rule-based technique

Style Count Prec Rec F1 Prec Rec F1

Action-Noun labels 3,031 0.83 0.82 0.83 0.65 0.80 0.71

Verb-Object labels 11,674 0.96 0.95 0.96 0.86 0.96 0.89

Descriptive labels 343 0.63 0.71 0.66 0.29 0.24 0.22

No-Action labels 440 0.47 0.78 0.58 – – –

Weighted average 0.93 0.92 0.93 0.90 0.91 0.90

technique ranges from 0.75 to 0.96. This represents an important finding. Since the specific

characteristics of a process model collection can hardly be assessed prior to its analysis, a stable

performance of a technique is essential for its application in practice. Our evaluation reveals that

the performance of the rule-based technique is subject to considerable variation.

Table 5: Disaggregated recognition results for each collection

HMM-based technique Rule-based technique

Style Prec Rec F1 Prec Rec F1

SAP

Action-Noun labels 0.96 0.90 0.93 0.53 0.86 0.66

Verb-Object labels 0.46 0.75 0.55 0.27 0.86 0.41

Descriptive labels 0.30 0.07 0.11 0.00 0.00 0.00

No-Action labels 0.58 0.82 0.67 – – –

Total 0.92 0.89 0.90 0.74 0.75 0.75

TC

Action-Noun labels 0.76 0.77 0.75 0.65 0.75 0.70

Verb-Object labels 0.98 0.98 0.98 0.98 0.97 0.98

Descriptive labels 0.93 0.82 0.84 0.06 0.20 0.09

No-Action labels 0.40 0.40 0.40 – – –

Total 0.97 0.97 0.97 0.97 0.96 0.96

AC

Action-Noun labels 0.70 0.66 0.68 0.53 0.86 0.66

Verb-Object labels 0.98 0.95 0.96 0.96 0.99 0.97

Descriptive labels 0.66 0.70 0.68 0.82 0.41 0.55

No-Action labels 0.32 0.81 0.45 – – –

Total 0.93 0.90 0.92 0.87 0.91 0.89

Despite the better and more stable performance of the HMM-based technique, the numbers also

indicate that both techniques su↵er from extreme label style distributions. For the SAP collection,

which mainly contains action-noun labels, we observe a fairly low recognition performance for verb-

object labels. For the TC and the AC collections, which mainly contain verb-object labels, we

observe lower numbers for the recognition performance of action-noun labels. The reason for these

erroneous classifications can be mainly related to cases of zero-derivation ambiguity. As examples,

consider the labels “Contact maintenance” and “Order checkout”. Both labels can be interpreted
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Figure 3: Comparison of zero-derivation resolution ratios

as verb-object as well as action-noun style labels. Neither the HMM-based technique nor the rule-

based technique can perfectly deal with these cases. Figure 3 illustrates the zero-derivation ratios

of both techniques for each collection. While we can see that the HMM-based technique is, overall,

more accurately resolving zero-derivation ambiguity than the rule-based technique, we can also see

how severely zero derivation impacts performance. For the SAP collection both techniques were

only able to resolve about 50% of all zero-derivation cases. The results for the AC collection are

better (63% and 67%), but still not satisfactory. Only the results for the TC collection are highly

accurate (89% and 92%). The reason for the varying zero-derivation resolution ratios can again

be explained by the labeling style distribution. The more action-noun labels are used, the harder

the accurate detection, because a single word such as “order” is likely to be used as both verb

and noun in the same collection. Despite this remaining potential for improvement, the overall

recognition results can be considered highly satisfactory.

5.4. Results for Semantic Component Identification

The results for the identification of the semantic components are provided in Table 6. The

numbers show the overall accuracy of the techniques for correctly recognizing the semantic com-

ponents. Since the correct recognition of the label style is a necessary precondition for the correct

identification of the semantic components, the numbers are equal or lower than the recognition

recall values.

The results illustrate that the identification accuracy is typically very close to the recognition
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Table 6: Accuracy of semantic component identification

Style HMM-
based
technique

Rule-based
technique

Action-Noun labels 0.81 0.78

Verb-Object labels 0.94 0.95

Descriptive labels 0.69 0.23

No-Action labels 0.78 0.00

Total 0.91 0.89

recall of the respective style. This is so since the labeling style often reliably indicates the position

of the di↵erent components. However, the accuracy of the HMM-based technique is about 2

percentage points higher than the accuracy of the rule-based technique. Comparing this to the

advances typically presented in classical part-of-speech tagging, this needs to be considered as a

substantial improvement [28]. The strengths of the HMM-based technique can be mainly observed

for labels su↵ering from the adjective-noun ambiguity. As an example, consider the label “Manual

verification”. While the rule-based technique identifies “manual” as a business object, the HMM-

based technique correctly identifies it as an action modifier. The most challenging, remaining error

relates to labels with compound nouns, such as bill of exchange or scope of work. If the HMM

has not seen these compounds in the training phase, it classifies the part of the preposition as

additional fragment. The rule-based technique, however, is even more sensitive since it generally

considers a preposition as start of the additional fragment.

5.5. E↵ect of Augmentation

Sparse training data is a considerable problem for any machine learning-based technique. How-

ever, process models represent a particularly sensitive data source. Hence, the augmentation of

our HMM with additional non-process related resources is an important conceptual component

of our technique. Figure 4 shows the e↵ect of this augmentation on both recognition as well as

identification.

Figure 4 illustrates that the augmentation significantly contributes to the overall recognition

and identification performance. The numbers for the di↵erent labeling styles also show that this

improvement cannot be traced back to a single labeling style. In fact, all labeling styles benefit

from the augmentation. The biggest change can be observed for descriptive labels. This can be
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Figure 4: E↵ect of augmentation

explained by the rather limited occurrence of third-person verb forms in process models. Thus,

the augmentation with the respective verb forms leads to a notable improvement. The smallest

change can be observed for verb-object labels. It should be noted, however, that this represents

a relative change. Taking the labeling style distribution of the test data set into account, a delta

of three percentage points in verb-object style recognition means that due to the augmentation

several hundred activity labels are correctly classified. In summary, the augmentation proves to be

essential for the performance of our HMM.

5.6. Domain Dependence

Finally, given that the terminology used in process may di↵er considerably across domains, it

is important to assess how well the proposed technique is able to deal activity labels from new

domains. In other words, how domain dependent is the technique? To evaluate this, we performed

evaluation experiments where we trained the HMM-based technique on two of the data sets and,

subsequently, tested its performance on the third set. In this way, we can, for instance, test how

well the technique performs on data from the telecommunication domain (TC collection), even

though the technique is not trained on data from this domain.

Table 7 depicts the results obtained in this manner. The left-hand results (Trained on other

sets), presents the results when the HMM technique is trained on the two other data sets, e.g., the

first row indicates the performance of the technique for the SAP collection when the technique is
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Table 7: Evaluation results for unseen domains

Trained on other sets Trained on all sets

Test set Size Prec Rec F1 Prec Rec F1

SAP 2,433 0.64 0.87 0.74 0.92 0.89 0.90

TC 8,152 0.88 0.88 0.88 0.97 0.97 0.97

AC 4,903 0.85 0.85 0.85 0.93 0.90 0.92

Total 15,488 0.83 0.87 0.85 0.95 0.94 0.94

trained using the TC and AC collections. The right-hand of the table shows the original results

obtained using k-fold cross validation over all data sets, as originally presented in detail in Table 5.

The table shows that the technique still performs rather well on activity labels from unseen

domains, achieving an F1-score of 0.87. Still, it can also be observed that this performance is lower

than the results obtained when training the technique on data from all domains (F1-score of 0.94).

These results reveal that the technique’s performance indeed reduces when applied to a previously

unseen domain. However, it should be recognized that two other factors play a role here as well.

First, the amount of training data is simply lower. Most notably, when applying the technique

on the TC collection, we can only train the technique on 7.3k labels, whereas in the situation of

10-fold cross validation the technique is trained on 13.9k labels. Second, the distribution of the

labeling styles is non-uniform across the three data sets. Primarily, the SAP collection consists of

mostly AN-labels, which are comparably rare in the other two data sets. This means that for this

evaluation, the HMM is trained on a data set with few training examples of this labeling style, even

though it is by far the most commonly occurring style in the test set. As a result, in particular

the precision achieved for this collection is considerably lower (0.64) than for the original precision

(0.92).

Given these insights, it is important to recognize that, while indeed the domain-specificity of

activity labels may always play a role, the latter two causes (i.e., limited training size and limited

AN training data) are only present for this particular test set-up and would not be present if our

technique is applied on additional data sets.
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6. Limitations

Despite the satisfactory results presented in this paper, our technique is subject to a number

of limitations. More specifically, there are limitations with respect to our evaluation experiments,

the training of our technique, and the adaptability.

The limitations relating to our evaluation experiments mainly concern the test collection we

used. It should be noted that it is not representative in a statistical sense. Therefore, we cannot

generalize our results to any process model collection we may encounter in practice. However,

we tried to select highly heterogeneous collections to cover as much diversity as possible. The

evaluation experiments demonstrated that our technique can deal well this heterogeneity. It delivers

a high and stable performance across all data sets. In the unlikely case of a collection exhibiting

fundamentally di↵erent characteristics, our technique would still be valuable. It simply needs to

be trained on such a deviating data set respectively.

The limitations with respect to the training of our technique are twofold. First, it might be

challenging to obtain a su�cient amount of training data for our technique. As pointed out earlier,

training data for process model analysis is sensitive and, therefore, not always easy to access.

At the same time, our technique requires su�cient training data to perform well. Second, even

when su�cient raw data is available, a training data set first needs to be manually created by

respectively tagging the activity labels from the respective raw data set. This requires a certain

amount of e↵ort and insight. To solve these problems, we provide a pretrained version of our

technique, which is ready for use.2 In this way, the technique is fully applicable without requiring

users to manually create a data set or to train the technique themselves. In case users still wish

to retrain the technique on a di↵erent data set, we consider this a feasible task. In comparison

to the technique from [17], the manual tagging of a data set is more intuitive than defining and

implementing rules. Next to the pretrained technique, we also provide the non-restricted parts of

our training data set via the above-mentioned link. We are convinced this can help interested users

to understand how the training data set needs to be prepared.

The last limitation relates to the adaptability of our technique to other model elements and

2A download is available under http://www.henrikleopold.com/downloads/
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languages. While the focus of this paper is on activity label analysis, our technique can be also

applied to other process model elements, such as events and gateways. Prior work has shown that

event and gateway labels su↵er from less ambiguity than activity labels and are, in general, easier

to analyze [6]. Thus, there are no conceptual adaptations necessary. However, it is required is to

retrain our technique on a respective data set with manually annotated events and gateways. In the

same way, our technique could be adapted to other languages than English. While the particular

patterns of activity labels have been found to di↵er, the elements are the same [6]. Therefore, it

is again su�cient to retrain our technique on a respective data set. While this is associated with

a certain e↵ort, it does not limit the general adaptability of our technique.

7. Related Work

The work presented in this paper relates to two major streams of research: the automated

quality assurance of process models and the application of Hidden Markov Models.

Our work primarily relates to approaches for the automated quality assurance of process models.

There are techniques available for checking formal properties of process models such as soundness

[29, 30], the correctness of the dataflow [31, 32] and the satisfiability of constraints on the resource

perspective [33, 34, 35]. As for linguistic aspects of process models, there are various approaches

for detecting and enforcing naming conventions [6, 36, 37]. Some approaches can also check the

linguistic consistency of the terms that are used for labeling model elements [38, 39, 40, 41, 42].

Many of these linguistic techniques rely on accurately recognizing the grammatical patterns of the

activity labels in the first place. While the technique presented in [43] is able to achieve that,

it is a rule based approach. This comes with a number of limitations, particularly with respect

to performance stability. The solution presented in this paper overcomes these limitations by

conceptualizing activity label analysis as a tagging task based on Hidden Markov Models.

Hidden Markov Models are probabilistic models that are used to annotate sequences of obser-

vations with hidden states. The contexts in which HMMs can be applied are diverse, including

bioinformatics [44, 45], electrical engineering [46], and natural language processing. In the latter

domain, which also encompasses our application context, a variety of use cases are addressed using
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HMMs, such as speech [47] and handwriting recognition [48], part of speech tagging [49], machine

translation [50], and information extraction [22, 51]. The strength of HMMs in the context of these

applications, as well as in the context of the technique presented in this paper, is that they combine

emission and transition probabilities. In this way, HMMs are able to reliably recognize patterns

in sequences, including those involving previously unseen terms. Our use case distinguishes itself

from the aforementioned, generic use cases, such as part of speech tagging and machine translation,

primarily because activity labels are short text snippets, which are often not semantically complete

and can be highly ambiguous.

8. Conclusion

In this paper, we addressed the problem of automatically analyzing the natural language of

process model activity labels. Recognizing the limitations of existing techniques, we proposed a

machine learning-based technique that builds on a Hidden Markov Model. Our approach concep-

tualizes activity label analysis as a tagging task and is able to recognize the labeling style and the

semantic components of an activity label. Evaluation experiments with more than 15,000 activity

labels demonstrated that our technique is highly accurate and outperforms the existing rule-based

technique for activity label analysis [17]. What is more, our technique has shown to deliver a more

stable performance and appears to be better suited for recognizing labels that follow less frequent

labeling styles. In contrast to the existing rule-based technique, it is also able to detect no-action

labels.

While this paper focused on activity label analysis, it is important to note that our technique

can be also applied to other process model elements, such events and gateways, and even other

languages. Prior work has shown that the grammatical elements and, therefore the tag set provided

in this paper, are applicable among di↵erent process model elements and languages [6]. Hence, the

adaptation of our technique does not require any conceptual adaptations. Our technique simply

needs to be retrained on a respective data set.

In future work, we aim to further improve our technique. In particular, we strive for developing a

solution for the complex zero-derivation cases. To this end, we plan to look into more sophisticated
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learning mechanisms and to exploit other external knowledge sources such as Wikis.
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