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Abstract—Event logs that originate from information systems
enable comprehensive analysis of business processes, e.g., by
process model discovery. However, logs potentially contain sen-
sitive information about individual employees involved in pro-
cess execution that are only partially hidden by an obfuscation
of the event data. In this paper, we therefore address the risk
of privacy-disclosure attacks on event logs with pseudonymized
employee information. To this end, we introduce PRETSA, a
novel algorithm for event log sanitization that provides privacy
guarantees in terms of k-anonymity and t-closeness. It thereby
avoids disclosure of employee identities, their membership in
the event log, and their characterization based on sensitive
attributes, such as performance information. Through step-
wise transformations of a prefix-tree representation of an event
log, we maintain its high utility for discovery of a performance-
annotated process model. Experiments with real-world data
demonstrate that sanitization with PRETSA yields event logs
of higher utility compared to methods that exploit frequency-
based filtering, while providing the same privacy guarantees.

1. Introduction

Event logs that are recorded by information systems are
the starting point for process mining, i.e., the data-driven
analysis of qualitative and quantitative properties of business
processes [1]. Specifically, discovery algorithms construct
a process model from an event log, thereby formalizing
the recorded execution dependencies between a process’
activities [2]. Focusing on quantitative properties, such a
model is annotated with performance information to facilitate
process simulation [3], e.g., to assess the average cycle time.

With the potential of process mining unfolding, organi-
zations intensify their efforts for accurate and fine-granular
recording of their processes. Once a process involves manual
processing, however, the resulting event logs enable sensitive
conclusions on individual employees. As such, event logs
may breach privacy [4], violating informal self-determination,
i.e., an individual’s ability to control, who has access to their
personal data [5]. Avoidance of potential privacy breaches
is not only an ethical consideration, but may be enforced
by legislation. An example is the European General Data
Protection Regulation (GDPR) that prohibits processing of
personal data unless necessary for a specific purpose [6].

Privacy-aware processing of event logs may be ap-
proached based on methods for information security that

prevent unauthorized access, use, and disclosure of data [4].
Specifically, data confidentiality may be achieved by restrict-
ing the access and interpretation of data by pseudonymization,
i.e., the obfuscation of data to prevent direct identifica-
tion of entities, or anonymization, i.e., the permanent de-
identification of data that renders conclusions on entities
impossible even when relying on additional data [7].

Such methods, however, are insufficient in terms of
privacy in some application contexts as they do not prevent
frequency-based attacks [8]. For instance, pseudonymization
of employee information in a log does not achieve privacy,
if it is known that only a certain employee may execute a
specific activity. A different angle therefore is the sanitization
of data to give well-defined privacy guarantees. Examples
for such guarantees are k-anonymity [9] (each entity cannot
be distinguished from at least k other entities) or differential
privacy (adding noise to the data, there is a guaranteed level
of ambiguity trying to reconstruct the original data) [10].

Many notions of privacy have a parameter that enables
fine-tuning of the strengths of the given guarantee, e.g., k in
k-anonymity and a privacy budget ε in differential privacy.
Typically, there is a trade-off between the strengths of a
privacy guarantee induced by data sanitization and the loss
in utility of the data for some analysis question. For instance,
aggregating the events of several instances of a process yields
stronger k-anonymity (a higher k value), but perturbs the
execution dependencies recorded between activities. Adding
more noise to an event log (smaller privacy budget ε), yields
higher ambiguity in differential privacy, but also decreases
the accuracy of process simulation. The actual loss in analysis
utility incurred by privacy guarantees depends on the exact
definition of respective data sanitization, though. This raises
the question of how to sanitize data such that data utility is
maximized under a given privacy guarantee?

In this paper, we address the above question for a specific
application context in process mining. This context is defined
by an attack model, which determines the privacy guarantees
to consider, and a type of process analysis, which determines
how to assess the utility of a sanitized event log.

We consider a trace linking attack on an event log
with pseudonymized employee information that correlates
events with background knowledge on resources. This attack
involves (i) identity disclosure, whether an event is related
to an employee; (ii) membership disclosure, whether events
of an employee are contained in the log; and (iii) attribute
disclosure, whether an employee can be characterized through
attribute values of events. We aim to prevent this attack by



sanitizing an event log before it is used to discover a process
model, including annotations of activity durations. As such,
the utility of the sanitized log is assessed in terms of the
change of the model discovered from the sanitized log in
comparison to the one discovered from the original log.

For this setting, we present PREfix-Tree based event log
SAnitisation for t-closeness, shortly PRETSA, an event log
sanitization algorithm that prevents membership and identity
disclosure by k-anonymity and protects against attribute
disclosure by t-closeness. In essence, PRETSA constructs a
prefix tree representation of an event log that is annotated
with frequencies and attribute values. This tree is then step-
wise transformed by relocating and merging sub-trees until
the required privacy guarantees have been obtained. This
way, transformations of the event log are comparatively fine-
granular, which implies a modest loss in the log’s utility.

We evaluate PRETSA against a baseline that achieves
the respective privacy guarantees by filtering the event log.
Our experiments with three real-world datasets indicate
that the event logs obtained using PRETSA have a high
utility for both process discovery and performance analysis.
Furthermore, we show that PRETSA outperforms the baseline
along various evaluation dimensions and yields good results,
even when the baseline fails to provide any results at all.

In the remainder of the paper, we provide a motivating
example (Section 2), before formalizing the considered attack
model and privacy guarantees (Section 3). We then introduce
PRETSA, our algorithm for event log sanitisation (Section 4)
and present an empirical evaluation (Section 5). Finally, we
review related work (Section 6) and conclude (Section 7).

2. Motivation

To motivate the need for event log sanitization, consider
an order handling process, which encompasses activities
related to the creation of purchase orders (PO) (create po),
updating them (update po), receiving goods (receive gd), and
checking, paying, and rejecting invoices (check in, pay in,
reject in). Assume that events are recorded for this process,
which enables process discovery and performance analysis.
While an event log that contains the recorded event data is re-
quired to apply these techniques, it is important to recognize
that the previously discussed ethical and legal considerations
prevent the manager from collecting or disclosing data that
compromise the identity of individual employees.

Straightforwardly, this means that an event log must not
contain information about which employee performed which
events. However, for someone with malicious intent, i.e.,
an attacker, information on the sequencing of events may
be enough to relate employees to the execution of certain
events [11]. This, particularly, holds if an attacker possess
organizational knowledge (e.g., a manager). For instance, a
manager may be aware that, for POs that have been updated,
only four employees are allowed to check the corresponding
invoice. By combining such background knowledge with
the traces in an event log, adversaries could derive sensitive
information, such as:

• That an event was performed by a specific employee
(identity disclosure).

• That the data of a specific employee is included in the
event log (membership disclosure).

• That an employee can be characterized by execution-
related data, e.g. performance data (attribute disclosure)

For example, consider a scenario in which some POs have
been updated after goods receipt. If an adversary knows
that Sue is one of the few employees that are allowed to
subsequently check the corresponding invoice, the adversary
would be able to identify the specific events that were
performed by Sue (identity closure) with high accuracy.

To reduce the probability that such an attack will succeed,
event logs must be sanitized to protect the privacy of an
organization’s employees. One way to achieve this is to
alter event logs so that they meet privacy guarantees. An
example for such a guarantee is k-anonymity, which bars the
disclosure of infrequently occurring process behavior. From
a process mining perspective, a downside of such a guarantee
is that information may become obscured by sanitization.

TABLE 1: Exemplary sequences of activity executions.

Sequence variant #

σ1 create po,update po,receive gd,check in,pay in 10
σ2 create po,update po,receive gd,check in,reject in 5
σ3 create po,receive gd,update po,check in,pay in 7
σ4 create po,receive gd,update po,check in,reject in 5
σ5 create po,receive gd,update po,update po,check in,pay in 1

Assume that an event log contains events that represent
sequences of activity executions as detailed in Table 1. A
straightforward manner to ensure k-anonymity, would be
to remove any variant from the log that occurs less than k
times. Given that only one variant occurs at least eight times,
a requirement for k-anonymity with k = 8, would yield a
sanitized event log that contains only 10 sequences of events
that all represent variant σ1. While this log indeed provides
the desired privacy guarantee, it also hides a considerable
amount of information on the presence and frequency of
other sequence variants. When applying process discovery
techniques on this sanitized log, we would therefore discover
a process model that only captures a fraction of the actually
recorded process behavior.

3. Event Log Privacy

Next, we provide a formal model of the illustrated setting,
including a model of event logs (Section 3.1), the considered
trace linking attack (Section 3.2), and privacy guarantees to
cope with the attack (Section 3.3).

3.1. Event Log Model

To formalize privacy requirements for event logs, we
adopt an event model that builds upon a set of activity
identifiers A (activities, for short) and a set of resources
R (i.e., employees). For the execution of an activity by a
resource, we further consider execution-related data. Here,



we incorporate this data as a sensitive attribute of a domain
S that is relevant for the analysis. Note that execution-related
data that is not important for process analysis does not pose
any privacy challenge, as it may simply be discarded.

Let I be a set of event identifiers. Then, by E = I×A×
R×S , we denote the universe of events that may be recorded
by an information system. As such, each recorded event
e = (i, a, r, s) ∈ E represents an execution of an activity a
by a resource r with s as the sensitive attribute value, whereas
i is a unique identifier, i.e., for (i, a, r, s), (i′, a′, r′, s′) ∈ E it
holds that i = i′ implies that (i, a, r, s) = (i′, a′, r′, s′).

A single execution of a process, called a trace, is a finite
sequence of events t = 〈e1, . . . , en〉 ∈ E∗. By T , we denote
the universe of all traces. We define an event log as a set of
traces, L = {t1, . . . , tm} with tj ∈ T for 1 ≤ j ≤ m.

3.2. Attack Model

We consider a scenario in which a performance-annotated
process model shall be discovered from an event log, where
performance information is given by the sensitive attribute.
Since an event log, as defined above, contains information
on individual resources, i.e., the employees that executed
a certain activity, it cannot be disclosed. Rather, data that
is not relevant for the intended analysis shall be projected.
We therefore consider a projection π : E → I × A × S
with π(i, a, r, s) = (i, a, s) that removes information on the
resource from an event. This projection is lifted to a trace and
a log, respectively, by applying it to all contained events, i.e.,
π(t) = 〈π(e1), . . . , π(en)〉 and π(L) = {π(t1), . . . , π(tl)}.

The projected log π(L) does not allow for direct con-
clusions on which activity execution (i.e. which event) was
performed by whom (identity disclosure), whether events of
a resource are part of the log (membership disclosure), or
on a characterization of resources by values of the sensitive
attribute (attribute disclosure).

The above information may be revealed, though, if the
projected log is combined with background information.
Here, we consider such information on the relation between
resources and activities. In practice, such information is
frequently available: It may stem, for example, from the
definition of organizational responsibilities (resources differ
in the sets of activities that they are obliged to execute) [12];
role-based access control in information systems (resources
differ in the sets of activities that they are allowed to exe-
cute) [13]; or information on shift schedules (resources differ
in their availability to execute certain sets of activities) [14].

In this work, we incorporate a rather expressive notion of
background information that does not only provide insights
into possible assignments of activities to resources, but
potentially limits these assignments based on activity patterns.
This enables us to model application contexts in which the
assignment of activities to resources is controlled in a fine-
granular manner. As an example, reconsider the invoice
handling process of Section 2. In this process, the payment
of an invoice may only be performed by specific employees,
if the purchase order was previously updated after goods
receipt, which indicates an abnormal process execution.

We formalize such background information by a function
b : A∗ ×A → 2R, so that b(〈a1, . . . , an〉, a) = {r1, . . . , rm}
captures that an activity a in a trace in which activities
a1, . . . , an have been executed already in the respective order,
may be assigned to one of the resources {r1, . . . , rm}. For
example, b(〈receive gd, update po〉, pay inv) = {Per, Sue,
Amy, Jim} models that Per, Sue, Amy, and Jim may pay an
invoice of a PO that was updated after goods receipt.

Using such background knowledge, we consider an attack
on a projected event log as a specific type of sequence linking
attack [11]. That is, given a projected log π(L), a trace linking
attack is an attempt for:
• Identity disclosure: Identify a function work : R 7→
I ×A× S that assigns an event (i, a, s) of a projected
trace t′ ∈ π(L) to resource r, such that (i, a, r, s) is an
event of the original trace t ∈ L, i.e., t′ = π(t).

• Membership disclosure: For a resource r ∈ R, identify
whether there exists a projected trace t′ ∈ π(L), such
that the original trace t ∈ L, t′ = π(t), contains an event
(i, a, r, s) for some i ∈ I, a ∈ A, and s ∈ S.
• Attribute disclosure: Given a distance function over two

bags of values of the sensitive attribute, d : B(S) ×
B(S) → R, for an activity a ∈ A, identify whether
the distribution of values of events related to activity
a differs by at least δ ∈ R for some resource r ∈ R,
i.e., d(

∑
r∈R Γ(r, a),Γ(r, a)) > δ with Γ(r, a) = [s |

t = 〈e1, . . . , en〉 ∈ L, 1 ≤ j ≤ n : ej = (i, a, r, s)].
The above attack is facilitated using background infor-
mation, as follows. For a projected log π(L), the back-
ground information b induces equivalence classes: Each
activity pattern of an element (〈a1, . . . , an〉, a) in the do-
main of b defines a class that contains a projected trace
〈(i′1, a′1, s′1), . . . , (i′m, a

′
m, s
′
m)〉 ∈ π(L), if the trace shows

the pattern, i.e., there exists a mapping λ : {1, . . . , n} →
{1, . . . ,m} such that aj = a′λ(j) for 1 ≤ j ≤ n and
λ(j) < λ(j + 1) for 1 ≤ j < n. In the worst case, each prefix
of activities 〈a′1, . . . , a′m〉 induces an equivalence class.

For each equivalence class, the background information
then defines for each activity, the set of resources that may
have been involved in the respective events. Taking up the
above example (Table 1) and the aforementioned background
information, we derive an equivalence class that contains
eight traces, i.e., all traces that correspond to variants σ3
and σ5. The background information reveals that {Per, Sue,
Amy, Jim} could have executed the payment of the invoice.

A trace linking attack discloses identity, membership,
or attribute values for each of the equivalence classes. We
illustrate this for identity disclosure for the above example.
Assume that a resource could have paid at most four invoices,
i.e., at most four events in the equivalence class can be related
to any resource. Picking one resource, say Sue, identity
disclosure is the construction of work(Sue), assigning events
of the projected log to Sue. The maximal probability being
successful in this construction is bounded by the ratio of the
number of events of an activity that may be assigned to a
resource (four) and the number of events in the equivalence
class (eight). Thus, the maximal probability of correctly
assigning events for invoice payments to Sue is 4/8 = 0.5.



3.3. Privacy Guarantees

To reduce the risk that an adversary performs a trace
linking attack successfully, the projected event log shall have
characteristics that lower the probability of disclosure. This
may be achieved for identity and membership disclosure by
adopting the notion of k-anonymity [9], defined as follows.

Definition 1. (k-anonymity) Let π(L) be a projected event
log. π(L) satisfies k-anonymity, if and only if each equiva-
lence class of π(L) contains at least k events.

As discussed above, the equivalence classes of π(L) are
induced by the background information b in our model: Each
activity pattern of an element of the domain of b defines
one equivalence class. By requiring that each class contains
at least k events, k-anonymity gives us a direct bound on
the maximal probability that disclosure succeeds.

Let τ(a) be the maximal number of events that can
represent the execution of an activity a ∈ A by any
resource. Then, the maximal probability of successful identity
disclosure for an event e = (i, a, s) of a projected trace
is bounded by P(e ∈ work(r)) ≤ τ(a)/k. Put differently,
guessing the correct assignment of an event e = (i, a, s) to a
resource (e ∈ work(r)) in the equivalence class induced by
the background information will succeed with a probability
of at most τ(a)/k under k-anonymity.

Taking up the above example, the discussed equivalence
class contains eight traces, which corresponds to 8-anonymity
when considering only the invoice payment activity and
yields a bound of 4/8 = 0.5. However, if the projected log
would satisfy, e.g., 16-anonymity, we would get a tighter
bound for the probability of successful disclosure: The
maximal probability of correctly assigning events related
to the invoice payments to Sue would drop to 4/16 = 0.25.

The above notion of k-anonymity also helps to guard
against membership disclosure. Here, we consider the dis-
closure to be successful if it can be decided with certainty
that an event representing an activity execution of a resource
is part of the projected log. However, we see that this is
not possible if each equivalence class contains at least k
events, so that k > τ(a) for all activities a ∈ A. In that
case, the events in each equivalence class relate to at least
two resources, which renders it impossible to conclude with
certainty on the association of an event to a specific resource.

Ensuring that the projected log satisfies k-anonymity
does not protect against attribute disclosure, though. The
values of the sensitive attribute of the events of an activity
in an equivalence class may show a distribution that is very
different from one over all events of the respective activity,
thereby enabling conclusions on the identity of the resources
linked to the events in the equivalence class.

To guard against such disclosure, we adopt an enhance-
ment of k-anonymity, called t-closeness [15], which limits
the amount of information an adversary can gain through the
sensitive attribute. Based on [15], with d : B(S)×B(S)→ R
as a distance function (e.g., the Earth Mover’s distance [16]),
we define this notion as follows:

Definition 2. (t-closeness) Let π(L) be a projected event log
and d a distance function. An equivalence class of π(L) has
t-closeness, if for all activities a ∈ A, the difference in the
value distribution over all events for a in π(L), and those in
the equivalence class is less or equal than a threshold t ∈ R,
i.e., d(Ω(a),Ω′(a)) ≤ t with Ω(a) = [s | t = 〈e1, . . . , en〉 ∈
π(L), 1 ≤ j ≤ n : ej = (i, a, s)] and Ω′(a) as the restriction of
Ω(a) to events of the equivalence class. π(L) has t-closeness,
if all its equivalence classes have t-closeness.

The notion of t-closeness helps to prevent attribute
disclosure, by requiring that none of the equivalence classes
induced by background information differs significantly, as
defined by parameter t, in terms of the value distribution of
the sensitive attribute. As such, it prevents any conclusion
from the equivalence class on the resources involved in its
events through the values of the sensitive attribute.

If a projected event log π(L) fulfills k-anonymity and t-
closeness, it is guarded against the trace linking attack by the
discussed privacy guarantees. If that is not the case, however,
the log needs to be sanitized. In this work, we consider such
a sanitization step as the application of a function f to the
event log, which is parametrized by k and t for the desired
strengths of the privacy guarantees. It shall yield an event
log, f (π(L), k, t) = π(L)′ that adheres to the required privacy
guarantees, while preserving utility for process mining.

4. The PRETSA Algorithm

In this section, we introduce the PRETSA, an algorithm
for PREfix-Tree based event log SAnitization for t-closeness.
It provides an implementation of the aforementioned sanitiza-
tion function f for a projected event log. PRETSA is inspired
by the BF-P2kA-algorithm (Brute Force Pattern-Preserving
k-Anonymization) presented in [11] to sanitize personal data
of sequential nature, such as sequences of visited locations.
Below, we simplify notation and discuss sanitization of an
event log L into a log L′, since the projection of resource
information (π(L) and π(L)′) is an orthogonal aspect.

With PRETSA, we aim to maximize the utility of a
sanitized event log L′ for process discovery and process
model enhancement. Process discover techniques generally
derive directly follows graphs (DFG), cf. [17], [18], [19],
or similar relations from event logs. In this context, DFGs
capture which activities directly succeed each other in an
event log’s traces and with what frequency. To maximize the
utility preserved in a sanitized log L′, the DFG that can be
constructed from L′ should resemble the DFG of the original
log L. Therefore, we strive to retain as many of entries of the
directly follows relations. In addition, we strive to preserve
the quality of activity annotations, used for process model
enhancement, by reducing the impact of sanitization on the
distribution of values for the sensitive attribute.

To preserve utility, PRETSA transforms an event log
into a prefix tree [20]. In a prefix tree, each node is a set
of events that all represent executions of the same activity
and share the same prefix of activity executions in their
respective traces. We capture information about a node as a
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Figure 1: (a) Prefix tree of the example; (b) tree obtained after pruning the highlighted node and reconstructing the tree;
(c) final tree returned by PRETSA for the example, setting k = 8 and t = 1.0.

tuple n = (a, T, S), where a ∈ A is the activity of the events;
T ⊆ T is the set of traces that contain the events; S ∈ B(S)
is the bag of values of the sensitive attribute.

To illustrate the notion of a prefix tree, Figure 1a
depicts the tree corresponding to sequences of activity
executions in Table 1. For example, the tree shows that
the log contains 15 traces that start with the sequence
create po,update po,receive gd,check in, that 10 of those are
followed by event related to pay in, whereas the remaining
five are followed by an event representing activity reject in.

From a privacy perspective, each node in a prefix tree
corresponds to a potential equivalence class that may be
induced by some background information. In fact, it considers
the worst case, in which each prefix of a sequence of
executed activities observed in the log defines a separate
equivalence class. To fulfill k-anonymity and t-closeness,
PRETSA manipulates the prefix tree, such that each node
fulfills these properties. The general approach is defined
in Alg. 1. We illustrate the algorithm in Figure 1 for the
privacy parameters k = 8 and t = 1.0. The main steps of the
algorithm are as follows:

Check privacy guarantees: The algorithm traverses the
prefix tree P in a depth-first manner (line 4), until it reaches a
node n = (a, T, S) that violates a privacy guarantee (line 5):
• k-anonymity is violated, if | T |< k, i.e., the events of

n originate from less than k traces (see Definition 1).
• t-closeness is violated, if d(Ω(a), S) > t with Ω(a) as

the bag values of the sensitive attribute of all events of
activity a of all traces in the log, i.e., if the distance
between the overall value distribution and the one at the
node is greater than the threshold t (see Definition 2).

For the example in Figure 1a, PRETSA identifies a first
violation for the highlighted node. This node violates k-
anonymity, given that | T |= 5 < k = 8.

Tree update: If a violation is detected for node n =
(a, T, S), we disassociate the traces T from all of n’s ancestors
(line 6). For instance, pruning the highlighted node in Fig-
ure 1a, we remove the five traces that represent the execution
sequence create po,update po,receive gd,check in,reject in
from the four nodes on the path from the root to the high-
lighted node. Then, we remove the node and its descendants
(if any) from P (line 7).

Algorithm 1 PRETSA(L,k,t)
INPUT: A event log L, the parameter k, a threshold t
OUTPUT: A event log L′

1: P←constructPrefixTree(L)
2: repeat
3: hasChanges← false
4: for all n ∈ DFS(P) do
5: if violatesPrivacyGuarantees(t, k, n) then
6: updateAncestors(P, n)
7: prune(P, n)
8: t′ ← findMostSimilar(P, n.traces)
9: P← reconstructTree(P, t′)

10: hasChanges← true
11: until ¬ hasChanges
12: return generateEventLog(P)

Find most similar remaining traces: Next, for each
trace t ∈ T of the pruned node n, PRETSA identi-
fies a trace t′ that is most similar (line 8). Here, we
consider similarity in terms of the edit (i.e., Leven-
shtein) distance [21]. For instance, for the highlighted
node, the path representing the sequence of activities
create po,update po,receive gd,check in,pay in, leading to
the far-left leaf node, is most similar (edit distance of one).

Reconstruct tree: Each trace t ∈ T of the pruned
node n = (a,T, S) is then incorporated into all nodes
n′ = (a′, T ′, S′), where T ′ contains the selected, most similar
trace t′, which involves adding the events once their activity
a has been set to a′ (line 9). For all events that have
been transformed by PRETSA, the respective values of the
sensitive attribute are discarded and replaced by a random
value, which is drawn from the distribution of Ω(a) for
events of activity a. For instance, after incorporating the
highlighted node into the far-left leaf node, the reconstructed
prefix tree will contain 15 traces for the sequence of activity
executions create po,update po,receive gd,check in,pay in,
rather than the original 10 traces, as shown in Figure 1b.

Termination: The algorithm transforms the prefix tree
iteratively, until it is fully traversed without identifying a
single violation (line 11). For the running example, the final



tree is shown in Figure 1c. Based on the obtained prefix tree,
PRETSA returns a sanitized event log as the set of all traces
represented by the tree (line 12).

Applying PRETSA to our example, with k = 8 and
t = 1.0, we end up with the sanitized event log that contains
traces of the following sequences of activity executions:

create po,update po,receive gd,check in,pay in 15
create po,receive gd,update po,check in,pay in 13

A naive approach that deletes all traces that violate the
privacy requirements would yield a less representative log:

create po,update po,receive gd,check in,pay in 10

5. Evaluation

This section presents an experimental evaluation of the
PRETSA algorithm. We show that PRETSA enables the
sanitization of event logs, while preserving utility for process
mining. Section 5.1 introduces the three real-world event
logs used in our experiments, Section 5.2 describes the
experimental setup, while Section 5.3 discusses the results.

5.1. Datasets

We conducted our evaluation experiments based on the
three real-world event logs characterized in Table 2. The
table shows that the characteristics of the event logs differ
considerably. Most notably the number of cases per variant
ranges from an average of 1.2 to 651.0. Given that this factor
is crucial to the performance of a sanitization approach, we
believe that the utilized data collection is well-suited to
achieve a high external validity of the results.

TABLE 2: Characteristics of the utilized event logs

Cases per variant
Name Cases Variants Avg. Max.

Traffic Fines [22] 150,370 231 651.0 56,482
CoSeLog [23] 1,434 116 12.4 713
Sepsis [24] 1,050 846 1.2 35

5.2. Experimental Setup

To conduct our experiments, we implemented PRETSA
as a stand-alone Python program that is available on Github1.
We use this implementation to analyze two aspects:

1) Impact of k-anonymity on discovered models.
Guaranteeing k-anonymity can affect the quality of process
models discovered from sanitized event logs. To assess
this, we first discover a process model from a sanitized
event log L′ using the Inductive Miner infrequent [19].
Afterwards, we quantify the quality of this discovered model
by determining its fitness [25] and precision [26] with
respect to the original event log L. In this way, we show

1. https://github.com/samadeusfp/PRETSA

how accurately the discovered process models discovered
capture the behavior of the original non-sanitized log. In our
experiments, we assess the impact of various k values, using
k = {2, 4, 8, 16, 32, 64, 128, 256}.

2) Impact of t-closeness on model enhancement. Guar-
anteeing t-closeness can affect the accuracy of process
model annotations derived from sanitized event logs. To
determine this impact, we compare annotations, in particular
execution times, derived from an event log L′, sanitized by
PRETSA, to annotations derived from the original event log
L. If an event log did not contain an end timestamp for
an activity, we generate the execution time of an event ei
as the time difference between the start time of the event
ei and the start time of the following event ei+1. In our
experiments, we assess the impact of various k values, using
t = {0.025, 0.050, 0, 075, 0.100}.
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Figure 2: Number of variants retained for k-anonymity.

We compare the results obtained using PRETSA to a
baseline approach. For this baseline, we provide privacy
guarantees in the following, rudimentary manner:

k-anonymity baseline. To guarantee k-anonymity for
the baseline log L′BL, we remove traces that represent an
activity sequence that occurs less than k-times in L.

t-closeness baseline. To guarantee t-closeness for the
baseline log L′BL, we compare the distribution of the execution
times for an activity a ∈ A when it is part of traces of
a specific sequence variant to the overall distribution of
the throughput times for activity a in the original log L. If
these two distributions statistically differ, then the t-closeness
requirement is not met. We then discard all traces of the
respective sequence variant in the construction of log L′BL.

5.3. Results

Impact of k-anonymity on discovered models. Figure 2
shows how the contents of event logs are preserved for
varying k values. We see that, for both PRETSA and the

https://github.com/samadeusfp/PRETSA
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Figure 3: Fitness and precision results based on the Inductive
Miner infrequent (default parameters).

baseline, the number of contained variants considerably
decreases for higher values of k. However, using PRETSA,
we are able to consistently retain more variants than the
baseline. For instance, with k = 4, log L′BL contains just
18 variants for the Sepsis case, whereas the log obtained
by PRETSA still contains 144 variants. For this case, with
k ≥ 64 the baseline log actually contains zero variants,
because the most common trace occurs only 35 times.
PRETSA on the other hand always retains at least 3 variants.

Similar trends can be observed in Figure 3, in which we
depict the log fitness and precision obtained when comparing
an original event log L to the process models discovered
by applying the Inductive Miner on the sanitized event logs.
This figure also depicts the results obtained when discovering
models based on non-sanitized event logs.

For the traffic fines case, the figure shows that the
fitness and precision values do not differ considerably across
the three approaches. This outcome is in line with the
expectations for this case, because most variants in the log
are rather common. As a result, even a naive sanitization
approach, i.e., the baseline, has a limited impact on the
results. For the CoSeLog case, we observe that PRETSA
outperforms the baseline for most k-values, in terms of log
fitness, but may lead to smaller precision values. The biggest
differences among the approaches can be observed for the
Sepsis case, because the baseline discards a considerable
number of variants. For instance, for k = 64, PRETSA still
achieves a fitness of 0.90, whereas the baseline yields a null
result. This demonstrates that PRETSA is particularly useful
for less-structured processes.

Impact of t-closeness on model enhancement. Figure 4
presents heatmaps that depict the impact of sanitization for
t-closeness on the accuracy of execution time annotations.
Given specific k and t values, the figure indicates how close
the average execution times of activities in the sanitized log
L′ are to the original average in the original logs. In particular,
we represent the distance between the two averages, where a
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Figure 4: Distance between annotations in sanitized versus
non-sanitized event logs (with 0.0 as equal annotations).

distance of 0.0 means that they are equal. Overall, PRETSA
is shown to have a higher annotation accuracy than the
baseline. However, the results across the three cases differ.

For the traffic fines case, we observe that both PRETSA
and the baseline provide accurate annotations. As noted
earlier, this is due to the high number of traces per sequence
variant in this log. Consequently, privacy guarantees can be
provided with limited impact on utility. For the CoSeLog
case, there are considerable differences between the original
annotations and the annotations derived from sanitized event
logs. For k > 8, the accuracy drops, as an increasing number
of events are omitted, although PRETSA still achieves better
accuracy than the baseline. These observations are interesting,
because we previously showed that the impact of k-anonymity
on the quality of discovered process models is rather limited
for this case. Finally, for the Sepsis case, we observe clear
differences between the performance of PRETSA and the
baseline. For k ≤ 32 , the annotations of PRETSA are highly
accurate. By contrast, the baseline approach struggles to
provide accurate annotations for any k and t.

Overall, our evaluation experiments show that PRETSA
outperforms the rudimentary baseline methods in providing
privacy guarantees in most evaluation settings. However, the
results also illustrate that strong privacy requirements impact
the quality of results obtained by process model discovery
and enhancement techniques.

6. Related Work

The presented work relates to the consideration of privacy
in the contexts of process and sequence mining.

The importance of privacy has been widely recognized
in the area of information systems engineering, cf., [27],
[28]. Recently, privacy concerns have been acknowledged in
the specific context of process mining, for instance by Van
der Aalst [29]. Mannhardt et al. [4] provide an overview of
privacy challenges and guidelines in this regard, covering



both technological as well as organizational aspects. Work
by Rafiei et al. [7] aims to provide confidentiality in process
mining through encryption of event log information. However,
this approach does not provide any privacy guarantees.

In the context of sequence mining, Monreal et al. [11]
provide an approach that achieves k-anonymity for sequential
data, which served as basis for the PRETSA algorithm
proposed in our work. Crucially, the work by Monreal et
al. does not consider data payload, which is required in
order to prevent attribute disclose attacks, such as achieved
by PRETSA through t-closeness guarantees. Moreover, the
iterative, step-wise nature of PRETSA allows it to preserve
more event log information.

7. Conclusion

In this paper, we considered how to provide privacy
guarantees for events logs while preserving data utility for
process mining analyzes. For this purpose, we introduced a
model for privacy-disclosure attacks that utilizes execution
sequences to derive sensitive information. To counter such
attacks, we developed the PRETSA algorithm to sanitize
event logs while providing privacy guarantees in terms of
k-anonymity and t-closeness. PRETSA preserves utility for
process mining through step-wise transformation of the
prefix-tree representation of an event log. An experimental
evaluation using three real-world data sets demonstrates that
PRETSA indeed achieves this goal: the evaluation results
show that sanitization with PRETSA yields event logs of
higher utility compared to a baseline using frequency-based
filtering, while providing the same privacy guarantees.

In future research, PRETSA may be extended so that it
avoids reaching local optima and instead converges into
a global optimum, in order to preserve more event log
information. Moreover, we strive to develop sanitization
techniques that provide even stronger privacy guarantees, in
the form of differential privacy [10].
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