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Abstract. The increasing volume of event data that is recorded by information
systems during the execution of business processes creates manifold opportunities
for process analytics. Specifically, conformance checking compares the behaviour
as recorded by an information system to a model of desired behaviour. Unfortu-
nately, state-of-the-art conformance checking algorithms scale exponentially in
the size of both the event data and the model used as input. At the same time,
event data used for analysis typically relates only to a certain interval of process
execution, not the entire history. Given this inherent data incompleteness, we argue
that an understanding of the overall conformance of process execution may be
obtained by considering only a small fraction of a log. In this paper, we therefore
present a statistical approach to ground conformance checking in trace sampling
and conformance approximation. This approach reduces the runtime significantly,
while still providing guarantees on the accuracy of the estimated conformance re-
sult. Comprehensive experiments with real-world and synthetic datasets illustrate
that our approach speeds up state-of-the-art conformance checking algorithms by
up to three orders of magnitude, while largely maintaining the analysis accuracy.

1 Introduction

Process-oriented information systems coordinate the execution of a set of actions to reach
a business goal [15]. The behaviour of such systems is commonly described by process
models that define a set of activities along with execution dependencies. However, once
event data is recorded during runtime, the question of conformance emerges [9]: how
do the modelled behaviour of a system and its recorded behaviour relate to each other?
Answering this question is required to detect, interpret, and compensate deviations
between a model of a process-oriented information system and its actual execution.

Driven by trends such as process automation, data sensing, and large-scale instru-
mentation of process-related resources, the volume of event data and the frequency at
which it is generated is increasing in today’s world: Event logs comprise up to billions
of events [2]. Also, information systems are subject to frequent changes [34], so that
analysis is often a continuous process, repeated when new event data becomes available.

Acknowledging the resulting need for efficient analysis, various angles have been
followed to improve the runtime performance of state-of-the-art, alignment-based confor-
mance checking algorithms [4], which suffer from an exponential worst-case complexity.
Efficiency improvements have been obtained through the use of search-based meth-
ods [13, 25], planning algorithms [21], and distributed computing [16, 22]. Furthermore,
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Fig. 1: (a) Model of a claim handling process; (b) events of four process executions.

several authors suggested to compromise correctness and approximate conformance
results to gain efficiency, e.g., by employing approximate alignments [29] or applying
divide-and-conquer schemes in the computation of conformance results [3, 12, 20, 23].
However, these approaches primarily target the applied algorithms. Fundamentally, they
still require the consideration of all, possibly billions, of recorded events.

In practice, an event log is recorded for a certain interval of process execution, not
the entire history. Given this inherent incompleteness of event data, which is widely
acknowledged [1, 17, 26], analysis often strives for a general understanding of the
conformance of process execution. This may relate, e.g., to the overall fitness of recorded
and modelled behaviour [4] or the activities that denote hotspots of non-conformance [3].

In this paper, we argue that for a general understanding of the overall conformance,
it is sufficient to compute conformance results for only a small fraction of an event log.
Since the latter per se provides an incomplete view, minor differences in the conformance
results obtained for the whole log and a partial log may be attributed to the inherent uncer-
tainty of the conformance checking setting. We illustrate this idea with a claim handling
process in Fig. 1. Here, the events recorded for the first case indicate non-conformance,
as a previous claim is fetched twice (f). Considering also the second case, the average
amount of non-conformance (one deviation) and the set of non-conforming activities
({F}) are the same, though, despite the different sequence of events. Considering also the
third and fourth case, new information on the overall conformance of process execution
is obtained. Yet, the fourth case resembles the first one. Hence, its conformance (two
deviations w.r.t. the model) may be approximated based on the result of the first case
(one deviation) and the difference between both event sequences (one event differs).

To realise the above ideas, we follow two complimentary angles to avoid computation
of conformance results for all available data. First, we contribute an incremental approach
based on trace sampling, which, for each trace, assesses whether it yields new information
on the overall conformance. Assuming the view of a series of binomial experiments,
we establish bounds on the error of the conformance result derived from a partial event
log. Second, we show how trace sampling is combined with result approximation that,
instead of computing a conformance result for a trace at hand, relies on a worst-case
approximation of its implications on the overall conformance. This way, we further
reduce the amount of data for which conformance results are actually computed. We
instantiate this framework for two types of conformance results as mentioned above, a
numerical fitness measure and a distribution of conformance issues over all activities.

In the remainder, we first give preliminaries in Section 2. We then introduce our
approach to sample-based (Section 3) and approximation-based (Section 4) conformance
checking. Experimental results using real-world and synthetic event logs are presented
in Section 5. We review related work in Section 6, before we conclude in Section 7.
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2 Preliminaries

Events and event logs. We adopt an event model that builds upon a set of activities A.
An event recorded by an information system is assumed to be related to the execution of
one of these activities. By E , we denote the universe of all events. A single execution of
a process, called a trace, is modelled as a sequence of events ξ ∈ E∗, such that no event
can occur in more than one trace. An event log is a set of traces, L ⊆ 2E

∗
. Our example

in Fig. 1b defines four traces. While each event is unique, we represent them with small
letters {r, p, f, u, s}, that indicate for which activity of the process model, denoted by
respective capital letters {R,P, F, U, S}, the execution is signalled. Two distinct traces
that indicate the same sequence of activity executions are of the same trace variant.

Process models. A process model defines the execution dependencies between the ac-
tivities of a process. For our purposes, it is sufficient to abstract from specific process
modelling languages and focus on the behaviour defined by a model. That is, a process
model defines a set of execution sequences, M ⊆ A∗, that capture sequences of activity
executions that lead the process to its final state. For instance, the model in Fig. 1a de-
fines the execution sequences 〈R,P, F, U, S〉 and 〈R,F, P, U, S〉, potentially including
additional repetitions of U . We writeM for the set of all process models.

Alignments. State-of-the-art techniques for conformance checking construct alignments
between traces and execution sequences of a model to detect deviations [4, 23]. An
alignment between a trace ξ and a model M , denoted by σ(ξ,M) in the remainder,
is a sequence of steps, each step comprising a pair of an event and an activity, or a
skip symbol ⊥, if an event or activity is without counterpart. For instance, for the
non-conforming trace ξ1 (case 1 from Fig. 1b), an alignment is constructed as follows:

Trace ξ1 r p f f u s

Execution sequence R P F ⊥ U S

Assigning costs to skip steps, a cost-optimal alignment (not necessarily unique) is
constructed for a trace in relation to all execution sequences of a model [4]. An optimal
alignment then enables the quantification of non-conformance. Specifically, the fitness
of a log with respect to a given model is computed as follows:

fitness(L,M) = 1−
∑
ξ∈L c(ξ,M)∑

ξ∈L c(ξ, ∅) + |L| ×minx∈M c(〈〉, {x})
(1)

Here, c(ξ,M) is the aggregated cost of an optimal alignment σ(ξ,M). The denominator
captures the maximum possible cost per trace, i.e., the sum of the costs of aligning
a trace with an empty model, c(ξ, ∅), and the minimal costs of aligning an empty
trace with the model, minx∈M c(〈〉, {x}). Using a standard cost function (all skip steps
have equal costs), the fitness value of the example log {ξ1, ξ2, ξ3, ξ4} in Fig. 1b is
0.9. Alignments further enable the detection of hotspots of non-conformance. To this
end, the conformance result can be defined in terms of a deviation distribution that
captures the relative frequency with which an activity (not to be confused with a task
of a process model) is part of a conformance violation. For a log L and a model M ,
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this distribution follows from skip steps in the optimal alignments of all traces. It is
formalised based on a bag of activities, dev(L,M) : A → N0 (note that multiple skip
steps may relate to a single activity even in the alignment of one trace). The relative
deviation frequency of an activity a ∈ A is then obtained by dividing the number
of occurrences of a in the bag of deviations by the total number of deviations, i.e.,
fdev(L,M)(a) = dev(L,M)(a)/|dev(L,M)|.

For our example in Fig. 1, assuming that skip steps relate to the highlighted trace posi-
tions, it holds that dev({ξ1, ξ2, ξ3, ξ4},M) = [F 3, U ] and fdev({ξ1,...,ξ4},M)(F ) = 3/4,
so that the fetching of a previous claim (F ) is identified as a hotspot of non-conformance.

3 Sample-Based Conformance Checking

This section describes how trace sampling can be used to improve the efficiency of con-
formance checking. The general idea is that it often suffices to only compute alignments
for a subset of all trace variants to gain insights into the overall conformance of a log
to a model. However, we randomly sample an event log trace-by-trace, not by trace
variant, which avoids to load the entire log and step-wise reveals the distribution of traces
among the variants. At some point, though, the sampled traces then do not provide new
information on the overall conformance of the process.

In the remainder of this section, we first describe a general framework for sample-
based conformance checking (Section 3.1), which we then instantiate for two types of
conformance results: fitness (Section 3.2) and deviation distribution (Section 3.3).

3.1 Statistical Sampling Framework

To operationalise sample-based conformance checking, we regard it as a series of
binomial experiments. In this, we follow a log sampling technique introduced in the
context of process discovery [5, 7] and lift it to the setting of conformance checking.
Information novelty. When parsing a log trace-by-trace, some traces may turn out to
provide information on the conformance of a log to a model that is similar or equivalent to
the information provided by previously encountered traces. To assess whether this is the
case, we capture the conformance information associated with a log by a conformance
function ψ : 2E

∗ ×M → X . That is, ψ(L,M) is the conformance result (of some
domain X ) between a log L and a model M . If we are interested in the distribution
of deviations, ψ provides information on the model activities for which deviations are
observed, whereas for fitness, it would return the fitness value.

Based thereon, we define a random Boolean predicate γ(L′, ξ,M) that captures
whether a trace ξ ∈ E∗ provides new information on the conformance with model M ,
i.e., whether it changes the result obtained already for a set of previously observed traces
L′ ⊆ 2E

∗
. Assuming that the distance between conformance results can be quantified by

a function d : X × X → R+
0 , we define a new information predicate as:

γ(L′, ξ,M)⇔ d(ψ(L′,M), ψ({ξ} ∪ L′,M)) > ε. (2)

Here, ε ∈ R+
0 is a relaxation parameter. If incorporating trace ξ changes the conformance

result by more than ε, then it adds new information over L′.
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Framework. We exploit the notion of information novelty for hypothesis testing when
sampling traces from an event log L. We determine when enough sampled traces have
been included in a log L′ ⊆ L to derive an understanding of its overall conformance
to a model M . Following the interpretation of log sampling as a series of binomial
experiments [5], L′ is regarded as sufficient if the algorithm consecutively draws a
certain number of traces that did not contain new information. Specifically, with δ
as a measure that bounds the probability of a newly sampled trace to provide new
information over L′, at a significance level α, a minimum sample size N is computed.
Based on the normal approximation to the binomial distribution, the latter is given as
N ≥ 1/2δ

(
−2δ2 + z2 +

√
z
)
, where z corresponds to the realisation of a standardised

normal random variable for 1− α (one-sided hypothesis test). As such, N is calculated
given values for δ and α for the desired levels of similarity and significance, respectively.

Consider α = 0.01 and δ = 0.05, so that N ≥ 128. Hence, after observing 128
traces without new information, sampling can be stopped knowing with 0.99 confidence
that the probability of finding new information in the remaining log is less than 0.05.

Using the above formulation, our framework for sample-based conformance checking
is presented in Alg. 1. The algorithm takes as input an event log L, a process model M ,
the number of trials that need to fail N , a predicate γ to determine whether a trace
provides new information, and a conformance function ψ. Going through L trace-by-
trace (lines 3–12), the algorithm conducts a series of binomial experiments that check, if
a newly sampled trace provides new information according to the predicate γ (line 5).
Once N consecutive traces without new information have been selected, the procedure
stops and the conformance result is derived based on the sampled log L′.
Result re-use. Note that the algorithm provides a conceptual view, in the sense that
checking the new information predicate γ(L′, ξ,M) in line 5 according to Eq. 2, re-
quires the computation of ψ(L′,M) and ψ({ξ} ∪ L′,M) in each iteration. A technical
realisation of this algorithm, of course, shall exploit that most types of conformance
results can be computed incrementally. For instance, considering fitness and the devia-
tion distribution, an alignment is computed only once per trace variant, i.e., per unique
sequence of activity executions, and reused in the iterations of the algorithm. Also, the
value of ψ(L′,M) for γ(L′, ξ,M) in line 5 is always known from the previous iteration,
while the conformance result in line 13 is not actually computed at this stage, as the
respective result is known from the last evaluation of γ(L′, ξ,M).

In the next sections, we discuss how to define γ when the conformance function
assesses the fitness of a log to a model, or the observed deviation distribution.

3.2 Sample-Based Fitness

The overall conformance of a log to a model may be assessed by considering the log
fitness (see Section 2) as a conformance function, ψfit(L,M) = fitness(L,M). Then,
determining whether a trace ξ provides new information over a log sample L′ requires
us to assess, if incorporating ξ leads to a difference in the overall fitness for the sampled
log. Following Eq. 2, we capture this by computing the absolute difference between the
fitness value for traces in the sample L′ and the value of the sample plus the new trace:

dfit(ψfit(L
′,M), ψfit({ξ} ∪ L′,M)) =

∣∣fitness(L′,M)− fitness({ξ} ∪ L′,M)
∣∣ . (3)
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Algorithm 1: Framework for Sample-Based Conformance Checking
input : L, an event log; M , a process model; N , a number of failed trials to observe;

γ, a predicate that holds true, if a trace provides new information;
ψ, a conformance function.

output : ψ(L′), the conformance results for sampled traces.

1 L′, L̂← ∅ ; /* The sampled logs, overall and for current experiment series */

2 i← 0 ; /* The number of current iterations without new information */

3 repeat /* Repeat until N traces without new information have been seen */

4 ξ ← select(L \ L̂); /* Sample a single trace */

/* Check if ξ provides new information. Re-uses alignments of traces of

the same variant and the previous conformance result ψ(L′,M). */

5 if γ(L′, ξ,M) then
6 i← 0 ; /* Reset the counter */

7 L̂← ∅ ; /* Reset log for current experiment series */

8 else
9 i← i+ 1 ; /* Increment the counter */

10 L̂← L̂ ∪ {ξ} ; /* Add trace to log for current experiment series */

11 L′ ← L′ ∪ {ξ}; /* Add trace to overall sampled log */

12 until i ≥ N ∨ L′ = L;
13 return ψ(L′) ; /* Return results based on the overall sampled log */

If this distance is smaller than the relaxation parameter ε, the change in the overall fitness
value induced by trace ξ is considered to be negligible.

To illustrate this, consider a scenario with ε = 0.03 and a sample consisting of
the traces ξ1 and ξ3 of our running example (Fig. 1). Then, the log fitness for {ξ1, ξ3}
is 0.95. In this situation, if the next sampled trace is ξ2, the distance function yields
|fitness({ξ1, ξ3},M)− fitness({ξ1, ξ2, ξ3},M)| = 0.95 − 0.93 = 0.02. In this case,
since the distance is smaller than ε, we would conclude that the additional consideration
of ξ2 does not provide new information. By contrast, considering trace ξ4 would yield a
distance of 0.95− 0.89 = 0.06. This indicates that trace ξ4 would imply a considerable
change in the overall fitness value, i.e., it provides new information.

3.3 Sample-Based Deviation Distributions

Next, we instantiate the above framework for conformance checking based on the
deviation distribution. As detailed in Section 2, this distribution captures the relative
frequency with which activities are related to conformance issues.

To decide whether a trace ξ provides new information over a log sample L′, we
assess if the deviations obtained for ξ lead to a considerable difference in the overall
deviation distribution. As such, the distance function for the predicate γ needs to quantify
the difference between two discrete frequency distributions. This suggests to employ the
L1-distance, also known as the Manhattan distance, as a measure:

ddev(ψdev(L
′,M), ψdev({ξ} ∪ L′,M)) =

∑
a∈A

∣∣fdev(L′,M)(a)− fdev({ξ}∪L′,M)(a)
∣∣ (4)
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Algorithm 2: Framework for Approximation-Based Conformance Checking
input : L′, a log sample; M , a process model; ξ, a trace sampled of a yet unseen variant

with ξ /∈ L′; d, a distance function; ε, a relaxation parameter;
k, a similarity threshold; ψ̂, a partially approximating conformance function;
L′′ ⊆ L′, traces for which approximated results are used.

output : (v, L′′), where v ∈ {true, false} indicates whether ξ provides new information;
L′′ is the updated set of traces, for which approximated results are used.

1 ξr ← argminξ′∈L′\L′′ sim(ξ, ξ′); /* Select most similar trace */

2 if sim(ξ, ξr) ≤ k then /* Check if ξ and ξr are k-similar */

3 Φ← approx(ξ, ξr, L
′,M) ; /* Derive all possible approximations */

4 if ∃ φ ∈ Φ : d(ψ̂(L′, L′′,M), φ) > ε then
/* Approx. indicates new information, use actual result */

5 return (true, L′′);
6 else /* Approx. does not indicate new information, use approx. result */

7 return (false, L′′ ∪ {ξ});

8 else /* No k-similar trace available, check for new information */

9 v ← d(ψ̂(L′, L′′,M), ψ̂({ξ} ∪ L′, L′′,M)) > ε;
10 return (v, L′′);

Taking up our example from Fig. 1, processing only the trace ξ1, all deviations are
related to the activity of fetching an earlier claim, i.e., fdev({ξ1},M)(F ) = 1. Notably,
this does not change when incorporating traces ξ2 and ξ3, i.e., fdev({ξ1,ξ2,ξ3},M)(F ) = 1,
as they do not provide new information in terms of the deviation distribution. If, after
processing trace ξ1, however, we sample ξ4, we do observe such a difference: based
on fdev({ξ1,ξ4},M)(F ) = 2/3 and fdev({ξ1,ξ4},M)(U) = 1/3, we compute a Manhattan
distance of 2/3. With a relaxation parameter ε that is smaller than this value, we conclude
that ξ4 provides novel information.

Given the distance functions based on trace fitness and deviation distribution, it is
interesting to note that these behave differently, as illustrated in our example: If the log
is {ξ1, ξ2} and trace ξ3 is sampled next, the overall fitness changes. Yet, since ξ3 is a
conforming trace, it does not provide new information on the distribution of deviations.

4 Approximation-Based Conformance Checking

This section shows how conformance results can be approximated, further avoiding
the need to compute a conformance result for certain traces. Our idea is to derive a
worst-case approximation for traces that are similar to variants for which results have
previously been derived. Approximation complements the sampling method of Section 3:
Even when a trace of a yet unseen variant is sampled, we decide whether to compute
an actual conformance result or whether to approximate it. As such, the decision on
whether a trace provides new information may be taken either based on a computed or
an approximated result.

Against this background, our technique for approximation-based conformance check-
ing, formalised in Alg. 2, extends our procedure given in Alg. 1. In fact, it primarily
provides a realisation of checking the new information predicate γ(L′, ξ,M), as done in

7



line 5 of Alg. 1. That is, whether the sampled trace ξ, of an unseen variant, provides new
information is potentially decided based on the approximated, rather than computed im-
pact of it on the overall conformance result. At the same time, however, the algorithm also
needs to keep track of all sampled traces L′′ ⊆ L′, for which the approximated results
shall be used whenever a conformance result is computed. This leads to an adaptation of
the conformance function ψ, i.e., we consider a partially approximating conformance
function ψ̂ : 2E

∗ × 2E
∗ ×M→ X . Given a log L′ and a subset L′′ ⊆ L′, this function

approximates the conformance result ψ(L′,M) by computing solely ψ(L′ \ L′′,M),
i.e., the impact of traces L′′ is not precisely computed. In the same way, to use the
approximation technique as part of sample-based conformance checking, the use of the
conformance function ψ in Alg. 1 also has to be adapted accordingly.

Turning to the details of Alg. 2, its input includes a log sample L′, a sampled trace
ξ /∈ L′, and a process model M , i.e., the arguments of γ in line 5 of Alg. 1, as well
as a distance function d and relaxation parameter ε from the definition of γ (Eq. 2).
Moreover, there is a similarity threshold k to determine which traces may be used for
approximation. Finally, the aforementioned set of traces L′′ for which results shall be
approximated and the respective adapted conformance function ψ̂ are given as input.

From the sampled traces for which approximation is not applied (i.e., L′ \ L′′), the
algorithm first selects the trace that is most similar to ξ, referred to as the reference trace
ξr (line 1). Then, we assess whether this similarity is above the threshold k (line 2).
If not, we check the trace for new information as done before, just using the adapted
conformance function (lines 9–10). If ξr is sufficiently similar, however, we perform a
worst-case approximation of the impact of ξ on the overall conformance result based
on ξr (line 3). As part of that, we may obtain several different approximations Φ, each
of which is checked whether it indicates new information over the current sample L′

(line 4). Only if this is not the case, we conclude that ξ indeed does not provide new
information and, by adding it to L′′ make sure that its impact on the overall conformance
will always only be approximated, but never precisely computed (line 7).

Next, we give details on the assessment of trace similarity (function sim, Section 4.1)
and the conformance result approximation (function approx, Section 4.2).

4.1 Trace Similarity

Given a trace ξ and the part of the sample log for which approximation did not apply
(L′ \L′′), Alg. 2 requires us to identify a reference trace ξr that is most similar according
to some function sim : E∗ × E∗ → [0, 1]. As we consider conformance results that are
based on alignments, we define this similarity function based on the alignment cost of two
traces. To this end, we consider a function ct, which, in the spirit of function c discussed
in Section 2, is the sum of the costs assigned to skip steps in an optimal alignment of two
traces. To obtain a similarity measure, we normalise this aggregated cost by a maximal
cost, which is obtained by aligning each trace with an empty trace. This normalisation
resembles the one discussed for the fitness measure in Section 2. We define the similarity
function for traces as sim(ξ, ξ′) = 1− ct(ξ, ξ′)/(ct(ξ, 〈〉) + ct(ξ

′, 〈〉)).
Considering trace ξ4 = 〈r, p, f, f, s〉 of our running example, the most similar trace

(assuming equal costs for all skip steps) is ξ1 = 〈r, p, f, f, u, s〉, with ct(ξ1, ξ4) = 1 and,
thus, sim(ξ1, ξ4) = 10/11.
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4.2 Conformance Result Approximation

In the approximation step of Alg. 2, we derive a set of worst-case approximations
of the impact of the trace ξ on the overall conformance result, using the reference
trace ξr (which is at least k-similar). Based thereon, it is decided whether ξ provides new
information. The approximation, however, depends on the type of conformance result.

Fitness approximation. To approximate the impact of trace ξ on the overall fitness,
we compute a single value, i.e., approx(ξ, ξr, L′,M) in line 3 of Alg. 2 yields a sin-
gleton set. This value is derived by reformulating Eq. 3, which captures the change in
fitness induced by a sample trace. That is, we assess the difference between the current
fitness, fitness(L′,M), and an approximation of the fitness when incorporating ξ, i.e.,
fitness({ξ} ∪ L′,M). This approximation, denoted by fît(ξ, ξr, L

′,M), is derived from
(i) the change in fitness induced by the reference trace ξr, and (ii) the differences between
ξ and ξr. The former is assessed using the aggregated alignment cost c(ξr,M), whereas
the latter leverages the aggregated cost of aligning the traces, ct(ξ, ξr). Normalising
these costs, function approxfit(ξ, ξr, L

′,M) yields a worst-case approximation for the
change in overall fitness imposed by ξ, as follows:

approxfit(ξ, ξr, L
′,M) =

{∣∣∣fitness(L′,M)− fît(ξ, ξr, L
′,M)

∣∣∣} (5)

fît(ξ, ξr, L
′,M) = 1−

∑
ξ′∈L′

c(ξ′,M) + c(ξr,M) + ct(ξ, ξr)∑
ξ′∈L′

c(ξ′, ∅) + max
ξ′∈{ξ,ξr}

c(ξ′, ∅) + (|L′|+ 1) min
x∈M

c(〈〉, {x})

Turning to our running example, assume that we have sampled {ξ1, ξ2} and computed
the precise fitness value based on both traces, which is 1− 2/(12 + 10) ≈ 0.909 using
a standard cost function. If trace ξ4 is sampled next, we approximate its impact using the
similar trace ξ1. To this end, we consider c(ξ1,M) = 1 and ct(ξ1, ξ4) = 1, which yields
an approximated fitness value of 1− (2 + 1 + 1)/(12 + 6 + 15) = 1− 4/33 ≈ 0.879.
This is close to the actual fitness value for {ξ1, ξ2, ξ4}, which is 1−4/(17+15) ≈ 0.875.
The minor difference stems from ξ1 being slightly longer than ξ4.

Deviation distribution approximation. To approximate the impact of trace ξ on the
deviation distribution, we follow a similar approach as for fitness approximation. How-
ever, we note that the approximation function here yields a set of possible values, as
there are multiple different distributions to be considered when measuring the Manhattan
distance to the current distribution. The reason being that the difference between ξ and
the reference trace ξr induces a set of possible changes of the distribution.

Specifically, we denote by ed(ξ, ξr) the edit distance of the two traces, i.e., the
pure number of skip steps in their alignment. This number gives an upper bound for
the number of conformance issues that need to be incorporated in addition to those
stemming from the alignment of the reference trace and the model, i.e., dev({ξr},M).
Yet, the exact activities are not known, so that we need to consider all bags of activities
of size ed(ξ, ξr), the set of which is denoted by [A]ed(ξ,ξr). Each of these bags leads to
a different approximation f̂dev(β, ξr, L′,M) of the distribution fdev({ξ}∪L′,M) that we
are actually interested in. We compute those as follows:
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approxdev(ξ, ξr, L
′,M) =

⋃
β∈[A]ed(ξ,ξr)

{∑
a∈A

∣∣∣fdev(L′,M)(a)− f̂dev(β, ξr, L′,M)(a)
∣∣∣}

(6)

f̂dev(β, ξr, L
′,M)(a) =

dev(L′,M)(a) + dev({ξr},M)(a) + β(a)

|dev(L′,M)|+ |dev({ξr},M)|+ |β|

Consider our example again: Based on {ξ1, ξ2}, we determine that dev({ξ1, ξ2},M) =
[F 2] and fdev({ξ1,ξ2},M)(F ) = 1. If ξ4 is then sampled, we obtain an approximation
based on dev({ξ1},M) = [F ] and ed(ξ4, ξ1) = 1. We therefore consider the change
in the distribution incurred by approximating the deviations of ξ4 as [F ] ] β with β ∈
{[R], [P ], [F ], [U ], [S]}. For instance, f̂dev([R], ξ4, {ξ1, ξ2},M) yields a distribution
assigning relative frequencies of 3/4 and 1/4 to activities F and R, respectively.

The above approximation may be tuned heuristically by narrowing the set of activities
that are considered for β, i.e., the possible deviations incurred by the difference between
ξ and ξr. While this means that f̂dev is no longer a worst-case approximation, it may steer
the approximation in practice, hinting at which activities shall be considered for possible
deviations. Such an approach is also beneficial for performance reasons: Since β may be
any bag built of the respective activities, the exponential blow-up limits the applicability
of the approximation to traces that are rather similar, i.e., for which ed(ξ, ξr) is small.

Here, we describe one specific heuristic. First, we determine the overlap between
ξ and ξr in terms of their maximal shared prefix and suffix of activities, for which the
execution is signalled by their events. Next, we determine the events that are not part of
the shared prefix and suffix, and derive the activities referenced by these events. Only
these activities are then considered for the construction of β.

In our example, traces ξ1 and ξ4 share the prefix 〈r, p, f, f〉 and suffix 〈s〉. Thus, ξ1
contains one event between the shared prefix and suffix, u, while there is none for ξ4.
Hence, we consider a single bag of deviations, β = [U ], and f̂dev([U ], ξ4, {ξ1, ξ2},M)
is the only distribution considered in the approximation.

5 Evaluation

This section reports on an experimental evaluation of the proposed techniques for sample-
based and approximation-based conformance checking. Section 5.1 describes the three
real-world and seven synthetic event logs used in the experimental setup, described in
Section 5.2. The evaluation results demonstrate that our techniques achieve considerable
efficiency gains, while still providing highly accurate conformance results (Section 5.3).

5.1 Datasets

We conducted our experiments based on three real-world and seven synthetic event logs,
which are all publicly available.
Real-world data. The three real-world event logs differ considerably in terms of the
number of unique traces they contain, as well as their average trace lengths, which
represent key characteristics for our approach.
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– BPI-12 [31] is a log of a process for loan or overdraft applications at a Dutch
financial institute that was part of the Business Process Intelligence (BPI) Challenge.
The log contains 13,087 traces (4,366 variants), with 20.0 events per case (avg.).

– BPI-14 [32] is the log of an ICT incident management process used in the BPI
Challenge. For the experiments, we employed the event log of incidence activities,
containing 46,616 traces (31,725 variants), with 7.3 events per case (avg.).

– Traffic Fines [11] is a log of an information system managing road traffic fines. The
log contains 150,370 traces (231 variants), with 3.7 events per case (avg.).

We obtained accompanying process models for these logs using the inductive miner
infrequent [19] with its default parameter settings (i.e., 20% noise filtering).

Table 1: Characteristics of the synthetic model-log pairs
Characteristic PrA PrB PrC PrD PrE PrF PrG

Activities 363 317 317 429 275 299 335
Traces 1,200 1,200 500 1,200 1,200 1,200 1,200
Variants 1,049 1,126 500 1,200 1,200 1,200 1,200
Events per trace (avg.) 31.6 41.5 42.9 248.6 98.8 240.8 143.1

Synthetic data. To analyse the scalability of our techniques, we considered a synthetic
dataset designed to stress-test conformance checking techniques [24]. It consists of seven
process models and accompanying event logs. The models are considerably large and
complex, as characterised in Table 1, which impacts the computation of alignments.
Furthermore, the included event logs consist of a high number of variants (compared to
the number of traces), which may affect the effectiveness of log sampling.

5.2 Experimental Setup

We employed the following measures and experimental setup to conduct the evaluation.
Measures. We measure the efficiency of our techniques by the fraction of traces from
a log required to obtain our conformance results. This fraction indicates for how many
traces the conformance computation was not needed due to the trace not being sampled,
or the result being approximated. Simultaneously, we consider the fraction of the total
trace variants for which our techniques actually had to establish alignments. As these
fractions provide us with analytical measures of efficiency, we also assess the runtime
of our techniques, based on a prototypical implementation. Again, this is compared to
the runtime of the conformance checking over the complete log. Finally, we assess the
impact of sampling and approximation on the accuracy of conformance results. We
determine the accuracy by comparing the results, i.e., the fitness value or the deviation
distribution, obtained using sampling and approximation, to the results for the total log.

All presented results are determined based on 20 experimental runs (i.e., replications)
of which we report on the mean value, along with the 10th and 90th percentiles.
Environment. Our approach has been implemented as a plugin in ProM [33], which is
publicly available.1 For the computation of alignments, we rely on the ProM implemen-
tation of the search-based technique recently proposed in [13]. Runtime measurements
have been obtained on a PC (Dual-Core, 2.5GHz, 8GB RAM) running Oracle Java 1.8.

1 https://github.com/Martin-Bauer/Conformance_Sketching
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5.3 Evaluation Results

This section first considers the overall efficiency and accuracy of our approach on
the real-world event logs, using default parameter values (δ = 0.01, α = 0.99, ε =
0.01, and k = 1/3), before conducting a sensitivity analysis in which these values are
varied. Lastly, we demonstrate the scalability of our approaches by showing that their
performance also applies to complex, synthetic datasets.

Efficiency. We first explore the efficiency of our approach in terms of sample size and
runtime for four configurations: conformance in terms of fitness, without (f) and with
approximation (fa), as well as for the deviation distribution without (d) and with approx-
imation (da). Fig. 2 reveals that all configurations only need to consider a tiny fraction
of the complete log. For instance, for BPI-14, the sample-based fitness computation (f)
requires only 685 traces (on average) out of the total of 46,616 traces (i.e., 1.5% of the
log). This sample included traces from 144 out of the total 31,725 variants (less than
0.5%), which means that the approach established just 144 alignments. As expected,
these gains are propagated to the runtime of our approach, as shown in Fig. 3.

When looking at the overall efficiency results, we observe that the additional use
of approximation generally does not lead to considerable improvements in comparison
to just sampling. However, this is notably different for the deviation distribution of the
Traffic Fines dataset. Here, without approximation, the sample size is 1323 on average
(0.88%), whereas the sample size drops to 713 traces (0.47%) with approximation (da).
Hence, approximation appears to be more important if sampling alone is not as effective.
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Accuracy. The drastic gains in efficiency are obtained while maintaining highly accurate
conformance results. According to Fig. 4, the fitness computed using sample-based
conformance checking differs by less than 0.1% from the original fitness (indicated by
the dashed, blue line). Since the accuracy in terms of deviation distribution is harder to
capture in a single value, we use Fig. 5 to demonstrate that the deviation distribution
obtained by our sample-based technique closely follows the distribution for the complete
log. In decreasing order, Fig. 5 depicts the activities with their numbers of deviations
observed in the complete log and in the sampled log. As shown, our technique clearly
identifies which activities are most often affected by deviations, i.e., our technique
correctly identifies the main hotspots of non-conformance. Although, for clarity, not
depicted, our approach including approximation achieved comparable results.
Parameter sensitivity. We performed a parameter sensitivity analysis using sample-
based conformance checking on the BPI-12 dataset. We explored how parameters
δ (probability bound), α (significance value), and ε (relaxedness value), affect the
performance of our approach in terms of efficiency (number of traces) and accuracy
(fitness).2 Fig. 6 shows that selection of δ and α have a considerable impact on the sample
required for conformance checking. For instance, for δ = 0.01 we require an average
sample size of 684.9, whereas when we relax the bound to δ = 0.10, the average size
is reduced to 85.8 traces. For α, i.e., the confidence, we observe a range from 296.5 to
684.9 traces. By contrast, varying epsilon is shown to result in only marginal differences
(ranging between 659.0 and 684.9). Still, for all these results, it should be considered
that even the largest sample sizes represent only 5% of the traces in the original log.

Notably, as shown in Fig. 7, the average accuracy of our approach remains highly
stable throughout this sensitivity analysis, ranging from 0.711 to 0.726. However, we
do observe that the variance across replications differs for the parameter settings using
smaller sample sizes, specifically for δ = 0.1. Here, the obtained fitness values range
between 0.67 and 0.76. This indicates that for such sample sizes, the selection of the
particular sample may impact the obtained conformance result in some replications.
Scalability. The results obtained for the synthetic datasets confirm that our approaches
are able to provide highly accurate conformance checking results in a small fraction of
the runtime. Here, we reflect on experiments performed using our fitness-based sampling
approach with δ = 0.05, α = 0.99, and ε = 0.01. Fig. 8 shows that, for six out of

2 While keeping the other parameter values stable at their respective defaults.
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seven cases, runtime is reduced to 21.2% to 25.5% of the time needed for the total log
(sample sizes range from 10.7% to 12.2%). At the same time, for all cases, the obtained
fitness results are virtually equivalent to those of the total log, see Fig. 9, where the
fitness values of the total logs are given by blue crosses. When comparing these results
to those of the real-world datasets, it should be noted that the synthetic logs hardly have
any re-occurring trace variants, which makes it harder to generalize over the sampled
results. This is particularly pronounced for process PrC: There is virtually no difference
between the fitness obtained for the total log and the samples. Yet, the relatively low
fitness value of 0.57 along with a comparatively small number of traces in the log (500 vs.
1,200) lead to a runtime of 59% with sampling. Still, overall, the results on the synthetic
data demonstrate that our approach is beneficial in highly complex scenarios.

6 Related Work

Conformance checking can be grounded in various notions. Non-conformance may be
detected based on a comparison of sets of binary relations defined over events of a log and
activities of a model, respectively [35]. Other work suggests to ‘replay’ traces in a process
model, thereby identifying whether events denote valid activity executions [27]. However,
both of these streams have limitations with respect to completeness [9]. Therefore,
alignment-based conformance checking techniques [4, 23], on which we focus in this
work, are widely recognized as the state-of-the-art.

Acknowledging the complexity associated with the establishment of alignments, var-
ious approaches [13, 16, 25, 28], discussed in Section 1, have been developed to improve
runtime efficiency. Other work also aims to achieve efficiency gains by approximating
alignments, cf., [14, 30]. While these approaches can lead to efficiency gains, all of
them fundamentally depend on the consideration of an entire event log. Moreover, our
angle for approximation is different: We do not approximate alignments, but estimate a
conformance result (fitness, deviation distribution) based on the distance between traces.

The sampling technique that we employ to avoid this is based on sampling used
in sequence databases, i.e., datasets that contain traces. Sampling techniques for event
logs have been previously applied for specification mining [10], for mining of Markov
Chains [6], and for process discovery [5, 8]. However, we are the first to apply these
sampling techniques to conformance checking, a use case in which computational
efficiency is arguably even more important than in discovery scenarios.
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7 Conclusion

In this paper, we argued that insights into the overall conformance of an event log with
respect to a process model can be obtained without computing conformance results for all
traces. Specifically, we presented two angles to achieve efficient conformance checking:
First, through trace sampling, we achieve that only a small share of the traces of a log are
considered in the first place. By phrasing this sampling as a series of random experiments,
we are able to give guarantees on the introduced error in terms of a potential difference of
the overall conformance result. Second, we introduced result approximation as a means
to avoid the computation of conformance results even for some of the sampled traces.
Exploiting similarities of two traces, we derive an upper bound for the conformance of
one trace based on the conformance of another trace. Both techniques, trace sampling
and result approximation, have been instantiated for two notions of conformance results,
fitness as a numerical measure of overall conformance and the deviation distribution that
highlights hotspots of non-conformance in terms of individual activities.

Our experiments highlight dramatic improvements in terms of conformance checking
efficiency: Only 0.1% to 1% of the traces of real-world event logs (12% for synthetic
data) need to be considered, which leads to corresponding speed-ups of the observed
runtimes. At the same time, the obtained conformance results, whether defined as fitness
or the deviation distribution, are virtually equivalent to those obtained for the total log.

In future work, we intend to lift our ideas to conformance checking that incorporates
branching conditions in a process model or temporal deadlines. Moreover, we strive for
an integration of divide-and-conquer schemes [18] in our approximation approach.
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