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Recognising patterns that correlate multiple events over time becomes increasingly important in applications

that exploit the Internet of Things, reaching from urban transportation, through surveillance monitoring

to business workflows. In many real-world scenarios, however, timestamps of events may be erroneously

recorded and events may be dropped from a stream due to network failures or load shedding policies. In this

work, we present SimpMatch, a novel simplex-based algorithm for probabilistic evaluation of event queries

using constraints over event orderings in a stream. Our approach avoids learning probability distributions for

time-points or occurrence intervals. Instead, we employ the abstraction of segmented intervals and compute

the probability of a sequence of such segments using the notion of order statistics. The algorithm runs in

linear time to the number of lost events, and shows high accuracy, yielding exact results if event generation

is based on a Poisson process and providing a good approximation otherwise. We demonstrate empirically

that SimpMatch enables efficient and effective reasoning over event streams, outperforming state-of-the-art

methods for probabilistic evaluation of event queries by up to two orders of magnitude.
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1 INTRODUCTION
With the increased adoption of the Internet of Things (IoT) paradigm and cyber-physical systems,

the importance of event streams in contemporary applications ranging from urban transportation,

through surveillance monitoring to business workflows has been growing rapidly. Systems for

Complex Event Processing (CEP) provide the backbone for applications in these areas by filtering,

correlating, aggregating, and transforming events to derive actionable insights. For example, appli-

cations for intelligent urban transport rely on movement events for vehicles, cf., the Dublin Smart

City initiative [2] or the Linear Road Benchmark [11] to detect complex situations, such as the

build-up of traffic congestion as well as tardiness of public transport [13, 24].
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Interval-based queries. Interval-based queries identify patterns involving the correlation of

events that have a duration over time. Consider, for example, a system for traffic monitoring that

exploits sensor data, either emitted directly by transponders in vehicles (using On-Board-Units as

deployed for toll collection, e.g., in Germany) or captured by street sensors. Then, the input for the

system are vehicle movement events indicating time, location, and speed. These events give rise to

situations such as congested motorway sectors, defined by the number of tracked cars and their

average speed. Such a scenario, with two motorway sectors, is illustrated in Fig. 1(a). The figure

depicts two periods of congestions per sector, each with clearly defined start and end points.

An interval-based query may identify severe traffic congestions in a city centre by testing whether

consecutive (or nearby) motorway sectors are congested. This occurs when the respective intervals

of congestion overlap. For instance, given the sectors A and B in Fig. 1(a), an interval-based query

would detect two occurrences of severe traffic congestions, since the congested intervals of the two

sectors overlap twice.

time	

A	congested	

[a1,start]	 [a2,end]	

A	congested	

[a3,start]	 [a4,end]	

B	congested	

[b1,start]	 [b2,end]	

B	congested	

[b3,start]	 [b4,end]	

Motorway	
Sector	A	

Motorway 
Sector B	

(a) Without lost events

time	

Motorway 
Sector B	

A	congested	

[a1,start]	 [a2,end]	

A	congested	

[a3,start]	 [a4,end]	

[b1,start]	 [b4,end]	

Motorway	
Sector	A	

(b) With lost events in Sector B

Fig. 1. Congested intervals in a road traffic example.

Lost events. The events used to reason about interval-based queries are susceptible to various

errors [21, 51], stemming from corrupted sensing mechanism at the source, loss of data over the

network, load shedding policies, temporary lack of connections, etc. Hence, when processing

interval-based queries, appropriate mechanisms for handling lost events should be in place to

ensure query correctness. Consider again the intervals in Fig. 1. It may happen that the events

denoting the end of the first interval and the beginning of the second interval for the congestion

of sector B are lost, as shown in Fig. 1(b). Then, the identifiers of the received events may clearly

indicate the number of events that have been emitted (four events), as well as which of them got

lost (two events between b1 and b4). However, depending on the timestamps of these lost events

and, hence, their order with the events received for congestion of sector A, different scenarios need
to be considered when detecting an overlap of intervals. For instance, if event b3 is suspected to

have a timestamp larger than the one of event a4, the second congestion intervals would no longer

overlap and, thus, not be reported as results to a respective query.

Applications.While we considered an example from urban transportation for illustration, interval-

based queries are applicable in diverse use-cases. For instance, they are important for surveillance

applications, where movement events stem from automatic tagging of a video stream, cf., the

CAVIAR project [1]. Here, interval-based queries relate to situations such as people walking

together or package picking, see [12, 33, 39] for example queries. In the same vein, conformance

analysis of business process execution [45] is grounded in a comparison of activity execution

intervals against a process model to detect violations of activity order or resource utilisation. An

example would be a claim handling business process, where recurring overlapping work on a

particular claim by different roles can indicate non-conforming operations.
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Challenges. The evaluation of interval-based queries over lossy event streams induces challenges

along three dimensions, namely, C1) a lack of abstractions for queries, C2) dependency on prior

knowledge on lost events, and C3) the computational complexity.

C1) Lack of abstractions for queries.Many applications require the detection of recurring behaviour

in an event stream. In the above example, a few overlaps of congested intervals of two motorway

sectors are likely to be observed by coincidence. A large number of such overlaps, in turn, may

suggest a situation that should be detected. Most of the existing engines for the detection of

sequence patterns, such as Cayuga [18], SASE+ [5], CEDR [14], and ZStream [29] can support such

queries by tracing them back to point-based semantics [8] and using aggregations for the matches

identified by atomic patterns (i.e., single overlaps of intervals). Nevertheless, such an approach

comes with a severe downside: Any dependencies between the atomic patterns are not part of the

event processing model and, thus, cannot be exploited for query optimization.

C2) Dependency on prior knowledge. Probabilistic reasoning over events is often driven by prior

knowledge. That is, a probability distribution is assigned to the occurrence time of an event

either explicitly [39] or by adapting the model of probabilistic databases to streams [35], or to the

occurrence interval of an event [51]. Learning such distributions induces overhead and postulates

that the event stream shows regularity that is sufficient to build a model. In cold start-up scenarios

or applications where event generation does not follow well-defined patterns (e.g., unexpected

congestions), learning may not be possible.

C3) Computational complexity. Most existing work on probabilistic reasoning over event streams

assumes a discrete model of time, e.g., [39, 40, 51]. Then, semantics of a query are defined based on

an enumeration of all possible worlds in terms of possible timestamps of lost events. This results in

a search space that is exponential in the size of the temporal distribution, which is intractable for

real-world applications. Even though optimised reasoning techniques avoid the actual enumeration

of all possible worlds, cf., [51], the complexity of probabilistic event pattern matching in this model

inherently depends on the granularity of the discrete time domain.

Contributions. To address the outlined challenges, we propose a novel approach to answer

interval-based queries in a probabilistic manner. We cater for the query abstraction challenge (C1)

by presenting a model of segmented intervals that captures recurrent interval events such as the

congested event mentioned above. Then, we show how segmented intervals provide the basis for

solid probability assessment of the timestamps of lost events in the absence of prior knowledge

(C2), except for the number of lost events. We also provide a method for answering, in probabilistic

terms, interval-based queries using order statistics [36]. As opposed to other works that answer

queries over interval-based events, we use a continuous temporal model. As such, our solution is

independent of the granularity of a discrete time domain and only depends on the number of lost

events, which is typically much smaller than the number of possible discrete time points (C3).

Specifically, our contributions, as well as the remainder of this paper, are summarised as follows:

◦ A model for segmented interval events (Section 2) in which time-point events are linked via

segments, which in turn are connected via intervals. This model allows for the definition

of interval-based queries that identify patterns while maintaining information regarding

event correlations that stem from an interval hierarchy. To this end, we lift Allen’s algebra to

segmented interval events. We then define the problem of computing a probabilistic answer

to interval-based queries specified in this model in the presence of lost events, i.e., events for

which the timestamps are not known.

◦ An analytical reasoning approach (Section 3) is provided by SimpMatch, an algorithm to answer

interval-based queries using probabilistic pattern matching over segmented interval events.

Such queries involve analysing an exponential space of possible worlds, each representing a
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specific order of time-point events that is matched separately by existing methods. However,

the proposed algorithm avoids construction of all possible worlds and, therefore, improves

over methods that solely match sequences of events. For a specific possible world, SimpMatch

computes the probability of a pattern match in linear time to the number of lost events.

We achieve that by grounding our approach in the order statistics over the timestamps of

lost events. We show that this yields exact results when event generation follows a Poisson

process, and provides an accurate approximation otherwise.

◦ A comprehensive empirical analysis (Section 4) evaluates our method using synthetic and

benchmark datasets. The results indicate that our method scales well, achieving a throughput

of up-to 2,000,000 events per second. If event generation follows a Poisson process, accuracy

of pattern detection based on the probabilistic answer is approximately 90%, if 10% of the

events are lost, gracefully reducing for higher levels of uncertainty.

We also compare our approach to the reasoning technique of SASE+ [5, 51], a state-of-the-art

engine for probabilistic matching of event patterns. The results show that our method yields

higher detection accuracy for all levels of uncertainty and improves throughput by up to two

orders of magnitude for highly uncertain event streams.

◦ A demonstration of a Smart City application (Section 5) that highlights the benefits of the

proposed model and algorithm for a real-world case in the city of Dublin. Based on GPS data

emitted by buses, we show how to effectively answer queries on congested bus stops.

We close the paper with a discussion of related work (Section 6) and conclusions (Section 7).

2 MODEL AND PROBLEM STATEMENT
Wefirst introduce an interval-based event model (Section 2.1) and queries over intervals (Section 2.2).

We then turn to the uncertainty induced by lost events (Section 2.3) and define the problem of

probabilistic detection of interval relations (Section 2.4).

2.1 Interval Model
A data stream contains a sequence of events, each referred to as e . Events of similar structure

and meaning belong to the same event type, denoted by e .type . Often, events are defined with a

point-based semantics (also known as point events), such that an event e has a timestamp t , denoted
by e .t , defining when the event has occurred.

Continuous interval events. In this work, we are particularly interested in events with interval-

based semantics. Following earlier works, e.g., [26, 44], we define interval-based semantics of an

event using a sequence of events that adhere to point-based semantics. Therefore, a continuous

interval event is a pair of point events ε = ⟨e1, e2⟩. Here, e1 denotes the start of an interval and e2 its
end. Therefore, ε has a start time of e1.t , an end time of e2.t , as well as a duration of e2.t − e1.t .

Segmented interval events. While continuous interval events enable the modelling of durative

phenomena, a more expressive model is needed if several such intervals are semantically related.

In that case, only the joint occurrence of several continuous intervals is considered to be an

event from an application point of view. For instance, in the transportation example in Fig. 1, the

event of interest is a motorway being congested, which is materialised as a sequence of congested

intervals. Based on this abstraction, it becomes easier to model complex situations such as recurring

congestion that spans over multiple motorway sectors.

Against this background, we extend the definition of interval-based semantics to non-continuous,

i.e., segmented, A segmented interval event ε = ⟨ε1, ε2, . . . , εn⟩ consists of n interval events with

each being a segment of event ε . It is worth noting that this definition is recursive in nature, since

any segment may be, by itself, constructed from segments. However, interval-based queries need to
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be expressed for a specific level of detail, which means that event data needs to be abstracted to a

single, suitable level of recursion. In what follows, we shall therefore use a single level of recursion

only, where for all 1 ≤ i ≤ n, εi is a continuous interval event.
We now formally define a valid segmented interval event, to be used in the rest of this work.

Given a segmented interval event ε = ⟨ε1, ε2, . . . , εn⟩, we denote by e
i
j the j-th point event (j = 1, 2)

of segment i .

Definition 1 (Valid segmented interval event). A valid segmented interval event ε =
⟨ε1, ε2, . . . , εn⟩ is a segmented interval event that satisfies:

◦ 1-level: ∀ 1 ≤ i ≤ n, εi is a continuous interval event.
◦ Start event: e1

1
.role = start .

◦ End event: en
2
.role = end .

◦ Suspend events: ∀ 1 ≤ i < n, ei
2
.role = suspend .

◦ Resume events: ∀ 1 < i ≤ n, ei
1
.role = resume .

◦ Strict non-overlap: ∀ 1 ≤ i < n, ei
2
.t < ei+1

1
.t .

A valid segmented interval event is not merely a set of interval events. Rather, Def. 1 highlights the

semantic relation between the intervals: A first point event, e1
1
, signals the start of the segmented

interval event. Then, multiple pairs of suspend and resume events indicate that the interval event

has been interrupted and recontinued. Finally, event en
2
signals that the interval event has ended.

Notation-wise, e< and e> denote start and end events, and e↓ and e↑ suspend and resume events,

respectively.

Following Def. 1, a segmented interval event ε = ⟨ε1, ε2, . . . , εn⟩ can be represented as a se-

quence of fully-ordered point events. Given ε , its flat representation is a sequence f lat(ε) =
⟨e1

1
, e1

2
, e2

1
, e2

2
, . . . , en

1
, en

2
⟩, where e ∈ ε denotes the presence of an event e in f lat(ε). Also, we shall

use hereafter a single-index notation for events in f lat(ε), as follows: f lat(ε) = ⟨e1, e2, . . . , ep⟩.

time	

e2↓ e3↑ e4> e1< 

εA εA 

8:00 8:02 8:04 8:06 

Fig. 2. Valid segmented interval event.

Example 1 (Valid segmented interval event). Fig. 2 illustrates a valid segmented interval event

εA, which corresponds to one motorway sector of our earlier example showing two periods of congestion.

The segmented interval event εA is composed of four point events, yielding the flat representation

f lat(εA) = ⟨e1<, e2↓, e3↑, e4>⟩, such that e1< .t = 8:00, e2↓.t = 08:02, e3↑.t = 08:04, and e4> .t = 08:06.

The definition of these segmented interval events allows us to define queries over their relations,

as discussed next.

2.2 Queries based on Interval Relations
To reason about interval semantics, we rely on a query model based on Allen’s algebra [8]. This

algebra defines 13 distinct relations between intervals, seven of which can be seen as base cases

that, except for equals, have a mirrored counterpart. Semantics for a relation is formally defined

in terms of interval end points. For instance, two continuous interval events εA = ⟨e<, e>⟩ and
εB = ⟨e ′<, e

′
>⟩ satisfy the is finished by relation, if e< .t < e ′< .t and e> .t = e ′> .t .

Fig. 3 provides notation and graphically illustrates the semantics of all 13 relations. Given two

interval events εA and εB and an Allen relationC , we denote by εA −C − εB the satisfaction of theC
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A
B precedes

meets

overlaps

is finished by

contains

starts

is preceded by

is met by

is overlapped by

finishes

during

is started by

Relation Converse

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

equals  (e)

(p)

(m)

(o)

(f)

(d)

(s)

(P)

(M)

(O)

(F)

(D)

(S)

Fig. 3. Overview of Allen’s relations, adapted from [9].

relation by the two events. Composite relations are constructed from subsets of the basic relations

of Allen’s algebra. Examples are the following relations:

Starts Before: SB = {p ∨m ∨ o ∨ d ∨ f }.
Ends After : EA = {P ∨M ∨O ∨ d ∨ S}.
Intersects: I = {m ∨M ∨ o ∨O ∨ F ∨ f ∨ d ∨ D ∨ s ∨ S ∨ e}.
In its basic form, Allen’s algebra relates to continuous interval events that are characterized

by a start and an end event. We lift these relations to segmented interval events by applying

them to event segments. Then, a relation is required to hold for all, some k, or one of the event

segments of one interval event and for all, some k, or one segment of another event. Overloading

set notation, given an interval relation for two interval events, we apply a universal (∀), absolute

(∃k ), or existence (∃) quantifier to either event type.

Table 1. εA −C − εB segment extension.

∀ εB ∃k′ εB

∀ εA
∀ ε ∈ εA ∀ ε ∈ εA
∀ ε ′ ∈ εB : ∃ K ′ = {ε1, . . . , εk′ } ⊆ εB ∀ ε ′ ∈ K ′

:

ε −C − ε ′ ε −C − ε ′

∃k εA
∃ K = {ε1, . . . , εk } ⊆ εA ∀ ε ∈ K ∃ K = {ε1, . . . , εk } ⊆ εA ∀ ε ∈ K
∀ ε ′ ∈ εB ∃ K ′ = {ε1, . . . , εk′ } ⊆ εB ∀ ε ′ ∈ K ′

:

ε −C − ε ′ ε −C − ε ′

Table 1 summarises the extended semantics, for all combinations of universal and absolute

quantifiers. The existential quantifier is derived directly from the absolute one, by interpreting ∃ as

∃1. As an example, relation ∀ εA −p −∀ εB requires all segments of εA to precede all segments of εB .
The application of Allen’s relations over segmented interval events naturally extends the existing

algebra over continuous interval events, as indicated by the following property.

Property 1 (Segmented interval relations). Let ϵA and ϵB be two continuous interval events

andC an Allen relation. Then, it holds that εA −C − εB ⇔ QεA −C −Q ′εB for any pair of quantifiers

Q,Q ′ ∈ {∀, ∃, ∃k }.

Property 1 follows directly from the semantics of the extended algebra, so that we omit the

proof. To illustrate interval-based queries, consider the following two example queries capturing

k-sharing and containment relations.

Example 2 (k-Sharing qery). Taking up our running example, we aim at detecting motorway

sectors that are often jointly congested. In general, we query for this pattern using the k-sharing

relation that, for two segmented interval events εA, εB , implies that for at least k segments of εA
(congested intervals), there are intersecting segments in εB . An absolute quantifier enables fine tuning

ACM Trans. Data Sci., Vol. 00, No. 0, Article 00. Publication date: 2020.
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ԑA ԑAԑA

time

ԑB

ԑA

ԑB

(a) k-Sharing is not satisfied for any k

ԑA ԑAԑA

time

ԑB

ԑA

ԑB

(b) k-Sharing is satisfied for k ∈ {1, 2}

Fig. 4. k-Sharing relation examples.

the strictness of the query. Using the intersection relation I as defined above, we express k-sharing as

∃k εA − I − ∃ εB , where a higher k means that more intersections are required. Note that for k ≥ 2,

k-sharing is asymmetrical.

Fig. 4(a) shows a case that does not satisfy the weakest form of k-sharing (k = 1, at least one overlap).

In Fig. 4(b), the query is satisfied for k = 1 and k = 2, since there are two segments of εA that intersect

with segments of εB , as indicated by the shaded areas.

To further illustrate interval-based queries, we demonstrate the use of the universal quantifier ∀ in

the containment query, described in Example 3.

Example 3 (Containment qery). As a second example using the same interval events, one can

aim to detect whether congestion at one motorway sector always occurs when a different sector is also

congested. We query for this pattern using the containment relation that, for two segmented interval

events εA, εB , implies that each segment of εB occurs during a segment of εA, i.e., for each segment of

ϵB ∈ εB , there is a segment ϵA ∈ εA such that ϵA starts before and finishes after ϵB . Using the during
relation D as shown in Fig. 3, we express containment as ∀ εB − D − ∃ εA.

Fig. 5(a) shows a case that does not satisfy the containment relation for two reasons. Namely, the first

segment of εB ends after the segment of εA, whereas the second segment of εB does not coincide with

any segment of εA. In Fig. 5(b), the query is satisfied: each segment of εB is contained by a segment of

εA. Here, it does not matter that two segments of εB are contained by the same segment of εA.

ԑA	

time	

ԑB	

ԑA	

ԑB	ԑB	

(a) Containment relation not satisfied

ԑA	

time	

ԑB	

ԑA	

ԑB	ԑB	

(b) εA contains εB

Fig. 5. Containment relation examples.

The example queries also allow us to illustrate the difference between our approach, based on

queries for segmented intervals, and existing work on matching sequence patterns [5, 14, 18, 29].

For instance, the SASE+ engine, which supports probabilistic pattern matching [51], translates the

k-sharing query into an exponential number of queries, since it requires to enumerate all possible

sequences that satisfy the interval-based query. For the given example of two segmented interval

events εA, εB , the following query encodes the case shown in Fig. 4(b).

PATTERN
SEQ(A e1, B e1', A e2, B e2 ', A e3, B e3 ', A e4, B e4 ')

WHERE
e1.type = "start" AND e1 '.type = "start" AND
e2.type = "suspend" AND e2 '.type = "suspend" AND
e3.type = "resume" AND e3 '.type = "resume" AND
e4.type = "end" AND e4 '.type = "end"

WITHIN 5 days

ACM Trans. Data Sci., Vol. 00, No. 0, Article 00. Publication date: 2020.
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The k-sharing relation for k ∈ {1, 2} translates into 33 of these sequence patterns, i.e., into 33

different queries, even if the possibility of having events with equal timestamps is neglected. When

considering larger k values, this number will increase in an exponential manner.

2.3 Interval Uncertainty through Lost events
Event recordings are susceptible to various errors, such as data losses, load shedding policies, and

synchronization issues [21, 51]. Due to such errors, not all point events of a segmented interval

event may have been properly recorded, i.e., events may have been lost. This gives a situation in

which a segment may not be temporarily bounded by point events, leaving it open at one or both

ends. Such as, for instance, depicted in Fig. 6(a), where both segments of εB have open ends.

It is important to recognize that the identifiers assigned to the observed events allow us to infer

how many point and which type of point events were lost in a given interval. For instance, in

Fig. 6(a), we know that two point events, one suspend and one resume, were lost. By including such

inferred lost events, given a valid segmented interval event ε = ⟨ε1, ε2, . . . , εn⟩, the timestamp e .t
becomes a random variable for each point event e ∈ ε . An event e that was recorded properly, i.e.,

for which an occurrence time is known deterministically, e .t = t , is characterized by assigning a

probability of 1 to time t . We use an indicator R(e) that is set to true if e was recorded and false if e
was lost. For a lost event e , such that R(e) = false, we assume a probability distribution over e .t ,
bounded by the last observed event preceding e , and the first observed event succeeding e . If all
events preceding or succeeding e are lost, we assume that the earliest and latest possible occurrence

times are known and can serve as bounds.

time

e2↓ e3↑ e4> e1< 

e’4> e’1< e’2↓ e’3↑ 

eA eA

eB eB

(a) Possible occurrence with two overlaps

time

e2↓ e3↑ e4> e1< 

e’4> e’1< e’2↓ e’3↑ 

eA eA

eB eB

(b) Possible occurrence with single overlap

Fig. 6. Impact of lost events on segmented intervals.

Given a valid segmented interval event ε and two consecutive point events e1, e2 in flat(ε), we
denote by de1e2 a random variable representing the duration between e1 and e2, thus d

e1
e2 = e2.t − e1.t .

Given a set of point events E, which may be known either deterministically or stochastically,

f (de1e2 |E) represents a conditional distribution function, conditioned by some of the events in E.

Example 4 (Lost events). Fig. 6(a) provides an illustration of a segmented interval event with

lost point events. εB consists of two segments, such that εB = ⟨e ′
1<, e

′
2↓
, e ′

3↑
, e ′

4>⟩. Assume that e ′
1< .t =

8:01 and e ′
4> .t = 08:10, whereas the e ′

2↓
and e ′

3↑
point events were lost, i.e., R(e ′

2↓
) = R(e ′

3↑
) = false, as

depicted in the figure by the circles. As a result of this, the timestamp of, for instance, e ′
3↑

is unknown,

but bounded by the known timestamps of its closest recorded preceding and succeeding events, i.e.,

e ′
3↑
.t is a random variable bounded by e ′

1< .t and e
′
4> .t .

The presence of lost events has a considerable impact on interval-based queries, since the

unknown length of segments caused by lost events can make it impossible to answer queries in a

deterministic manner, such as illustrated by the following example.
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Example 5. Reconsider the case from Example 4, where εB has two unbounded segments due to lost

events. When trying to answer, for instance, a k-sharing query for this case, one needs to consider the

impact of lost events on this query. In particular, given that the starting point of the second segment

( i.e., e ′
3↑
.t ) is unknown, one cannot be certain if this segment overlaps with a segment from εA. This is

illustrated by Fig. 6, which depicts two possible situations that may have occurred. In the first case,

e ′
3↑

occurred before e4> , which results in an overlap between the segments of εA and εB . However, as

depicted in Fig. 6(b), event e ′
3↑

may also have occurred only after the end of εA’s segment, in which

case there would be no overlap, thus leading to a different answer of the k-sharing query.

To overcome these issues caused by lost events, we shall therefore approach interval-based

querying in a probabilistic manner, as defined next.

2.4 Problem Statement
With the model of uncertain intervals and the extension of Allen’s algebra to segmented interval

events, we can now introduce the probabilistic interval-based querying problem.

Problem 1 (Probabilistic interval-based qerying). Given two valid segmented interval

events ε1, ε2 and a query comprising an interval relation C and two quantifiers Q,Q ′ ∈ {∀, ∃k , ∃}, the
probabilistic interval-based querying problem is the computation of Pr{Qε1 −C −Q ′ε2}, i.e., the
probability of the query to hold true for ε1 and ε2.

Solving Problem 1 assists in answering interval-based queries such as the congestion query in

urban transportation, which serves as our use-case example. With certain events missing, we can

only provide a probabilistic response to the query, drawing on a solution to Problem 1 to quantify

the extent to which our query response is valid.

3 PROBABILISTIC INTERVAL-BASED QUERY RESOLUTION
This section describes our approach for the resolution of probabilistic interval-based queries. To

address this task, we first formulate probabilistic resolution as a possible worlds problem (Section 3.1),

i.e., we tackle query resolution based on an enumeration over different event orders. Then, we

introduce a method for the computation of probabilities for such event orders (Section 3.2). We

formally show that our method yields an exact solution if event arrival follows a Poisson process.

Otherwise, it returns a heuristic solution that serves as the best stochastic approximation. Finally,

we present the SimpMatch algorithm as an efficient way of resolving probabilistic interval-based

queries (Section 3.3)

3.1 Possible World Formulation
To resolve probabilistic interval-based queries, we recognize that lost events, i.e., events for which

timestamps are not known, lead to different possible orders in which the point events of two

segmented interval events have occurred, also referred to as possible worlds. To formalize these, we

first need to introduce the concept of a timestamp assignment. Such an assignment represents an

instantiation of timestamps for all point events in a segmented interval event ε , defined as follows.

Definition 2 (Timestamp assignment). Let ε be a valid segmented interval event with flat(ε) =
⟨e1, e2, . . . , en⟩. A timestamp assignment of ε is a set T = {t1, t2, . . . , tn} such that t1 < t2 < . . . < tn
and for all 1 ≤ i ≤ n, if R(ei ) = true then Pr{ei .t = ti } = 1.

Note that, for a timestamp assignment T of an event ε with flat(ε) = ⟨e1, e2, . . . , en⟩, we denote
by tT (ei ) = ti the timestamp assigned to event ei under T . If T is clear from the context, we simply

write t(ei ). Based on the notion of timestamp assignments, we define a possible world as a total

order of the point events of segmented intervals events εA and εB , given by Def. 3.
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Definition 3 (Possible world). Given two segmented interval events εA and εB with flat(εA) =
⟨e1, . . . , en⟩ and flat(εB ) = ⟨e ′

1
, . . . , e ′m⟩, respectively, a possible world w = ⟨д1,д2, . . . ,дn+m⟩ is a

sequence of events, such that

◦ each event stems from either εA or εB , i.e., дi , 1 ≤ i ≤ n +m, is an element of flat(εA) or flat(εB ),
◦ each event is unique, i.e., дi = дj for 1 ≤ i, j ≤ n +m implies i = j,
◦ there exist timestamp assignments T of εA and T ′

of εB that induce the order ofw , i.e., t(д1) ≤
t(д2) ≤ . . . ≤ t(дn+m).

As an illustration, reconsider the example from Fig. 6, which depicts two possible worlds induced

by the lost events, i.e.,w1 = ⟨e1, e
′
1
, e2, e

′
2
, e3, e

′
3
, e4, e

′
4
⟩ andw2 = ⟨e1, e

′
1
, e ′

2
, e2, e3, e4, e

′
3
, e ′

4
⟩. However,

note that there are already a total of 10 possible worlds for this example.

Since possible worlds are independent, an interval-based queryQεA−C−Q ′εB can be resolved by

summing up the probabilities of all possible worlds that satisfy the query. Usingw |= QεA−C−Q ′εB
to denote this set, the resolution of a query is then given by:

Pr{QεA −C −Q ′εB } =
∑

w |=QεA−C−Q ′εB

Pr{w} . (1)

In the remainder of this section, we first consider how to compute the probability Pr {w} of a

possible world (Section 3.2), followed by our proposed algorithm for the efficient resolution of

interval-based queries (Section 3.3).

3.2 Probability Computation
In this section, we introduce our method for the efficient probability computation of a possible

world, i.e., the probability that the point events of two segmented interval events followed a specific

sequence. We show that our method yields an exact solution if event arrival follows a Poisson

process. Otherwise, it returns a heuristic solution that serves as the best stochastic approximation,

given that the only knowledge about the segmented interval events are the observed events.

Lost event sequence.We base the probability computation for a possible world on probabilities

assigned to subsequences of lost events bounded by recorded events. We shall refer to such a

subsequence as a lost event sequence, formally defined as follows:

Definition 4 (Lost event seqence). Let εA be a segmented interval event with flat(εA) =
⟨e1, e2 . . . , en⟩. A lost event sequence ⟨ek , ek+1, . . . , el ⟩, 1 < k ≤ l < n is a subsequence of flat(εA),
such that R(ei ) = false for k ≤ i ≤ l , while R(ek−1) = R(el+1) = true.

Consider, for instance, a possible world w3 = ⟨e1, e
′
1
, e2, e

′
2
, e ′

3
, e3, e4, e

′
4
⟩, with e ′

2
and e ′

3
as lost

events. The world w3 has one lost event sequence, ⟨e
′
2
, e ′

3
⟩, bounded by the observed events e2

and e3. For such a lost event sequence, assuming that lost events are uniformly distributed across

bounded windows allows for efficient computation of the probability of their ordering. As we show

later, this assumption holds true for event arrival according to a Poisson process. Moreover, this

assumption is reasonable if the arrival rates of events (i.e., their distributions) are not known at all.

Probability density function. We can compute the joint probability distribution of a lost event

sequence using order statistics [36]. Given a lost event sequence ⟨ek , ek+1, . . . , el ⟩, we define a set of
i.i.d. random variables U = {Uk ,Uk+1, . . . ,Ul }. These random variables are uniformly distributed

over the window bounded by the deterministically known timestamps of the sequence’s preceding

and succeeding events, i.e., over the bounded window (ek−1.t, el+1.t). Each Ui ∈ U represents the

time that elapses from the window start, ek−1.t , until the arrival of an event from the lost event

sequence. This means that allUi are defined relatively to the same starting point.
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Given U = {Uk ,Uk+1 . . . ,Ul }, the order statistics of U define a sorted order of U, given as a

set of random variables {U(1),U(2), . . .U(m)}, withm = l − k + 1. The elements of the lost event

sequence ⟨ek , ek+1, . . . , el ⟩ are ordered in a strictly increasing order of their timestamp. Therefore,

we can uniquely assign a timestamp to each event ei (for k ≤ i ≤ l), i.e., ei .t = ek−1.t +U(i−k+1).

Based thereon, the joint probability density function for the timestamps of the events in a lost

event sequence follows the basic property of order statistics [20], as given by Lemma 1:

Lemma 1 (Joint probability density function). Let ⟨ek , ek+1, . . . , el ⟩ be a lost event sequence
and {U(1),U(2) . . .U(m)},m = l − k + 1, the respective order statistics. The joint probability density

function of ek .t, ek+1.t, . . . , el .t is given as:

f (ek .t, ek+1.t, . . . , el .t) = f (ek−1.t +U(1), ek−1.t +U(2), . . . , ek−1.t +U(l−k+1))

= f (U(1),U(2), . . . ,U(m))

=m!f (U1)f (U2) . . . f (Um)

=
m!

(el+1.t − ek−1.t)m

Based on the density function of a single lost event sequence, we can compute the probability of a

specific order of two such sequences, as discussed next.

Merged sequence probability. Consider two lost event sequences ε = ⟨ek , ek+1, . . . , el ⟩ and
ε ′ = ⟨e ′q, e

′
q+1, . . . , e

′
r ⟩ of two segmented interval events εA and εB , respectively. Recall that the times-

tamps of the boundary events, ek−1, el+1, e
′
q−1, and e

′
r+1, are all deterministically known. We would

like to compute the probability of a timestamp ordering of all events in both lost sequences, within

an interval set by these boundary events, i.e., an interval (max(ek−1.t, e
′
q−1.t),min(el+1.t, e

′
r+1.t)).

To this end, we exploit the following theorem. It links the probability of a particular timestamp

ordering to the density functions of the two lost event sequences that are merged.

Theorem 1 (Merged seqence probability). Let ε = ⟨ek , ek+1, . . . , el ⟩ and ε
′ = ⟨e ′q, e

′
q+1, . . . , e

′
r ⟩

be the lost event sequences of segmented interval events εA and εB , respectively, such that |ε | =m and

|ε ′ | = n. Let e(0).t = max(ek−1.t, e
′
q−1.t), e(m+n+1).t = min(el+1.t, e

′
r+1.t), and ⟨e(1), e(2), . . . , e(n+m)⟩

be a (possibly interleaving) ordering of the sequences ε and ε ′. Then,

Pr

{
e(0).t < e(1).t < . . . < e(n+m).t < e(m+n+1).t

}
=

(e(m+n+1).t − e(0).t)
n+m

(n +m)!
·

m!

(el+1.t − ek−1.t)m
·

n!

(er+1.t − eq−1.t)n
.

Proof. We integrate over the density functions of both lost event sequences (Lemma 1), exploit-

ing the interleaving ordering for the integration:

Pr

{
e(0).t < e(1).t < . . . < e(n+m).t < e(m+n+1).t

}
=∫ e(m+n+1) .t−e(0) .t

0

∫ e(m+n) .t

0

. . .

∫ e(2) .t

0

m!

(el+1.t − ek−1.t)m
·

n!

(er+1.t − eq−1.t)n
de(1).t, . . . ,de(m+n).t

The density functions of both lost sequences are independent of the integration variables, so that

can rewrite the equation as follows:

Pr

{
e(0).t < e(1).t < . . . < e(n+m).t < e(m+n+1).t

}
=

m!

(el+1.t − ek−1.t)m
·

n!

(er+1.t − eq−1.t)n

∫ e(m+n+1) .t−e(0) .t

0

∫ e(m+n) .t

0

. . .

∫ e(2) .t

0

1 de(1).t, . . . ,de(m+n).t
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The above integration can be viewed as the volume of a simplex in an n +m-dimensional space.

Hence, the probability is given as

Pr

{
e(0).t < e(1).t < . . . < e(n+m).t < e(m+n+1).t

}
=

m!

(el+1.t − ek−1.t)m
·

n!

(er+1.t − eq−1.t)n
·
(e(m+n+1).t − e(0).t)

n+m

(n +m)!

which concludes the proof. □

An immediate corollary of Theorem 1 is that the probability depends on the sizes of the lost event

sequences and the positioning of the bounding events on the time-line, but not on the ordering

of events. This property becomes handy when optimising event detection, since the probability

computed for a certain lost event sequence may be reused for different interleavings of the same

lost events as part of different possible worlds.

Unbounded sequences.Theorem 1 holds for event sequences bounded by deterministically known

timestamps. In extremes cases, either a start or an end event may be lost. If so, the probability is

directly computed by integrating over the inter-arrival random variables.

Guarantee for Poisson event arrival. The arrival of events of an uncertain segmented interval

event can be modelled as a stochastic process N (t), t ≥ 0, t ∈ N being the time offset from ts , the
start of the process. Then, N (t) is the number of events in the interval [ts , ts + t].
The inter-arrival time distribution of Poisson processes is memoryless. Every time an event

arrives, the process resets and the probability of event arrival depends only on the time of the last

arrival, but not on the absolute time or the number of previous events. Further, the time between

two event arrivals follows an exponential distribution.

Given a Poisson process, the distribution of a lost event sequence is according to the order

statistics of the lost events over the bounding window [20]. Hence, Theorem 1 yields the analytic

solution for the probability of the interleaving ordering of the sequences.

Possible world probability. A possible world may contain multiple lost event sequences. Given

the probabilities computed for each of these lost event sequences, the probability of the world itself

is determined as the product of the probabilities of its lost event sequences. The rationale here is

that the lost event sequences are independent of each other.

3.3 Resolution Algorithm
We propose the SimpMatch algorithm for the probabilistic resolution of interval-based queries

over lossy event streams. Given an interval-based query Qε1 −C −Q ′ε2 and two valid segmented

interval events εA and εB , the algorithm iteratively constructs a possible worlds tree that captures

the different sequences in which point events of εA and εB may occur, as well as the probabilities of

each (sub)sequence in the tree. The SimpMatch algorithm is formalized in Algorithms 1 and 2 and

described in detail in the remainder.

Initialisation. The SimpMatch algorithm (Alg. 1) starts by initializing necessary variables. The

algorithm records the number of point events in εA and εB (lines 1–2), prior to establishing sentinel

events for εA and εB (line 3), which are dummy events with infinitely large timestamps. Further,

the algorithm initialises a possible worlds treeT , consisting of just a root node r , it also initializes a
variable recording the current probability, pr . Afterwards, a first call to the ExpandNode function

is made (line 7), setting the positions i and j to the first point events in εA and εB .

ExpandNode function. The expandNode function is called with a pointer to a current node r in
the possible worlds tree and positions in the segmented interval events, i and j. Given the current
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Algorithm 1: The SimpMatch algorithm

input :valid segmented interval events εA and εB ,
a query comprising an interval relation C and quantifiers Q and Q ′

, Qε1 −C −Q ′ε2
output :probability of the query to hold true, Pr{Q (εA) −C −Q ′(εB )}

1 n := |εA |;

2 m := |εB |;
3 en+1 .t := e ′m+1 := ∞; /* set sentinels */

4 T := initTree(); /* create possible worlds tree T */

5 r :=root(T ); /* set the root of T as the current node r */

6 pr := 1.0; /* initialise probability variable pr */

7 expandNode(T , r , 1, 1, pr ) /* first call to recursive function */

8 function expandNode(T , r , i , j , pr )
9 if i ≤ n ∨ j ≤ m then /* check if end of intervals has been reached */
10 ei := εA .get(i); /* Get ith event from εA */

11 ej := εB .get(i); /* Get jth event from εB */

12 prA := FollowPathA(T , r , ei , ej ); /* query resolution probability with next event from εA */

13 prB := FollowPathB(T , r , ei , ej ); /* query resolution probability with next event from εB */

14 return prA + prB ; /* Return the sum of the two probabilities */

15 return pr ; /* End reached, return current probability value */

node r , there are two possible ways to expand the tree: either point event ei from εA is the next

event to be considered or point event ej from εB . expandNode calls functions for both possibilities

(lines 12–13). These functions, respectively, return the probability that the query QεA −C −Q ′εB
matches if the next event to be considered is ei or ej , stored in prA and prB . Given that the two

options are independent, the function returns their sum (line 14). As visualized in Fig. 7(a), for the

first call of expandNode for the running example, these options involve appending e1 or e
′
1
to R.

Note that if expandNode is called with i = n and j =m, it means that all point events of both εA
and εB have been explored in the current path, i.e., that the end of the path has been reached. In

that case, the algorithm returns the current probability pr (line 15), which represent the probability

of the entire possible world. This is, for instance, the case when e ′
4
is reached for the possible world

depicted in Fig. 7(c).

R 

e1 

e’1 e1 

e’1 

(a) First iteration

R e1 e’1 

e2 

e’2 

(b) Lost event e′
2

R e1 e’1 

e2 

e’2 

e3 

e4 

e’2 e’3 

e4 

e4 e’4 

(c) Complete possible world

Fig. 7. Progression of a possible worlds tree in SimpMatch for 2-sharing.

FollowPathA function. As denoted in Alg. 2, followPathA computes the probability of the

interval-based query to hold when ei is the next event, added to the current node r in the possible

worlds tree. To determine this probability, the algorithm first checks if the proposed ordering, in

which ei precedes ej is possible according to their timestamps (line 1). To do this, the checkOrder

function considers the following cases, depending on whether or not ei and ej represent recorded
events:

◦ Both events recorded, i.e., R(ei ) = true ∧ R(ej ) = true. If both events have been recorded,

then the possiblity of the ordering ⟨ei , ej ⟩ can be directly checked by comparing their (known)

timestamps. If ei .t ≤ ej .t , the order is possible, otherwise not. This case happens at the first
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Algorithm 2: FollowPathA function

input : the next point events from the two segmented interval events, ei and ej ,
the worlds tree T , the current node of focus r , and the current probability value pr

output : the probability of the interval-based query to hold with ei as the next event

1 if checkOrder(ei , ej ) then /* Check if ei can occur before ej */
2 (T ′, r ′) := Add(T , r , ei ); /* Add ei after node r in the possible worlds tree */

3 if matchesQuery(T ′, r ′) then /* Check if current path still matches query */
4 if R(ei ) = true then /* Check if ei is a recorded event */
5 ⟨ek , ek+1, . . . , el ⟩ := TraceBack(T ′, r′); /* Trace back tree to last recorded event */

6 pr = pr · computeProb(⟨ek , ek+1, . . . , el ⟩); /* Compute sequence probability using Theorem 1 */

7 return expandNode(T ′, r ′, i + 1, j , pr ) ; /* Continue algorithm by expanding the new node r ′ */

8 return 0.0; /* The current sequence is not possible or does not match the query */

iteration of the algorithm, as visualized in Fig. 7(a). Here, the order ⟨e1, e
′
1
⟩ is feasible, since

e1. < e ′
1
.t , whereas ⟨e ′

1
, e1⟩ is not. Therefore, in the first iteration, only e1 is added to R.

◦ ei not recorded, i.e., R(ei ) = false. If the candidate next event, ei , was not recorded, then we

do not know its time of occurrence. Therefore, the ordering ⟨ei , ej ⟩ is possible, independent
of whether ej was recorded or its timestamp.

◦ Only ei recorded, i.e., R(ei ) = true ∧ R(ej ) = false. If ei was recorded but not ej , we consider
if ei occurred before the next known timestamp at which an event of the other interval (εB )
was recorded, which we shall denote as next(εB ).t . If ei ≤next(εB ).t then there may be a

timestamp assignment in which ei .t ≤ ej .t , i.e., in which ⟨ei , ej ⟩ is possible. However, if ei >
next(εB ).t , it means that ei already occurred after the event succeeding ej . Since it must hold

that ej .t < next(εB ).t , ei can only have occurred after ej .
This situation is depicted in Fig. 7(b), where both the observed event e2 and the lost event e ′

2

may follow event e1′, since e ′
4
, the next observed event in εB , occurred after e2.

If the ordering ⟨ei , ej ⟩ is possible, i.e., checkOrder(ei , ej ) = true, the algorithm continues by adding

ei as a new node, r ′, to the possible worlds tree (line 2). Given the updated tree T ′
and the node r ′,

the algorithm then determines if the current branch of the possible worlds tree can still satisfy or if

it will certainly violate the interval-based query (line 3), as described next.

MatchesQuery predicate. The size of the possible worlds tree is exponential in the number of

lost point events in εA and εB . However, using the segmented interval event model, constraints

over the orderings of events enable elimination of significant parts of the tree. Specifically, the

SimpMatch algorithm, using theMatchesQuery function in Alg. 2, performs early detection of

tree branches that are known to violate the queried relation and can thus be pruned.

In the example of Fig. 7(c), this pruning step occurs when exploring the addition of e4 after e3. If
e4 is added to the current path, then the 2-sharing query will not be able to match any longer, given

that there is currently only a single overlapping segment and that e4 is the end event of εA. As a
result,MatchesQuery shall return false in this case meaning that this path will not be explored

further and a probability of 0.0 is returned. By contrast, the option of adding e ′
2
after e3 does leave

open the possibility of the query to match, which means that this path shall be continued.

ComputeProb function. If the order is possible and there is no query violation, the algorithm

subsequently considers if ei was recorded or not (line 4). If this is the case, then ei can serve as

a boundary event for the computation of a probability for a lost event sequence, as described in

Section 3.2. To do this, the algorithm first retrieves the lost event sequence (line 5) by tracing

back in the possible worlds tree to the last recorded event in the current path. The sequence

⟨ek , ek+1, . . . , el ⟩, identified in this manner, represents a lost event sequence and its boundary

events. Using Theorem 1, we can, therefore compute the probability of the current subsequence
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(line 6). Afterwards, the algorithm continues by calling the expandNode function for the next pair

of events (at positions i + 1 and j, line 7).
As mentioned in Section 3.2, the probability computation for a lost event sequence depends

solely on its length and the positioning of the bounding events, but not on the ordering of events

in the sequence. As a consequence, caching the computed probabilities (line 6) helps to improve

the runtime of the algorithm. the probability of one lost event sequence may be reused for all

interleavings of the same events.

Note that if either of the checkOrder or matchesQuery checks fail, a probability of 0.0 is

returned (line 8), since the path being explored will not be able to satisfy the query. Furthermore,

we omit the FollowPathB function, for brevity, since it is identical to FollowPathA except that it

considers the order ⟨ej , ei ⟩ instead.

Streaming environments. Finally, we note that the SimpMatch algorithm can be applied in

streaming environments. It can be activated in a step-wise manner, each time a new event is

observed. The algorithm terminates when the last events of both intervals are observed or once a

timeout has been reached. Events that are processed after the timeout are considered to be lost.

4 EXPERIMENTAL EVALUATION
This section presents an experimental evaluation of the SimpMatch algorithm in terms of effec-

tiveness and efficiency. For this evaluation, we employ a real-world benchmark dataset, as well as

synthetic data. The results of our experiments indicate that the algorithm allows for solving the

probabilistic interval detection problem with a throughput of up to 2,000,000 events per second

and an accuracy of around 90% when 10% of the timestamps are missing. We also compare Simp-

Match with two discrete baselines that do not employ probabilistic reasoning as well as with the

reasoning technique of a state-of-the-art engine. The results demonstrate that our method achieves

consistently higher accuracy. In comparison to the existing reasoning technique, it increases the

runtime performance by up to two orders of magnitude.

Below, we present the used datasets (Section 4.1) and applied experimental setup (Section 4.2),

before reporting our results (Section 4.3).

4.1 Datasets
We employ the following benchmark and synthetic datasets for our evaluation experiments.

Linear Road Benchmark dataset. The Linear Road Benchmark (LRB) [11] comprises movement

events of vehicles on toll motorways. Toll depends on the level of congestion of motorway sectors,

which is derived from the average speed of vehicles. We used 2 hours worth of events for 200

motorway sectors to identify segmented interval events, representing the congestion of a particular

sector in one direction. Following the specification of the LRB, congestion is identified when the

average speed of vehicles falls below a threshold. We used two such threshold values, 15 and

20 km/h. We refer to the datasets resulting from these congestion thresholds, respectively, as

benchmark (15) and benchmark (20).

In general, we observe large variability in terms of congestion levels throughout the data: For

the benchmark (20) data, 138 sectors are never congested, 12 sectors have one congestion interval

segment and, in the extreme case, a sector has up to 224 congestion interval segments. In the

benchmark (15) data, 169 sectors are never congested. Still, the maximum number of congestion

interval segments is high, reaching up to 102 segments for a sector.

In our experiments, we focused on the detection of correlations of congestion in different

motorway sectors. By pairing each motorway sector to all other, we derived 19,900 event streams,

each comprising a different pair of motorway sectors.
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Table 2. Query selectivity statistics.

k 1 2 3 4 5 6 7 8 9 10 11 12

Synthetic 100.0% 100.0% 100.0% 100.0% 99.9% 99.7% 92.6% 72.1% 40.2% 10.8% 0.0% 0.0%

Benchmark (15) 39.5% 26.0% 22.1% 18.4% 15.6% 14.0% 11.3% 10.6% 8.7% 6.9% 5.9% 5.5%

Benchmark (20) 30.1% 24.5% 22.1% 20.6% 19.2% 18.1% 17.7% 17.1% 16.7% 16.0% 15.8% 15.6%

Synthetic dataset. To further test our method in a controlled setting, we created a synthetic event

log of 500 event streams, each containing a pair of segmented interval events of 20 segments i.e., 80

events. Each segmented interval event was generated by sampling the independent random variables

for the durations between events from an exponential distribution with λ = 1/5. Consequently, for

this dataset, arrival of events adheres to a Poisson process. We denote this dataset as synthetic.

4.2 Experimental Setup
Below, we discuss the queries used in our evaluation, the controlled parameters, evaluationmeasures,

and methods for comparison.

Event queries. In our experiments, we detect variations of the k-sharing temporal pattern. In

particular, we test for the existence of an intersection of any interval segments, which corresponds to

the k-sharing query with k set to one. In addition, we test for the k-sharing pattern with an absolute

parameter that sets a minimal number (k) of required intersections. These queries are representative
for many real-world workloads in IoT applications that determine the joint occurrence of particular

phenomena, such as congestion management in public transportation (e.g., intersection of traffic

flow peaks with bus delays, correlation of congestions at different areas) [13] and the evaluation

of surveillance video streams (e.g., intersections of persons or objects being present at particular

locations, intersections of location information and activity information) [12, 33]. The intersection

query is defined as ∃ εA − I − ∃ εB , while the k-sharing query is defined as ∃k εA − I − ∃ εB (see

also Example 2).

Table 2 illustrates the frequencies of query matches, i.e., for how many pairs of segmented

interval events the respective queries match. For instance, the intersection query (k = 1) matches

in all cases in the synthetic dataset, but only in 39.5% and 30.1% of the cases in the benchmark

datasets, respectively. Considering the k-sharing query and increasing the value for parameter k
decreases the amount of matches. For the synthetic dataset, no matches are obtained for k larger

than 10. For the benchmark datasets, a small number of cases still shows the respective number of

intersecting interval segments. Note that these query matches are obtained on data without lost

events and, therefore, represent the gold standard against which we shall evaluate our probabilistic

approach.

Parameters. The probabilistic interval detection problem (Section 2.4) is tuned with two main

parameters that relate to the data and the pattern recognition, as follows:

Noise level (E): A feature of the data, representing the fraction of lost events. We consider noise

levels for E in the range [0%, 40%], in increments of 5%. For a given noise level E, each event has a

probability of E to be considered as a lost event. However, we keep the end events with a known

timestamp.

Detection threshold (T): The probability that defines pattern recognition by a query. For example,

T > 0.5 means that a pattern is recognized whenever the computed occurrence probability is larger

than 50%. We vary T over the range [0.0, 1.0] in increments of 0.1.
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Measures. We, respectively, evaluated the efficiency and effectiveness of our approach in terms of

throughput and accuracy.

We measure efficiency based on throughput, i.e., the average number of processed events per

second. Throughput is measured on a desktop machine (Intel Core i5, 2.5GHz). Accuracy records the

share of correctly detected (or undetected) relations. With TP as the set of true positives (correctly

detected relations), FP the set of false positives (incorrectly detected relations ), TN the set of true

negatives (correctly undetected relations), and FN the set of false negatives (incorrectly undetected

relations), accuracy is defined as follows:

Accuracy =
|TP | + |TN |

|TP | + |TN | + |FP | + |FN |
.

Comparisonwith discrete baseline techniques.We compared the SimpMatch algorithm against

two discrete baseline techniques that do not involve any probabilistic reasoning. They answer the

query through a discretization, i.e., they deterministically construct a certain segmented interval

event from the uncertain one by considering the semantics of the observed point events:

◦ BaselineIgnore simply ignores lost events. To obtain a sound segmented interval event when

ignoring the lost events, algorithmically, all point events that have the same semantics as the

preceding event are also ignored.

◦ BaselineStatic reconstructs some lost events based on the average duration of segments. For

each point event that is observed, but denotes the beginning (start and resume events) of a

segment that is not terminated by a corresponding suspend or end event (i.e., this event is

lost), the latter is reconstructed. The timestamp of this reconstructed event is determined by

taking the minimum of (i) the time obtained by adding the mean duration over all observed

segments to the timestamp of the event that denotes the beginning and (ii) the timestamp of

the next observed event. The mirrored construction is applied to suspend and end events

that are not matched by resume and start events, respectively.

As an example, consider a segmented interval event ε with f lat(ε) = ⟨e1<, e2↓, e3↑, e4↓, e5↑, e6>⟩,
such that e1< .t = 8:00, e2↓.t = 08:02, e3↑.t = 08:04, e4↓.t = 08:12, e5↑.t = 08:20, and e6> .t = 08:24.

Assume that events e2↓ and e6> are lost.

Based on these lost events, the BaselineIgnore technique ignores events e3↑ and e5↑, which lack a

counterpart according to the semantics of the recorded (i.e., not lost) point events. As a result, the

baseline effectively merges the first two segments, while discarding the third one. The resulting

segmented interval event εI is characterised as f lat(εI ) = ⟨e1<, e4↓⟩.
The BaselineStatic technique, in turn, would reconstruct the two lost events based on the mean

duration of the observed segments, i.e., eight time units (e3↑.t − e4↓.t ) in the example. The recon-

structed events would be ê2↓ and ê6> with ê2↓.t = 08:08 and ê6> .t = 08:28. The resulting segmented

interval event εS is therefore characterised as f lat(εS ) = ⟨e1<, ê2↓, e3↑, e4↓, e5↑, ê6>⟩.

Comparison with the state-of-the-art.We further considered the probabilistic reasoning tech-

nique of SASE+ [51]. The SASE+ engine represents the state-of-the-art in terms of complex event

detection under uncertainty. It includes a scheme for the computation of the probability of event

detection for a given event sequence with missing timestamps, which can be seen as an alternative

to the proposed method for probability computation described in Section 3.2.

To incorporate SASE+’s computation scheme into our context, we replaced the implementation of

the ComputeProbability function in Alg. 2 with a re-implementation of the respective algorithm

from [51]. Since the SASE+ engine works with a discrete time domain, in our experiments, we

define an interval of discrete timestamps for each event et for which the timestamp is missing. This

domain is symmetrical and defined based on a timestamp domain size parameter δ , i.e., we consider
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Fig. 8. Efficiency and effectiveness of our approach to probabilistic detection of interval relations.

the interval [et − δ , et + δ ] with 10 ≤ δ ≤ 80. Further details on the algorithm can be found in

Appendix A.

4.3 Experimental Results

Efficiency. We evaluated the efficiency of our approach to probabilistic detection of interval

relations as follows. For the benchmark datasets, we focused on the intersection query, since there is

a relatively low number of segment intersections. For the synthetic dataset, we used the k-sharing

query and report on the results obtained for the most challenging query selectivity when varying k
from 1 to 12. That is, we ran the query with all values of k and selected the configuration that led to

the lowest detection accuracy. As such, our results are obtained under a worst case assumption and

show the lower bound of the results for k-sharing. We later explore the sensitivity of the results

regarding the choice of parameter k in a separate experiment.

Fig. 8(a) shows the results in terms of throughput (log scale) when varying the noise level

(E ∈ [0%, 40%] in steps of 5%) with a detection threshold of T = 0.5. In the absence of noise,

throughput is high for all datasets, reaching 2,000,000 events per second (e/s) for the benchmark

dataset and 650,000 e/s for the synthetic dataset. Increasing the noise level reduces the throughput.

For instance, if E = 25%, we observe throughput values between 5,000 and 33,000 e/s, depending on

the dataset.

In sum, for small and medium noise levels, we observe an overall good performance of the

SimpMatch algorithm. However, throughput drops considerably as uncertainty increases, given the

number of possible worlds that need to be considered by SimpMatch.

Effectiveness. We evaluated the effectiveness of our approach using the aforementioned datasets

and queries. Fig. 8(b) shows the results in terms of accuracy when varying the noise level (E ∈

[0%, 40%] in steps of 5%) and with T = 0.5. In general, accuracy is high, e.g., around 0.92 at a noise
level of 10%. As expected, increasing the noise level decreases accuracy, a trend which is stronger

for the benchmark datasets. However, even under high noise levels, accuracy is around 0.7.
The detection threshold defines the probability based on which patterns are recognised. Using

the synthetic dataset and averaging over all noise levels, Fig. 8(c) suggests that accuracy peaks

at T = 0.5 when varying the detection threshold in steps of 0.1. For this threshold, the approach
averages an accuracy between 84% to 94%. We conclude that the SimpMatch algorithm achieves

high accuracy that degrades gracefully with increasing noise levels.

Sensitivity to query selectivity. To assess the sensitivity of our approach to the query selectivity,

Fig. 9 reports on experiments with the synthetic dataset and k-sharing query (E = 20%). As illustrated

in Table 2, increasing parameter k step-wise changes the selectivity from 100% to 0%. Fig. 9(a) shows
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Fig. 9. Analysis of the sensitivity of our approach to the query selectivity.

that lowering the selectivity leads to a reduction of the throughput achieved with SimpMatch. This

is expected since there are fewer opportunities to prune the possible worlds tree (which occurs

when more than k intersecting intervals have already been predicted for a possible world). As

a result, the throughput drops by around an order of magnitude in comparison to the baseline

techniques that do not employ any reasoning (and hence, their throughput is not affected by query

selectivity).

Yet, Fig. 9(b) shows that the baseline techniques perform much worse in terms of accuracy.

Answering the query is most challenging for medium selectivities (5 ≤ k ≤ 8) and simply ignoring

lost events (BaselineIgnore) leads to very low overall accuracy. While a static reconstruction of

some lost events (BaselineStatic), our probabilistic reasoning approach leads to the best results, by

far. Note, again, that all results for the k-sharing query in the other experiments are shown for

k = 7, i.e., the worst case in terms of query selectivity.

Comparison with baseline techniques and the state-of-the-art. As detailed in Section 4.2,

we also compared our approach to the reasoning technique of the SASE+ engine [51]. Again, we

used the synthetic dataset and k-sharing query with the selectivity that corresponds to the worst

case.

Using the reasoning technique of SASE+, we have to determine the timestamp domain size δ .
Unlike our approach, SASE+ assumes a discrete timestamp domain. In a first step, we therefore

evaluate the choice of δ on the efficiency and effectiveness of this approach in Fig. 10, when varying

the considered noise level. It turns out that increasing δ , lowers the throughput significantly, while
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Fig. 10. Analysis of the sensitivity of the reasoning approach based on SASE+.
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Fig. 11. Comprehensive comparison of the efficiency and effectiveness.

increased noise levels amplify this trend. The reasoning being the growth of the search space, which

is exponential in the size of the temporal distribution employed for each of the lost events.

The accuracy, in turn, is slightly higher for small timestamp domains, which stems from the

fact that the uncertainty interval induced by δ is then close to the mean inter-arrival time of point

events, which happens to be the best case for the reasoning. Apart from that special case, the

accuracy is relatively stable for δ > 30. Since the mean inter-arrival time of point events is not

known in the general case, we consider the configurations of δ = 30 and δ = 60 as representative

choices in the remaining experiments.

Next, we compare all approaches in terms of their efficiency when exploring fine-granular

changes in the noise level (E ∈ [0%, 40%]). According Fig. 11(a), we observe that SimpMatch

achieves higher throughput than SASE+, with the difference becoming larger with increased

noise levels and increased sizes of the timestamp domain. In the extreme case (δ = 80, E = 40%),

SimpMatch outperforms SASE+ by two orders of magnitude in throughput. This highlights the

importance of reasoning methods that, as SimpMatch, are independent of the granularity of the

temporal model. However, the results also illustrate the overhead of probabilistic reasoning, as the

baseline technique achieve a throughput that is still an order of magnitude higher.

Turning to the effectiveness of the methods, Fig. 11(b) shows the accuracy under various noise

levels (E ∈ [0%, 40%]). For a given noise level, SimpMatch achieves consistently the highest accuracy.

For example, for E = 10%, the SASE+ routine achieves an accuracy value of 0.69 for δ = 30 (0.66
for δ = 60), the baseline techniques yield accuracy values of 0.48 and 0.68, respectively, whereas
SimpMatch yields an accuracy value of 0.91. We conclude that SimpMatch is more effective for the

reasoning tasks addressed in this paper, consistently leading to higher detection accuracy.

5 SMART CITY APPLICATIONWITH REAL-WORLD DATA
To further illustrate the benefits of the proposed model and algorithm in the context of IoT in-

frastructures, this section presents a Smart City application, employed as a solution in the VaVeL

European project [3]. The application was developed for real-world GPS data streams, emitted by

buses in the city of Dublin. Every bus transmits its timestamped location at a 20-seconds resolution,

which also includes information on the nearest bus stop. The readings are processed in real-time,

thus allowing for online analysis, such as anomaly detection and travelling time prediction [22, 32].

Our model enables us to effectively use the recorded data to answer complex queries, without the

need to assume ‘continuous tracking’ (no lost events) [32], or a bias by imputation of timestamps

of lost events [22]. Analysis of the transportation network in Dublin is based on a stop congestion

query, testing the co-location of buses at specific stops. Stop congestions causes road disturbances,
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since buses cannot properly enter a stop occupied by other buses. Answering this query enables

operational improvement and optimisation of traffic flow, e.g., by adapting dispatching policies.

Below, we demonstrate the use of SimpMatch in answering stop congestion queries. To this end,

we first present the available data and its casting into our model of segmented interval events.

Subsequently, we show performance results when applying our approach to answer stop congestion

queries on real-world GPS bus data.

The Dublin bus data. Buses follow a journey that is modelled as a segmented interval event

ϵ = ⟨ε1, . . . , εn⟩, with ε1, εn being the start and end events, respectively. Intermediate events εi ,
2 ≤ i ≤ n− 1, are associated with n− 2 stops visited by the bus during a single journey. The number

of stops is known in advance. Then, ei
2
, i < n corresponds to a suspend event, representing a bus

halting at stop i , while ei
1
, i > 1 is a resume event, indicating when a bus leaves a stop.

As explained above, Dublin buses do not emit events when entering or leaving a bus stop, but

rather create a continuous stream of spatial-temporal events. As such, the recorded data is a (flat)

sequence of events ξ = ⟨ξ1, . . . , ξm⟩, such that

◦ ξi .l is the GPS location,
◦ ξi .t is a timestamp, inducing a total order on ξ , and,
◦ ξi .s is the closest bus stop associated with the event.

As the available events are not directly linked to the intervals in ϵ , in essence, all suspend and

resume events in ϵ are missing. Thus, the entire journey can be seen as an uncertainty interval,

with a 2 × (n − 2) lost events. However, the attribute indicating the closest bus stop (ξi .s) in the

recordings along with the bus schedule enable us to set boundaries on the uncertainty window of

lost events.

Uncertainty window 2
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Fig. 12. Transforming the data into segmented interval events.

We illustrate the application model in Fig. 12, where rectangles represent true, unknown intervals

of a bus being at a stop. Recorded events are marked on the timeline below.

A single journey is partitioned intoW time windows, with every window having 2 × Kw ≤

2 × (n − 2), w ∈ {1, . . . ,W } lost events (dashed lines in Fig. 12). Specifically, we scan pairs of

consecutive events, ξi and ξi+1, for which one of the following cases holds: (1) ξi .s , ξi+1.s , the
closest bus stop changed; or (2) ξi .s = ξi+1.s , the stop remained the same. The first case alternately

opens and closes an uncertainty window, whereas the second case extends the current window.

For each window determined by this procedure, we count the number of missing stops based on

the bus schedule. This procedure is applied for every journey in the data.

Application results. Equipped with the uncertainty windows, we use the SimpMatch algorithm

to answer the stop congestion query (overlap of segments at the same stop) for every pair of

journeys. Here, we summarise the results in terms of computational performance. The algorithm

was executed (Intel Core i7, 12GB RAM, SSD HD) for real-world data from September 2014, which

comprises over 4, 000 bus journeys.
Fig. 13(a) shows the average runtime observed for SimpMatch as a function of the number of

lost events per time window. Since in every window, at least two events are missing per journey,

SimpMatch has to cope with at least four lost events when reasoning over two journeys. However,

we also observe much larger degrees of lost events, at the worst case reaching 14 lost events
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Fig. 13. Runtime of SimpMatch for the Smart City application.

per window. Nevertheless, the comparatively low absolute runtimes illustrate the feasibility of

our approach for this Smart City application. As shown in Fig. 13(b), this is achieved by massive

pruning of the possible worlds tree. An increased number of missing events implies more pruning

opportunities, which leads to an increased relative runtime improvement.

6 RELATEDWORK
Complex Event Processing. A variety of systems for Complex Event Processing (CEP) that filter,

correlate, aggregate, and transform events have been presented over the decade, including SQL-

TS [37], Streams [10], Cayuga [18], SASE(+) [5, 49], CEDR [14], ZStream [29], and XSeq [30]. Zhang

et al. [52] pointed out that most of these systems employ an event query language built of a few

core concepts, such as sequencing and negation. However, these concepts are typically defined for

point events, not interval events as addressed in this work. Detection of interval-based querying of

event streams has been addressed by Li et al. [26], who presented ISEQ, a temporal operator based

on Allen’s algebra. Our model can be viewed as an extension of ISEQ in terms of expressiveness

and the added support for reasoning over events with missing timestamps.

Uncertain event detection. The roots of uncertainty in event-based systems has been discussed

by Etzion and Niblett [21]. A recent survey of models and approaches for uncertain management

has been presented by Alevizos et al. [7].

The possible world semantics for event detection adopted in our work goes back to [47], which

provides a probabilistic framework for reasoning on events. Yet, this framework is grounded in

causal dependencies between events, lacking a query models as proposed in this paper based on

interval-relations. Closest to our work is the uncertainty management implemented in the SASE+

engine [5, 49, 51]. SASE+ handles missing timestamps of events based on a discrete distribution of

timestamps [51]. Our work, in contrast, is based on a continuous time distribution for the duration

between point events of the same segmented interval event. Consequently, unlike the SASE+ engine,

our SimpMatch algorithm is independent of the time distribution and only depends linearly on

the length of lost event sequences. Another difference is the use of segmented interval events in

our approach, so that correlations of point events are exploited to reduce the number of possible

orderings and prune illegal orderings during probability computation.

Although feasible, our experimental results on the comparison with the reasoning technique of

the SASE+ engine indicate that an approach that traces back the problem of probabilistic interval

relation detection to sequence patterns comes with reduced accuracy and a drastic reduction of
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throughput by up to two orders of magnitude. However, we note that our work is orthogonal to the

SASE+ approach, since reasoning in SASE+ is tailored towards processing of events that can satisfy

multiple patterns simultaneously, which is not part of our model. Hence, it may be beneficial to

include the computation approach proposed in this work in the SASE+ engine.

Methods for top-k pattern matching over probabilistic data streams using sliding windows

were proposed by Li et al. [27] and Sugiura and Ishikawa [42, 43]. Interval-based reasoning over

uncertain events was discussed in the context of pattern recognition [39, 40] based on the Event

Calculus. To cope with uncertainty in Event Calculus, Skarlatidis et al. [40] use Markov Logic

Networks (MLN) [19], combining first-order logic with probabilistic graphical models. Filipou at

al. [39] rely on Problog, a probabilistic logic programming language. These approaches focus on

timepoint probability computation and assume discrete time. Our approach, in turn, computes

interval probabilities and its complexity is independent of the granularity of the temporal model.

Our model defines that the existence of lost events is known, so that uncertainty is related to their

timestamp and, thus, ordering. As such, one may also consider to first impute or repair timestamps

before answering a query, e.g., based on domain constraints [41], or reconstruct their ordering based

on contextual information [17]. However, if the goal is query answering, such imputation creates

unnecessary overhead, since, as shown in this paper, queries may be answered probabilistically in

a direct manner.

Finally, assuming that uncertainty (i.e., lost events) are rare, some of the ideas developed for

anomaly detection over event streams [53] or, more general, data streams [15] are related. While

the adopted techniques are similar to those for uncertain event processing, the actually addressed

problem is different, since abnormal events are always characterised relative to some context

defined by other events (whereas the definition of a lost event is not context dependent).

Optimisations of event detection. Uncertain event detection typically comes with high pro-

cessing costs and our evaluation exemplified the impact of increased noise levels on run-time

performance. Various angles have been taken for the optimisation of event detection, among them

query rewriting [28, 38, 48], re-use of intermediate query results [25, 34, 50], load shedding [23],

and query distribution [6]. However, these techniques are not directly applicable to probabilistic

event detection, and therefore we integrate optimisations in terms of pruning and caching directly

into the SimpMatch algorithm.

7 CONCLUSIONS
In this paper, we introduced SimpMatch, an algorithm for answering interval-based queries over

lossy event streams. We introduced segmented interval events to model complex patterns and

proposed a query model based on Allen’s algebra. Using order statistics, we further introduced an

efficient method for computing the probability of ordering a set of lost events, i.e., events that are

known to exist, but for which no timestamp information is available. The computation is linear

in the number of lost events and independent of the probability distribution size. While query

answering is exponential in the number of lost events, using order statistics, we showed how to

optimise the algorithm by pruning and caching.

Our evaluation shows that our method is more efficient than the state-of-the-art as the number

of lost events grows, while yielding more accurate results. We further demonstrated the benefits of

the proposed model and algorithm for IoT scenarios through a Smart City application in the city of

Dublin. In future work, we plan to adapt our reasoning techniques for further types of queries, e.g.,

those correlating events based on trends over their attribute values.
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A SASE+ REASONING TECHNIQUE
For a comparative evaluation, we replaced the ComputeProb function in Alg. 2 with the reasoning

technique of the SASE+ engine, i.e., Alg. 5 in [51]. While the SASE+ algorithm is triggered each

time an event with a missing timestamp is received, our TraceBack and ComputeProb functions

(Alg. 2) evaluate complete lost event sequences. Thus, we adapted the algorithm by adding a loop

to traverse several events at once, as detailed in Alg. 3. The algorithm assumes that each event has

a possible timestamp domain, denoted by pos(e) for point event e .
The idea of Alg. 3 is to enumerate all valid orderings and sum up the respective probabilities.

The algorithm starts by placing each valid timestamp of the first event as a start of a path. Then,

in a nested loop, each valid timestamp of the current event is set to extend a partial path of the

preceding event. A timestamp is considered valid, if it falls into the bounds defined by the observed

events of the current window.
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Algorithm 3: Compute function based on Alg. 5 in [51]

input : lost event sequence ε = ⟨ek , ek+1, . . . , el ⟩,
range pos(ei ) of possible timestamps of ei , for i ∈ {k , . . . , l }

output :probability pr for occurrence of ε

1 pr := 0;

2 lost := l − k ; /* number of lost events */

3 dens := 1/
∑
k≤i≤l |pos(ei ) |; /* probability per value */

4 for t ∈ pos(ek+1) do
5 if t >= ek .t ∧ t <= el .t then
6 Create path for t starting at min(pos(ek+1));
7 pr := pr + dens ;

8 if lost = 1 then return pr ;

9 pr := 0;

10 for i := 0, . . . , lost − 2 do
11 for ti ∈ pos(ek+i ) do
12 if ti >= ek .t ∧ ti <= el .t then
13 for tj ∈ pos(ek+i+1) do
14 if tj >= ti ∧ tj <= el .t then
15 for path pathi ending at ti do
16 Create pathj := (pathi , tj );
17 if i = (lost − 1) then
18 pr := pr + dens lost ;

19 return pr ;
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