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Abstract. Event logs capture the execution of business processes in
terms of executed activities and their execution context. Since logs con-
tain potentially sensitive information about the individuals involved in
the process, they should be pre-processed before being published to
preserve the individuals’ privacy. However, existing techniques for such
pre-processing are limited to a process’ control-flow and neglect contextual
information, such as attribute values and durations. This thus precludes
any form of process analysis that involves contextual factors. To bridge
this gap, we introduce PRIPEL, a framework for privacy-aware event log
publishing. Compared to existing work, PRIPEL takes a fundamentally
different angle and ensures privacy on the level of individual cases instead
of the complete log. This way, contextual information as well as the long
tail process behaviour are preserved, which enables the application of a
rich set of process analysis techniques. We demonstrate the feasibility of
our framework in a case study with a real-world event log.

Keywords: Process Mining · Privacy-preserving Data Publishing · Privacy-
preserving Data Mining

1 Introduction

Process Mining [34] enables the analysis of business processes based on event
logs that are recorded by information systems. Events in these logs represent the
executions of activities as part of a case, including contextual information, as
illustrated for the handling of patients in an emergency room in Table 1. Such
rich event logs do not only enable discovery of a model of a process’ control-
flow, see [1], but provide the starting point for multi-dimensional analysis that
incorporates the impact of the context on process execution. An example is the
prediction of the remaining wait time of a patient based on temporal information
(e.g., arrival in night hours), patient characteristics (e.g., age and sex), and
activity outcomes (e.g., dispensed drugs) [23]. The inclusion of such contextual
information provides a means for a fine-granular separation of classes of cases in
the analysis. Since the separation is largely independent of the frequency of the
respective trace variants, analysis is not limited to cases that represent common
behaviour, but includes cases that denote unusual process executions.
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Patient ID Activity Timestamp Payload

2200 Registration 03/03/19 23:40:32 {Age: 37, Sex: M, Arrival:Ambulance}
2200 Triage 03/05/17 00:47:12 {HIV-Positive: True}
2200 Surgery 03/05/17 02:22:17 {Operator: House}
... ... ... ...
2201 Registration 03/05/17 00:01:02 {Age: 67, Sex: F, Arrival:Check-In}
2201 Antibiotics 03/05/17 00:15:16 {Drug: Cephalexin}
... ... ... ...

Table 1. Event log example

Event logs, particularly those that include contextual information, may con-
tain sensitive data related to individuals involved in process execution [26].
Even when explicit pointers to personal information, such as employee names,
are pseudonymised or omitted from event logs, they remain susceptible to re-
identification attacks [13]. Such attacks still allow personal data of specific
individuals to be identified based on the contents of an event log [36]. Conse-
quently, publishing an event log without respective consent violates regulations
such as the GDPR, given that this regulation prohibits processing of personal data
for such secondary purposes [35]. This calls for the design of methods targeted
specifically to protect the privacy of individuals in event logs. Existing approaches
for privacy-preserving process mining [12,25] emphasise the control-flow dimen-
sion, though. They lack the ability to preserve contextual information, such as
timestamps and attribute values, which prevents any fine-granular analysis that
incorporates the specifics of different classes of cases. However, aggregations of
contextual information in the spirit of k-anonymity, see [12], are not suited to
overcome this limitation. Such aggregations lead to a loss of the long tail process
behaviour, i.e., infrequent traces of cases that are uncommon and, hence, of
particular importance for any analysis (e.g., due to exceptional runtime charac-
teristics). The only existing anonymisation approach that incorporates contextual
information [31] achieves this using homomorphic encryption. As such, it fails to
provide protection based on any well-established privacy guarantee.

To overcome these gaps, this paper introduces PRIPEL, a framework for
privacy-preserving event log publishing that incorporates contextual information.
Our idea is to ensure differential privacy of an event log on the basis of individual
cases rather than on the whole log. To this end, the PRIPEL framework exploits
the maxim of parallel composition of differential privacy. Based on a differentially
private selection of activity sequences, contextual information from the original
log is integrated through a sequence enrichment step. Subsequently, the integrated
contextual information is anonymised following the principle of local differential
privacy. Ensuring privacy on the level of individual cases is a fundamentally
different angle, which enables us to overcome the aforementioned limitations of
existing work. PRIPEL is the first approach to ensure differential privacy not
only for the control-flow, but also for contextual information in event logs, while
preserving large parts of the long tail process behaviour.

Since differential privacy ensures that personal data belonging to specific
individuals can not longer be identified, the anonymisation achieved by PRIPEL
is in line with the requirements imposed by the GDPR [10,14].
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We demonstrate the feasibility of our approach through a case study in the
healthcare domain. Applying PRIPEL to a real-world event log of Sepsis cases
from a hospital, we show that the anonymisation preserves utility on the level of
event-, trace-, and log-specific characteristics.

The remainder is structured as follows. In Section 2, we provide background
in terms of an event log model and privacy guarantees. In Section 3, we introduce
the PRIPEL framework. We present a proof-of-concept in Section 4, including an
implementation and a case study. We discuss our results and reflect on limitations
in Section 5, before we review related work in Section 6 and conclude in Section 7.

2 Background

This section presents essential definitions and background information. In particu-
lar, Section 2.1 presents the event log model we employ in the paper. Subsequently,
Section 2.2 defines the foundations of local differential privacy, followed by an
introduction to differential privacy mechanisms in Section 2.3

2.1 Event Log Model

We adopt an event model that builds upon a set of activities A. An event recorded
by an information system, denoted by e, is assumed to be related to the execution
of one of these activities, which is written as e.a ∈ A. By E , we denote the universe
of all events. Each event further carries information on its execution context,
such as the data consumed or produced during the execution of an activity. This
payload is defined by a set of data attributes D = {D1, . . . , Dp} with dom(Di) as
the domain of attribute Di, 1 ≤ i ≤ p. We write e.D for the value of attribute D
of an event e. For example, an event representing the activity ‘Antibiotics’ may
be associated with the ‘Drug’ attribute that reflects the prescribed medication,
see Table 1. Each event e further comes with a timestamp, denoted by e.ts, that
models the time of execution of the respective activity according to some totally
ordered time domain.

A single execution of a process, i.e., a case, is represented by a trace. This is a
sequence ξ = 〈e1, . . . , en〉 of events ei ∈ E , 1 ≤ i ≤ n, such that no event occurs
in more than one trace and the events are ordered by their timestamps. We adopt
a standard notation for sequences, i.e., ξ(i) = ei for the i-th element and |ξ| = n
for the length. For two distinct traces ξ = 〈e1, . . . , en〉 and ξ′ = 〈e′1, . . . , e′m〉,
their concatenation is ξ.ξ′ = 〈e1, . . . , en, e′1, . . . , e′m〉, assuming that the ordering
is consistent with the events’ timestamps. If ξ and ξ′ indicate the same sequence
of activity executions, i.e., 〈e1.a, . . . , en.a〉 = 〈e′1.a, . . . , e′m.a〉, they are of the
same trace variant. An event log is a set of traces, L = {ξ1, . . . , ξn}, and we write
L for the universe of event logs. Table 1 defines two traces, as indicated by the
‘patient ID’ attribute. In the remainder, we assume the individuals of interest to
be represented in at most one case. In our example, this means that only one
treatment per patient is recorded in the log.
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2.2 Foundations of Local Differential Privacy

Differential privacy is a definition for privacy that ensures that personal data of
individuals is indistinguishable in a data analysis setting. Essentially, differential
privacy aims to allow one to learn nothing about an individual, while learning
useful information from a population [7]. Achieving differential privacy means
that result of a query, performed on an undisclosed dataset, can be published
without allowing an individual’s personal data to be derived from the published
result. On the contrary, methods that achieve local differential privacy anonymise
a dataset itself in such a manner that it can be published while still guaranteeing
the privacy of an individual’s data [18]. This is achieved by applying noise
to the data, contrary to applying it to the result of a function performed on
the undisclosed data. The adoption of local differential privacy in industry is
well-documented, being employed by, e.g., Apple [32], SAP [19], and Google [9].

To apply this notion in the context of event logs, we define α : L → L as an
anonymisation function that takes an event log as input and transforms it into an
anonymised event log. This transformation is non-deterministic and is typically
realised through a stochastic function. Furthermore, we define img(α) ⊆ L as the
image of α, i.e., the set of all event logs that may be returned by α. Finally, we
define two event logs L1, L2 ∈ L to be neighbouring, if they differ by exactly the
data of one individual. In our setting, this corresponds to one case and, hence,
one trace, i.e., |L1 \ L2| + |L2 \ L1| = 1. Based on [18], we then define local
differential privacy as follows:

Definition 1 (Local Differential Privacy). Given an anonymisation func-
tion α and privacy parameter ε ∈ R, function α provides ε-local differential
privacy, if for all neighbouring pairs of event logs L1, L2 ∈ L, it holds that:

Pr[α(L1) ∈ img(α)] ≤ eε × Pr[α(L2) ∈ img(α)]

where the probability is taken over the randomness introduced by the anonymisation
function α.

The intuition behind the guarantee is that it limits the information that
can be disclosed by one individual, i.e., one case. The strength of the guarantee
depends on ε, with lower values leading to stronger data protection.

2.3 Ensuring Local Differential Privacy

Mechanisms that ensure local differential privacy strive to provide privacy guar-
antees while keeping as much useful information as possible, i.e., they aim to
maintain maximum utility of the dataset. The mechanisms typically do not delete
or generalize (parts of the) data, as is done to obtain other privacy guarantees [20].
Rather, they define an anonymisation function that inserts noise into data, in
order to obscure information about individuals, while retaining as many char-
acteristics about the general population as possible. Several such mechanisms
have been developed to anonymise various data types, including ones that ensure
differential privacy for numerical, categorical, and boolean data:
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Numerical data – Laplace mechanism. The Laplace mechanism [5] is an
additive noise mechanism for numerical values. It draws noise from a Laplacian
distribution, that is calibrated based on the privacy parameter ε and the sensitivity
of the data distribution. The latter is defined as the maximum difference one
individual can cause.

Boolean data - Randomized response. To ensure differential privacy of
boolean data, one can use randomized response [37]. The algorithm is based on
the following idea: A fair coin toss determines if the true value of an individual
is revealed or if a randomized value is chosen instead. Here, the randomization
depends on the strength ε of the differential privacy guarantee. In this paper, we
will use a so-called binary mechanism [16].

Categorical data - Exponential mechanism. To handle categorical data, it
is possible to use the exponential mechanism [27]. It enables the definition of
a utility difference between the different potential values of the domain of the
categorical value. The probability of a value being exchanged by another value
depends on the introduced probability loss.

Parallel composition of differential privacy. Given such mechanisms that
are able to provide differential privacy for various data types, a crucial property
of (local) differential privacy is that it is compositional. Intuitively, this means
that when the results of multiple ε-differential-private mechanisms, performed
on disjoint datasets, are merged, the merged result also provides ε-differential
privacy [28]. Adapted to our notion of attributes and timestamps of events, this
is formalized as follows: Let Mi(e.di), 1 ≤ i ≤ p, and M0(e.ts) be the values
obtained by some mechanisms M0,M1, . . .Mp for the attribute values and the
timestamp of an event e. Then, if all mechanisms provide ε-differential privacy and
under the assumption of all attributes (and the timestamp) being independent,
the result of their joint application to e also provides ε-differential privacy.

This property forms a crucial foundation for our proposed framework to
privacy-aware event log publishing, as introduced next.

3 The PRIPEL Framework

The Privacy-Preserving event log publishing (PRIPEL) framework takes an event
log as input and transforms it into an anonymised one that includes contextual
information and guarantees ε-differential privacy. As depicted in Fig. 1, the
PRIPEL framework consists of three main steps. Given an event log L, PRIPEL
first applies a trace-variant query Q on L. The query returns a bag of activity
sequences that ensures differential privacy from a control-flow perspective. Second,
the framework constructs new traces by enriching the activity sequences obtained
by Q with contextual information, i.e., timestamps and attribute values, from the
original log L. This is achieved in a sequence enrichment step, which results in a
matched event log Lm. Finally, PRIPEL anonymises the timestamps and attribute
values of Lm individually by exploiting the maxim of parallel composition of
differential privacy. The resulting event log L′ then guarantees ε-differential
privacy, while largely retaining the information of the original log L.



6 S. Fahrenkrog-Petersen et al.

Event Log Trace Variants
Privatized 
Event Log

Local  
Differential Privacy

Trace-Variant-Query

Matched Cases

Sequence 
Enrichment

Contextual Information

Fig. 1. Overview of PRIPEL Framework

Sections 3.1 through 3.3 outline instantiations of each of these three steps.
However, we note that the framework’s steps can also be instantiated in a different
manner, for instance by using alternative trace-variant queries or matching
techniques. It is therefore possible to tailor PRIPEL to specific use cases, such as
a setting in which traces become available in batches.

3.1 Trace Variant Query

The first step of our framework targets the anonymisation of an event log from
a control-flow perspective. In particular, the framework applies a trace variant
query, which returns a bag of activity sequences that captures trace variants and
their frequencies in a differentially private manner. Such a step is essential, given
that even the publication of activity sequences from an event log, i.e., with all
attribute values and timestamps removed, can be sufficient to link the identity
of individuals to infrequent activity sequences [12,25]. For example, uncommon
treatment paths may suffice to resolve the identity of a specific patient.

In PRIPEL, we adopt a state-of-the-art realisation of a privacy-preserving
trace variant query [25]. It employs a Laplace mechanism (see Section 2.3) to
add noise to the result of a trace variant query. As shown for an exemplary
query result in Table 2, this mechanism may alter the frequency of trace variants,
remove variants entirely, and introduce new ones. Note that the size of a trace
variant query typically differs from the number of traces in the original log.

The employed trace variant query is configured with two parameters, n and k,
which influence the prefix-tree that the mechanism uses to generate a query
result. Here, n sets the maximum depth of the prefix-tree, which determines the
maximum length of an activity sequence returned by the query. Parameter k is
used to bound the mechanism’s state space in terms of the number of potential
activity sequences that are explored. A higher k means that only more commonly
occurring prefixes are considered, which reduces the runtime, but may negatively
affect the resulting log’s utility. The runtime complexity of the query depends
on the maximal number of explored prefixes: O(|A|n). Yet, in practice, the
exponential runtime is mitigated by the pruning parameter k.

Below, we adopt a flattened representation of the result of the trace variant
query. By Q(L) ⊆ (A∗)∗, we denote a sequence of activity sequences derived by du-
plicating each activity sequence returned by the trace variant query according to
its frequency, in some arbitrary order. For example, if the query returns the bag
[〈Registration,Triage〉2, 〈Registration,Triage,Antibiotics〉], Q(L) is defined as
{〈Registration,Triage〉, 〈Registration,Triage,Antibiotics〉, 〈Registration,Triage〉}.
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Trace Variant Count Privatized
Count

〈Registration,Triage,Surgery〉 5 6
〈Registration,Triage,Antibiotics〉 7 5
〈Registration,Triage,Surgery ,Antibiotics〉 2 3
〈Registration,Triage,Antibiotics,Surgery ,Antibiotics〉 0 1

Table 2. Illustration of a privacy-aware trace variant query

So far, no other designs for trace variant queries have been introduced in the
literature. However, we assume that alternative query formulations suited for
specific use cases will be developed in the future.

3.2 Sequence Enrichment

The second step of the framework enriches the activity sequences obtained by
the trace variant query with contextual information, i.e., with timestamps and
attribute values. This is achieved by establishing a trace matching between each
activity sequence from Q(L) and a trace of the original log L. The latter trace
determines how the activity sequence is enriched with contextual information to
construct a trace of the matched log Lm. Here, Lm should resemble the original
log: Distributions of attribute values and timestamps, along with their correlation
with trace variants in the original L shall be mirrored in the matched log Lm.

To link the activity sequences in Q(L) and traces in log L, we define a
matching function fm : Q(L) 9 L. It is potentially partial and injective, i.e.,
it matches each activity sequence (again, note that activity sequences obtained
from the trace variant query are duplicated according to their frequency) to a
separate trace in L, such that fm(σ1) = fm(σ2) implies that σ1 = σ2 for all σ1, σ2
that are part of Q(L). However, constructing such a mapping function requires
to address two challenges:

(i) Since the trace variant query introduces noise, some sequences from Q(L)
cannot be paired with traces in L that are of the exact same sequence of
activity executions. Given a sequence σ = 〈Registration,Triage,Release〉 of
Q(L) and a trace ξ with its activity executions being 〈Registration,Release〉,
for example, the trace does not provide attribute values to be assigned to a
‘Triage’ event. To preserve their order, the insertion of an additional event
may require the timestamps of other events to be changed as well.

(ii) Since Q(L) may contain more sequences than the original log L has traces,
some sequences in Q(L) might not be matched to any trace in L, i.e., fm is
partial. Since all sequences in Q(L) must be retained in the construction of
traces for the matched log to ensure differential privacy, also such unmatched
sequences must be enriched with contextual information.

Given these challenges, PRIPEL incorporates three functions: (1) a matching
function fm; (2) a mechanism fe to enrich a matched sequence σ with contextual
information from trace fm(σ) to construct a trace for the matched log Lm; and
(3) a mechanism fu to enrich an unmatched sequence to construct a trace for Lm.
In this paper, we propose to instantiate these functions as follows:
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Algorithm 1 Matched Sequence Enrichment

INPUT: An event log L; an activity sequence σ; the matched trace ξ = fm(σ).
OUTPUT: A trace ξσ derived by enriching σ based on ξ.

1: for 1 ≤ i ≤ |σ| do
2: e← create new event
3: e.a← σ(i).a . Assign activity to new event
4: kσ ← |{1 ≤ j ≤ |ξσ| | ξσ(j).a = e.a}| . Count a-events in new trace ξσ
5: kξ ← |{1 ≤ j ≤ |ξ| | ξ(j).a = e.a}| . Count a-events in original trace ξ
6: if kσ < kξ then . Get corresponding occurrence of a
7: e′ ← ξ(j) with ξ(j).a = e.a and |{1 ≤ l < j | ξ(l).a = e.a}| = kσ
8: for all D ∈ D do
9: e.D ← e′.D . Assign attribute values of e′ to e

10: if e′.ts > ξσ(|ξσ|).ts then
11: e.ts← e′.ts
12: else
13: e.ts← derive timestamp based on Equation 1

14: else . No corresponding event in ξ
15: for all D ∈ D do e.D ← draw random attribute value

16: e.ts← draw random timestamp for activity e.a

17: ξσ ← ξσ.〈e〉
18: return ξσ . Return new trace

Matching function. The matching function fm shall establish a mapping from
Q(L) to L such that the activity sequences and traces are as similar as possible.
This similarity can be quantified using a distance function. Here, we propose to
use the Levensthein distance [21] to quantify the edit distance of some sequence
σ that is part of Q(L) and the sequence of activity executions derived from a
trace ξ ∈ L, denoted as ed(σ, ξ). Using assignment optimization techniques, the
matching function is instantiated, such that the total edit distance is minimized,
i.e., with Q(L) = 〈σ1, . . . , σn〉, we minimize

∑
1≤i≤n ed(σi, fm(σi)).

Matched sequence enrichment. Given a matched sequence σ of Q(L), the
sequence σ is enriched based on the context information of trace ξ = fm(σ) to
create a new trace ξσ. The proposed procedure for this is described by Algorithm 1.
To create the events for the new trace ξσ derived from σ, we iterate over all
activities in σ, create a new event, and check if there is a corresponding event e′

of ξ. Using kσ as the number of times we have observed activity a in the sequence σ
(line 4), e′ shall be the kσ-th occurrence of an event in ξ with e.a = a (line 7).
If such an event e′ exists, we assign all its attribute values to the new event e
(line 9). Subsequently, we check if the timestamp of e′ occurs after the timestamp
of the last event of ξσ (line 10). If this is the case, we assign the timestamp e′.ts
of the original event to event e. Otherwise, we generate a new timestamp based
on the following equation, assuming that the current event is the n-th event to
be added to ξσ = 〈e1, . . . , en−1〉:

en.ts = en−1.ts+∆en−1.a,en.a (1)
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Here, ∆en−1.a,en.a denotes a timestamp difference randomly drawn from the
distribution of these differences in the original log. That is, the distribution
is obtained by considering all pairs of subsequent events in the original traces
that indicate the execution of the respective activities. If no such pairs of events
appeared in the original log, we resort to the distribution of all timestamp
differences of all pairs of subsequent activities of the original log.

If no corresponding event e′ can be found for the newly created event e, we
assign randomly drawn attribute values and a timestamp to this event (lines 15–
16). We draw the attributes values from the overall distribution of each attribute
D in the original log L, while timestamps are calculated according to Equation 1.

Unmatched sequence enrichment. For sequences inQ(L) without a matching,
we assign the attribute values randomly. To handle the timestamps, we randomly
draw a timestamp tstart for the event created for the first activity in σ, from
the overall distribution of all timestamps of the first events of all traces ξ in the
original log L. We generate the remaining timestamps based on Equation 1.

The runtime complexity of the whole sequence enrichment step is dominated
by the assignment optimization problem, which requires O(|Q(L)|3) time.

3.3 Applying Local Differential Privacy

Next, starting with the matched log derived in the previous step, we turn to the
anonymisation of contextual information using local differential privacy. While
the treatment of attribute values follows rather directly from existing approaches,
we propose a tailored approach to handle timestamps. The runtime complexity
of this step is linear in the size of the matched log Lm, i.e., we arrive at O(|Lm|).
Anonymising attribute values. We differentiate between attributes of three
data types: numerical, categorical, and boolean. For each type, we employ the
mechanism discussed in Section 2.3. Under the aforementioned assumptions for
parallel composition of differential privacy, the resulting values are ε-differentially
private. Note that for each attribute, a different privacy parameter ε may be
chosen. This way, the level of protection may be adapted to the sensitivity of the
respective attribute values.

Anonymising timestamps. To anonymise timestamps, we introduce random
timestamp shifts, which is inspired by the treatment of network logs [38]. That
is, we initially alter all timestamps based on some randomly drawn noise value,
λshift, which is drawn, for instance, from a Laplacian distribution. The result is
illustrated in the middle sequence of Fig. 2. After this initial shift, we subsequently
introduce noise to the time intervals between events, depicted as ∆1, ∆2, and
∆3 in the figure. To this end, we add random noise to the length of each interval,
denoted by λ1, λ2, and λ3. To retain the order of events, we bound the random
timestamp shift to the size of the interval between two events. Since the event
order was already anonymised in the first step of the framework (Section 3.1),
introducing additional noise by re-ordering events here would just reduce the
event log’s utility.
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Fig. 2. Illustration of timestamp anonymisation

After this final step, all aspects of the original log, i.e., control-flow and
contextual information, have been anonymised. Based on the maxim of parallel
composition, the resulting log provides ε-differential privacy.

4 Proof-of-Concept

This section presents a proof-of-concept of the PRIPEL framework. We first
report on a prototypical implementation (Section 4.1), which we apply in a case
study using a real-world event log (Sections 4.2–4.3). In this manner, we aim
to show the feasibility of the framework in a realistic setting and investigate its
ability to preserve the utility of an event log while providing privacy guarantees.

4.1 Prototypical Implementation

We implemented PRIPEL in Python and published our implementation under the
MIT licence on Github.3 The implementation uses the PM4Py library [2] to parse
and process event logs. To instantiate the framework, we implemented a Python
version of the trace-variant query by Mannhardt et al. [25]. The anonymisation
of contextual information is based on IBM’s diffprivlib library [15].

4.2 Case Study Setup

We show the feasibility of PRIPEL by applying our implementation to the Sepsis
event log [24]. We selected this event log given its widespread adoption as a basis
for case studies, as well as due to the relevance of its characteristics in the context
of our work. As shown in our earlier work [12], anonymisation techniques that
perform aggregations over the whole Sepsis log have a considerable impact on
the anonymised log’s utility. The reason being the long tail process behaviour
in terms of a relatively low number of re-occurring trace variants: 1,050 traces
spread over 846 trace variants. As such, the log’s challenging characteristics make
it particularly suitable for a proof-of-concept with our framework.

3 https://github.com/samadeusfp/PRIPEL

https://github.com/samadeusfp/PRIPEL
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To parametrise our implementation, we test different values of the privacy
parameter ε, ranging from 0.1 to 2.0. Given that this parameter defines the
strictness of the desired privacy guarantees (lower being stricter), varying ε shall
show its impact on utility of the resulting anonymised log.

We select the maximal prefix length n = 30, to cover the length of over 95%
of the traces in the Sepsis event log. To cover all potential prefixes of the original
log, we would need to set n = 185. However, this would add a lot of noise and
increase the runtime significantly. Therefore, we opt for only looking into shorter
traces. For each event log, we opted for the lowest value for k that still computes
the query within a reasonable time, as will be detailed in the remainder.

4.3 Case Study Results

In this section, we first focus on the runtime of the PRIPEL framework. Subse-
quently, we explore its ability to preserve event log utility while guaranteeing
ε-differential privacy.

Runtime. We measured the runtime of our PRIPEL implementation for various
parameter configurations, obtained on a MacBook Pro (2018) with an i5 Intel
Core CPU and 8GB memory. As shown in Table 3, we were typically able to
obtain an anonymised event log in a manner of minutes, which we deem feasible
in most application scenarios. However, the runtime varies considerably across
the chosen configurations and the framework’s three main steps.

All besides one of the anonymised logs have far more traces than the original
log, due to the added noise as part of the trace variant query. However, this is
not true for the log with a ε = 1.5 differential privacy guarantee, which contains
only one third of the number of traces of the original log. This is due to the low
noise level and the fact that k = 2 cuts out all variants that appear only once.
This applies to nearly all the variants in the original log. Since only a few noisy
traces are added, the resulting log is significantly smaller than the original log.

ε k |Q(L)| Query Enrichment Anonymisation Total

0.1 20 5,175 1s 35s 3m24s 4m07s
0.5 4 6,683 1s 3m52s 4m08s 8m12s
1.0 2 7,002 2s 8m37s 4m27s 13m18s
1.5 2 340 1s 8s 13s 23s
2.0 1 13,152 9s 33m05s 8m30s 42m06s

Table 3. Runtime of PRIPEL for the Sepsis log

The trace variant query (Step 1 in PRIPEL), is executed in a manner of
seconds, ranging from one to nine seconds, depending on the configuration.
However, this runtime could be greatly exceeded for configurations with a higher
n. While a trace variant query with ε = 1.5 and k = 2 is answered in one second,
a configuration of ε = 1.5 and k = 1 does not lead to any result within an hour.

Sequence enrichment (Step 2) is the step with the largest runtime variance,
from 35 seconds to 33 minutes. In most configurations, this step also represents the
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largest contribution to the total runtime. This is due to the polynomial runtime
complexity of the enrichment step, see Section 3.2. To reduce this runtime, a
greedy strategy may instead be used to match activity sequences and traces.

Anonymisation based on local differential privacy (Step 3) has a reasonable
runtime that increases linearly with the number of traces in the resulting log.

Based on these observations and the non-repetitive character of the anonymi-
sation task, we argue that it is feasible to apply our PRIPEL framework in
real-world settings. However, if runtime plays a crucial factor in an application
scenario, it should be clear that a suitable parameter configuration must be
carefully selected.

Event log utility. To illustrate the efficacy of PRIPEL, we analyse the utility
of anonymised event logs. In particular, we explore measures for three scopes: (1)
the event level, in terms of attribute value quality, (2) the trace level, in terms of
case durations, and (3) the log level, in terms of overall process workload.

Attribute Original ε = 2.0 ε = 1.5 ε = 1.0 ε = 0.5 ε = 0.1

Infection Suspected (fraction) 0.81 0.75 0.69 0.67 0.58 0.51
Avg. Case Duration (days) 28.47 36.93 7.95 37.77 37.16 34.2
Median Case Duration (days) 5.34 11.23 0.12 11.92 10.95 9.57

Table 4. Sensitivity of attribute values to parameter ε

Data attribute values: At the event level, we compare the value distribution
of data attributes in anonymised logs to the original distribution. The Sepsis
log primarily has attributes with boolean values. The quality of their value
distributions is straightforward to quantify, i.e., by comparing the fraction of true
values in an anonymised log L′ to the fraction in L. To illustrate the impact of
the differential privacy parameter ε on attribute value quality, we assess the value
distribution for the boolean attribute InfectionSuspected. As depicted in Table 4,
the truth value of this attribute is true for 81% of the cases in the original log.

The anonymised distribution is reasonably preserved for the highest ε value,
i.e., the least strict privacy guarantee. There, the distribution has 75% true
values. However, the accuracy of the distribution drops for stronger privacy
guarantees, reaching almost full randomness for ε = 0.1. This illustrates that
the quality of attribute values can be preserved for certain privacy levels, but
that it may be impacted for stricter settings. Note that, given that these results
are obtained by anonymising individual values, the reduced quality for stronger
privacy guarantees is inherently tied to the notion of differential privacy and is,
therefore, independent of the specifics of the PRIPEL framework.

Case duration. Next, we investigate the accuracy of the case durations in the
anonymised logs. Unlike the previously discussed quality of individual event
attributes, the quality of case durations is influenced by all three steps of the
framework. Therefore, when interpreting the results depicted in Table 4, it is
important to consider that the maximal length of a trace is bound to 30 events
in anonymised logs (due to the selection of parameter n), whereas the original



Privacy-Preserving Event Log Publishing 13

●●

●
●
●
●

●●●

●●

●●
●
●●

●

●
●●

●

●

●

●
●

●

●
●●●

●●●
●

●
●
●

●

●●●●

●●

●
●
●

●
●
●

●●
●●

●

●●

●

●

●

●

●
●
●
●
●●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●●

●

●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●●

●
●
●

●

●

●●

●●

●
●
●
●

●

●
●

●●

●
●●●

●

●●

●●

●

●
●
●●

●
●●

●

●
●

●

●

●
●
●

●
●
●

●

●●●
●●

●
●
●

●

●●
●

●
●

●

●
●
●

●

●●

●

●

●●
●
●

●
●
●

●

●

●

●
●●

●

●
●

●

●

●

●●

●
●●

●

●
●

●
●●

●

●
●
●

●●

●
●

●

●
●●

●

●

●
●

●

●
●

●

●
●
●●

●
●
●

●

●
●
●
●

●
●●

●

●

●
●
●
●

●
●
●
●●

●

●
●

●
●●

●
●
●
●
●

●●
●

●

●

●

●
●

●

●

●
●
●
●

●●●
●
●

●

●

●●
●
●

●
●
●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●●

●

●
●

●

●●●

●

●

●●

●
●

●

●
●
●
●
●
●

●
●●

●
●
●

●

●
●
●
●
●
●
●
●
●

●

●●●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●
●

●●
●
●

●

●
●

●
●

●●

●
●
●
●

●●●

●

●

●

●
●

●●
●●●

●

●

●●

●

●

●
●

●

●

●●
●
●

●●
●
●
●●●

●
●●●

●●●●●
●

●

●●●

●
●
●
●●

●
●
●
●●

●

●

●●
●●●●●●

●
●●●●●●●

●●●●●●
●●

●●●●
●●

●
●●

●
●
●●●

●●●
●●●●●●●●●

●●●●
●●●●●●●

●●●●●
●
●●

●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●

●
●●●

●●
●●●

●●●

●●●●

●

●
●●

●
●●●●

●●●●
●●●

●

●●●●
●●

●●●
●●
●
●●●●

●
●●
●

●
●
●

●●●●●●

●
●

●●

●
●●●

●●
●
●

●
●
●
●
●

●●

●
●●
●●●

●●●
●

●

●

●
●●

●
●●●

●●●

●

●

●

●
●

●●

●●●
●

●

●●
●●

●●●●
●
●●

●●

●●●●●

●●
●●
●

●●
●●●●●●

●●
●

●
●●●

●●●

●
●●●●●●●●●

●●●

●●

●

●●●
●

●●

●
●

●●●
●
●●●

●
●

●

●●●

●

●●
●

●

●
●●
●●●●

●●
●●●

●

●●●
●●
●●

●
●●●●●

●●

●
●●

●

●●●●

●●●

●
●●●●

●●●●
●

●●●●
●●●●●

●

●●
●●●

●●●●●

●●●

●

●
●
●●

●
●

●●●●
●●●●

●

●

●

●●●
●

●●●

●●

●
●

●
●●

●
●●
●

●
●

●
●

●●●●
●

●

●●

●
●
●

●
●●●●

●
●●

●

●●●
●
●

●●
●●

●

●●●●●●

●●●
●●
●

●

●●●●●
●●●●

●

●●●

●

●●

●

●

●

●●

●

●●●●●

●●

●

●●
●

●

●
●
●
●●●●●

●●●

●●●
●
●

●●
●●
●●

●●●●

●●●
●

●

●
●●

●●●●●
●
●

●●
●

●

●●

●
●

●●●●
●●●●●●●●●●●

●●●●●●
●
●●●

●●●●●

●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●0.000

0.025

0.050

0.075

0.100

20
13

−
11

−
07

20
13

−
11

−
08

20
13

−
11

−
09

20
13

−
11

−
10

20
13

−
11

−
11

20
13

−
11

−
12

20
13

−
11

−
13

20
13

−
11

−
14

20
13

−
11

−
15

20
13

−
11

−
16

20
13

−
11

−
17

20
13

−
11

−
18

20
13

−
11

−
19

20
13

−
11

−
20

20
13

−
11

−
21

20
13

−
11

−
22

20
13

−
11

−
23

20
13

−
11

−
24

20
13

−
11

−
25

20
13

−
11

−
26

20
13

−
11

−
27

20
13

−
11

−
28

20
13

−
11

−
29

20
13

−
11

−
30

20
13

−
12

−
01

20
13

−
12

−
02

20
13

−
12

−
03

20
13

−
12

−
04

20
13

−
12

−
05

20
13

−
12

−
06

20
13

−
12

−
07

20
13

−
12

−
08

20
13

−
12

−
09

20
13

−
12

−
10

20
13

−
12

−
11

20
13

−
12

−
12

20
13

−
12

−
13

20
13

−
12

−
14

20
13

−
12

−
15

20
13

−
12

−
16

20
13

−
12

−
17

20
13

−
12

−
18

20
13

−
12

−
19

20
13

−
12

−
20

20
13

−
12

−
21

20
13

−
12

−
22

20
13

−
12

−
23

20
13

−
12

−
24

20
13

−
12

−
25

20
13

−
12

−
26

20
13

−
12

−
27

20
13

−
12

−
28

20
13

−
12

−
29

20
13

−
12

−
30

20
13

−
12

−
31

20
14

−
01

−
01

20
14

−
01

−
02

20
14

−
01

−
03

20
14

−
01

−
04

20
14

−
01

−
05

20
14

−
01

−
06

20
14

−
01

−
07

20
14

−
01

−
08

20
14

−
01

−
09

20
14

−
01

−
10

20
14

−
01

−
11

20
14

−
01

−
12

20
14

−
01

−
13

20
14

−
01

−
14

20
14

−
01

−
15

20
14

−
01

−
16

20
14

−
01

−
17

20
14

−
01

−
18

20
14

−
01

−
19

20
14

−
01

−
20

20
14

−
01

−
21

20
14

−
01

−
22

20
14

−
01

−
23

20
14

−
01

−
24

20
14

−
01

−
25

20
14

−
01

−
26

20
14

−
01

−
27

20
14

−
01

−
28

20
14

−
01

−
29

20
14

−
01

−
30

20
14

−
01

−
31

20
14

−
02

−
01

20
14

−
02

−
02

20
14

−
02

−
03

20
14

−
02

−
04

20
14

−
02

−
05

20
14

−
02

−
06

20
14

−
02

−
07

20
14

−
02

−
08

20
14

−
02

−
09

20
14

−
02

−
10

20
14

−
02

−
11

20
14

−
02

−
12

20
14

−
02

−
13

20
14

−
02

−
14

20
14

−
02

−
15

20
14

−
02

−
16

20
14

−
02

−
17

20
14

−
02

−
18

20
14

−
02

−
19

20
14

−
02

−
20

20
14

−
02

−
21

20
14

−
02

−
22

20
14

−
02

−
23

20
14

−
02

−
24

20
14

−
02

−
25

20
14

−
02

−
26

20
14

−
02

−
27

20
14

−
02

−
28

20
14

−
03

−
01

20
14

−
03

−
02

20
14

−
03

−
03

20
14

−
03

−
04

20
14

−
03

−
05

20
14

−
03

−
06

20
14

−
03

−
07

20
14

−
03

−
08

20
14

−
03

−
09

20
14

−
03

−
10

20
14

−
03

−
11

20
14

−
03

−
12

20
14

−
03

−
13

20
14

−
03

−
14

20
14

−
03

−
15

20
14

−
03

−
16

20
14

−
03

−
17

20
14

−
03

−
18

20
14

−
03

−
19

20
14

−
03

−
20

20
14

−
03

−
21

20
14

−
03

−
22

20
14

−
03

−
23

20
14

−
03

−
24

20
14

−
03

−
25

20
14

−
03

−
26

20
14

−
03

−
27

20
14

−
03

−
28

20
14

−
03

−
29

20
14

−
03

−
30

20
14

−
03

−
31

20
14

−
04

−
01

20
14

−
04

−
02

20
14

−
04

−
03

20
14

−
04

−
04

20
14

−
04

−
05

20
14

−
04

−
06

20
14

−
04

−
07

20
14

−
04

−
08

20
14

−
04

−
09

20
14

−
04

−
10

20
14

−
04

−
11

20
14

−
04

−
12

20
14

−
04

−
13

20
14

−
04

−
14

20
14

−
04

−
15

20
14

−
04

−
16

20
14

−
04

−
17

20
14

−
04

−
18

20
14

−
04

−
19

20
14

−
04

−
20

20
14

−
04

−
21

20
14

−
04

−
22

20
14

−
04

−
23

20
14

−
04

−
24

20
14

−
04

−
25

20
14

−
04

−
26

20
14

−
04

−
27

20
14

−
04

−
28

20
14

−
04

−
29

20
14

−
04

−
30

20
14

−
05

−
01

20
14

−
05

−
02

20
14

−
05

−
03

20
14

−
05

−
04

20
14

−
05

−
05

20
14

−
05

−
06

20
14

−
05

−
07

20
14

−
05

−
08

20
14

−
05

−
09

20
14

−
05

−
10

20
14

−
05

−
11

20
14

−
05

−
12

20
14

−
05

−
13

20
14

−
05

−
14

20
14

−
05

−
15

20
14

−
05

−
16

20
14

−
05

−
17

20
14

−
05

−
18

20
14

−
05

−
19

20
14

−
05

−
20

20
14

−
05

−
21

20
14

−
05

−
22

20
14

−
05

−
23

20
14

−
05

−
24

20
14

−
05

−
25

20
14

−
05

−
26

20
14

−
05

−
27

20
14

−
05

−
28

20
14

−
05

−
29

20
14

−
05

−
30

20
14

−
05

−
31

20
14

−
06

−
01

20
14

−
06

−
02

20
14

−
06

−
03

20
14

−
06

−
04

20
14

−
06

−
05

20
14

−
06

−
06

20
14

−
06

−
07

20
14

−
06

−
08

20
14

−
06

−
09

20
14

−
06

−
10

20
14

−
06

−
11

20
14

−
06

−
12

20
14

−
06

−
13

20
14

−
06

−
14

20
14

−
06

−
15

20
14

−
06

−
16

20
14

−
06

−
17

20
14

−
06

−
18

20
14

−
06

−
19

20
14

−
06

−
20

20
14

−
06

−
21

20
14

−
06

−
22

20
14

−
06

−
23

20
14

−
06

−
24

20
14

−
06

−
25

20
14

−
06

−
26

20
14

−
06

−
27

20
14

−
06

−
28

20
14

−
06

−
29

20
14

−
06

−
30

20
14

−
07

−
01

20
14

−
07

−
02

20
14

−
07

−
03

20
14

−
07

−
04

20
14

−
07

−
05

20
14

−
07

−
06

20
14

−
07

−
07

20
14

−
07

−
08

20
14

−
07

−
09

20
14

−
07

−
10

20
14

−
07

−
11

20
14

−
07

−
12

20
14

−
07

−
13

20
14

−
07

−
14

20
14

−
07

−
15

20
14

−
07

−
16

20
14

−
07

−
17

20
14

−
07

−
18

20
14

−
07

−
19

20
14

−
07

−
20

20
14

−
07

−
21

20
14

−
07

−
22

20
14

−
07

−
23

20
14

−
07

−
24

20
14

−
07

−
25

20
14

−
07

−
26

20
14

−
07

−
27

20
14

−
07

−
28

20
14

−
07

−
29

20
14

−
07

−
30

20
14

−
07

−
31

20
14

−
08

−
01

20
14

−
08

−
02

20
14

−
08

−
03

20
14

−
08

−
04

20
14

−
08

−
05

20
14

−
08

−
06

20
14

−
08

−
07

20
14

−
08

−
08

20
14

−
08

−
09

20
14

−
08

−
10

20
14

−
08

−
11

20
14

−
08

−
12

20
14

−
08

−
13

20
14

−
08

−
14

20
14

−
08

−
15

20
14

−
08

−
16

20
14

−
08

−
17

20
14

−
08

−
18

20
14

−
08

−
19

20
14

−
08

−
20

20
14

−
08

−
21

20
14

−
08

−
22

20
14

−
08

−
23

20
14

−
08

−
24

20
14

−
08

−
25

20
14

−
08

−
26

20
14

−
08

−
27

20
14

−
08

−
28

20
14

−
08

−
29

20
14

−
08

−
30

20
14

−
08

−
31

20
14

−
09

−
01

20
14

−
09

−
02

20
14

−
09

−
03

20
14

−
09

−
04

20
14

−
09

−
05

20
14

−
09

−
06

20
14

−
09

−
07

20
14

−
09

−
08

20
14

−
09

−
09

20
14

−
09

−
10

20
14

−
09

−
11

20
14

−
09

−
12

20
14

−
09

−
13

20
14

−
09

−
14

20
14

−
09

−
15

20
14

−
09

−
16

20
14

−
09

−
17

20
14

−
09

−
18

20
14

−
09

−
19

20
14

−
09

−
20

20
14

−
09

−
21

20
14

−
09

−
22

20
14

−
09

−
23

20
14

−
09

−
24

20
14

−
09

−
25

20
14

−
09

−
26

20
14

−
09

−
27

20
14

−
09

−
28

20
14

−
09

−
29

20
14

−
09

−
30

20
14

−
10

−
01

20
14

−
10

−
02

20
14

−
10

−
03

20
14

−
10

−
04

20
14

−
10

−
05

20
14

−
10

−
06

20
14

−
10

−
07

20
14

−
10

−
08

20
14

−
10

−
09

20
14

−
10

−
10

20
14

−
10

−
11

20
14

−
10

−
12

20
14

−
10

−
13

20
14

−
10

−
14

20
14

−
10

−
15

20
14

−
10

−
16

20
14

−
10

−
17

20
14

−
10

−
18

20
14

−
10

−
19

20
14

−
10

−
20

20
14

−
10

−
21

20
14

−
10

−
22

20
14

−
10

−
23

20
14

−
10

−
24

20
14

−
10

−
25

20
14

−
10

−
26

20
14

−
10

−
27

20
14

−
10

−
28

20
14

−
10

−
29

20
14

−
10

−
30

20
14

−
10

−
31

20
14

−
11

−
01

20
14

−
11

−
02

20
14

−
11

−
03

20
14

−
11

−
04

20
14

−
11

−
05

20
14

−
11

−
06

20
14

−
11

−
07

20
14

−
11

−
08

20
14

−
11

−
09

20
14

−
11

−
10

20
14

−
11

−
11

20
14

−
11

−
12

20
14

−
11

−
13

20
14

−
11

−
14

20
14

−
11

−
15

20
14

−
11

−
16

20
14

−
11

−
17

20
14

−
11

−
18

20
14

−
11

−
19

20
14

−
11

−
20

20
14

−
11

−
21

20
14

−
11

−
22

20
14

−
11

−
23

20
14

−
11

−
24

20
14

−
11

−
25

20
14

−
11

−
26

20
14

−
11

−
27

20
14

−
11

−
28

20
14

−
11

−
29

20
14

−
11

−
30

20
14

−
12

−
01

20
14

−
12

−
02

20
14

−
12

−
03

20
14

−
12

−
04

20
14

−
12

−
05

20
14

−
12

−
06

20
14

−
12

−
07

20
14

−
12

−
08

20
14

−
12

−
09

20
14

−
12

−
10

20
14

−
12

−
11

20
14

−
12

−
12

20
14

−
12

−
13

20
14

−
12

−
14

20
14

−
12

−
15

20
14

−
12

−
16

20
14

−
12

−
17

20
14

−
12

−
18

20
14

−
12

−
19

20
14

−
12

−
20

20
14

−
12

−
21

20
14

−
12

−
22

20
14

−
12

−
23

20
14

−
12

−
24

20
14

−
12

−
25

20
14

−
12

−
26

20
14

−
12

−
27

20
14

−
12

−
28

20
14

−
12

−
29

20
14

−
12

−
30

20
14

−
12

−
31

20
15

−
01

−
01

20
15

−
01

−
02

20
15

−
01

−
03

20
15

−
01

−
04

20
15

−
01

−
05

20
15

−
01

−
06

20
15

−
01

−
07

20
15

−
01

−
08

20
15

−
01

−
09

20
15

−
01

−
10

20
15

−
01

−
11

20
15

−
01

−
12

20
15

−
01

−
13

20
15

−
01

−
14

20
15

−
01

−
15

20
15

−
01

−
16

20
15

−
01

−
17

20
15

−
01

−
18

20
15

−
01

−
19

20
15

−
01

−
20

20
15

−
01

−
21

20
15

−
01

−
22

20
15

−
01

−
23

20
15

−
01

−
24

20
15

−
01

−
25

20
15

−
01

−
26

20
15

−
01

−
27

20
15

−
01

−
28

20
15

−
01

−
29

20
15

−
01

−
30

20
15

−
01

−
31

20
15

−
02

−
01

20
15

−
02

−
02

20
15

−
02

−
03

20
15

−
02

−
04

20
15

−
02

−
05

20
15

−
02

−
06

20
15

−
02

−
07

20
15

−
02

−
08

20
15

−
02

−
09

20
15

−
02

−
10

20
15

−
02

−
11

20
15

−
02

−
12

20
15

−
02

−
13

20
15

−
02

−
14

20
15

−
02

−
15

20
15

−
02

−
16

20
15

−
02

−
17

20
15

−
02

−
18

20
15

−
02

−
19

20
15

−
02

−
20

20
15

−
02

−
21

20
15

−
02

−
22

20
15

−
02

−
23

20
15

−
02

−
24

20
15

−
02

−
25

20
15

−
02

−
26

20
15

−
02

−
27

20
15

−
02

−
28

20
15

−
03

−
01

20
15

−
03

−
02

20
15

−
03

−
03

20
15

−
03

−
04

20
15

−
03

−
05

20
15

−
03

−
06

20
15

−
03

−
07

20
15

−
03

−
08

20
15

−
03

−
09

20
15

−
03

−
10

20
15

−
03

−
11

20
15

−
03

−
12

20
15

−
03

−
13

20
15

−
03

−
14

20
15

−
03

−
15

20
15

−
03

−
16

20
15

−
03

−
17

20
15

−
03

−
18

20
15

−
03

−
19

20
15

−
03

−
20

20
15

−
03

−
21

20
15

−
03

−
22

20
15

−
03

−
23

20
15

−
03

−
24

20
15

−
03

−
25

20
15

−
03

−
26

20
15

−
03

−
27

20
15

−
03

−
28

20
15

−
03

−
29

20
15

−
03

−
30

20
15

−
03

−
31

20
15

−
04

−
01

20
15

−
04

−
02

20
15

−
04

−
03

20
15

−
04

−
04

20
15

−
04

−
05

20
15

−
04

−
06

20
15

−
04

−
07

20
15

−
04

−
08

20
15

−
04

−
09

20
15

−
04

−
10

20
15

−
04

−
11

20
15

−
04

−
12

20
15

−
04

−
13

20
15

−
04

−
14

20
15

−
04

−
15

20
15

−
04

−
16

20
15

−
04

−
17

20
15

−
04

−
18

20
15

−
04

−
19

20
15

−
04

−
20

20
15

−
04

−
21

20
15

−
04

−
22

20
15

−
04

−
23

20
15

−
04

−
24

20
15

−
04

−
25

20
15

−
04

−
26

20
15

−
04

−
27

20
15

−
04

−
28

20
15

−
04

−
29

20
15

−
04

−
30

20
15

−
05

−
01

20
15

−
05

−
02

20
15

−
05

−
03

20
15

−
05

−
04

20
15

−
05

−
05

20
15

−
05

−
06

20
15

−
05

−
07

20
15

−
05

−
08

20
15

−
05

−
09

20
15

−
05

−
10

20
15

−
05

−
11

20
15

−
05

−
12

20
15

−
05

−
13

20
15

−
05

−
14

20
15

−
05

−
15

20
15

−
05

−
16

20
15

−
05

−
17

20
15

−
05

−
18

20
15

−
05

−
19

20
15

−
05

−
20

20
15

−
05

−
21

20
15

−
05

−
22

20
15

−
05

−
23

20
15

−
05

−
24

20
15

−
05

−
25

20
15

−
05

−
26

20
15

−
05

−
27

20
15

−
05

−
28

20
15

−
05

−
29

20
15

−
05

−
30

20
15

−
05

−
31

20
15

−
06

−
01

20
15

−
06

−
02

20
15

−
06

−
03

20
15

−
06

−
04

20
15

−
06

−
05

Day

R
el

at
iv

e 
F

re
qu

en
cy

 o
f A

ct
iv

e 
C

as
es

Fig. 3. Active cases over time in original log (red) vs. anonymised log (blue)

log contains traces with up to 370 events. However, we can still observe longer
case durations in the anonymised logs due to the added noise. Additionally,
in all scenarios, the average case duration is far higher than the median case
duration. This indicates that the log contains several outliers in terms of longer
case durations. All anonymised logs reveal this insight. We conclude that PRIPEL
preserves insights on the trace level, such as the duration of cases.

Process workload. Finally, at the log level, we consider the total workload of a
process in terms of the number of cases that are active at any particular time.
Given that anonymised event logs can have a considerably higher number of
traces than the original log, we consider the progress of the relative number of
active cases over time, as visualized in Fig. 3. The red dots denote the original
event log, while blue triangles represent the anonymised event log with ε = 1.0.

The figure clearly shows that the general trend over time is sustained. However,
the anonymised log shows a consistently higher workload than the original log.
Furthermore, the variance over time is less extreme for the anonymised log. This
shows that the necessary noise insertion smooths out some of the variability.
Nevertheless, the results illustrate PRIPEL’s ability to preserve utility for such a
log-level process analysis.

5 Discussion

With PRIPEL, we introduced a framework that enables publishing of event logs
that retain contextual information while guaranteeing differential privacy. As
such, the anonymised event log can be used for rich process mining techniques
that incorporate a fine-granular separation of classes of cases, without violating
recent privacy regulations, such as the GDPR or CCPA.

While our general framework is generally applicable, the specific instantiations
introduced earlier impose two assumptions on the event logs taken as input.

First, the employed notion for differential privacy assumes that any individual,
such as a patient, is only represented in one case. To be able to guarantee
differential privacy in contexts where this assumption may not hold, one can
ensure that a single case exists per individual during the log extraction step, e.g.,
by limiting the selection of cases for which traces are derived or by constraining
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the time interval considered in the analysis. Alternatively, if the maximum number
of cases per individual is known, the degree of noise introduced in the first step of
the framework can be adjusted accordingly, by selecting the parameter ε. Finally,
one may incorporate strategies that explicitly aim at adjusting differential privacy
to handle multiple occurrences of individuals, such as [17].

Second, we assume that all attributes can be anonymised independently. Hence,
the usefulness of anonymised values or the degree of privacy may be reduced for
strongly correlated attributes. For instance, the independent anonymisation of
the height and age of a child may result in improbable combinations.

Also, an attribute may represent a measurement that appears repeatedly in
the trace, e.g., capturing the trend of a person’s weight. Since the measurements
are inter-related, the values to be anonymised are not independent, so that the
parallel composition of differential privacy is not applicable. In that case, one
can employ notions of differential privacy as developed for streaming settings [6].

Aside from these assumptions, we also acknowledge certain limitations related
to our instantiation of the framework’s steps. For instance, the approach chosen
to determine the sensitivity of numerical attributes and timestamps is prone
to outliers. Therefore, it might be necessary to reduce the number of outliers
in an event log during pre-processing, in order to maintain the utility of the
anonymised log. Yet, such limitations are inherent to any data anonymisation
approach, since it has been shown that anonymisation reduces the utility of
data [3]. Another limitation relates to the applied trace variant query. For this
query mechanism, the size of the anonymised log can differ drastically from the
original log. This may diminish the utility of the log for certain analysis tasks,
such as the identification of performance bottlenecks.

Finally, we highlight that the PRIPEL framework, and the notion of differential
privacy in general, is particularly suited for analysis techniques that aim to
aggregate or generalize over the traces in an (anonymised) event log. This means
that the resulting event logs are suitable for, e.g., process discovery (e.g., by a
directly-follows relation over all traces), log-level conformance checking (e.g., by a
frequency distribution of deviations observed in all traces), process enhancement
(e.g., by aggregate performance measures for activities), and predictive monitoring
(e.g., by models that generalize the correlations observed between trace features
and outcomes). However, the insertion of noise can lead to the inclusion of
process behaviour that never occurred in the original log, which may lead to
incorrect results when performing trace-level analysis, such as the establishment
of alignments for a single case. If it is important to avoid such false positives,
other anonymisation approaches, such as PRETSA [12], may be more suitable.

6 Related Work

Privacy in process mining recently received a lot of attention [11,29]. The problem
was raised in [26], noticing that most individuals might agree with the usage of
their data for process improvement. However, the analysis of personal data for
such a goal represents so-called secondary use, which is in violation of regulations
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such as the GDPR and CCPA. Furthermore, in [36], it was shown that even
projections of event logs can lead to serious re-identification risks.

Several approaches have been proposed to address these privacy issues. In [12],
we proposed an algorithm to sanitize event logs for process discovery, which
ensures k-anonymity and t-closeness. Alternative approaches [4,31] use cryp-
tography to hide the confidential data in event logs. Other work focused on
ensuring privacy for specific process mining tasks, by directly adapting analysis
techniques. For instance, in [30] a technique to ensure confidentiality in role
mining was proposed, while [25] introduced privacy-preserving queries to retrieve
a directly-follows graph and the trace variants of a log. The work in [33] uses
encryption to calculate the output of the alpha miner in a privacy-preserving
manner. Other work considers process mining performed by multiple parties
on an inter-organizational business process. In [22], an approach to generate a
combined process model for such a business process was proposed. Similarly,
[8] introduces an approach based on secure multi-party computation to answer
queries relating the business process, such as the directly-follows query.

7 Conclusion

In this paper, we introduced PRIPEL, a framework to publish anonymised event
logs that incorporates contextual information while guaranteeing differential pri-
vacy. In particular, PRIPEL ensures differential privacy on the basis of individual
cases, rather than on an entire event log. We achieved this by exploiting the
maxim of parallel composition. By applying a prototypical implementation on
a real-world event log, we illustrate that the utility of anonymised event logs is
preserved for various types of analysis involving contextual information.

By incorporating contextual information, for the first time, PRIPEL offers
the use of rich process mining techniques in a privacy-preserving manner. In
particular, anonymised event logs are now suitable for analysis techniques that
incorporate a fine-granular separation of cases based on contextual information.
In future work, we intend to further explore the impact that strongly correlated
attributes have on the provided privacy guarantees. In addition, we aim to
incorporate the handling of ongoing cases in the PRIPEL framework.
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