
Say It In Your Own Words: Defining Declarative
Process Models Using Speech Recognition?

Han van der Aa1, Karl Johannes Balder2,
Fabrizio Maria Maggi3, and Alexander Nolte2,4

1 University of Mannheim, Germany
han@informatik.uni-mannheim.de

2 University of Tartu, Estonia
Karl.Johannes.Balder@tudeng.ut.ee,alexander.nolte@ut.ee

3 Free University of Bozen-Bolzano, Italy
maggi@inf.unibz.it

4 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Declarative, constraint-based approaches have been pro-
posed to model loosely-structured business processes, mediating between
support and flexibility. A notable example is the Declare framework,
equipped with a graphical declarative language whose semantics can be
characterized with several logic-based formalisms. Up to now, the main
problem hampering the use of Declare constraints in practice has been
the difficulty of modeling them: Declare’s formal notation is difficult
to understand for users without a background in temporal logic, whereas
its graphical notation has been shown to be unintuitive. Therefore, in
this work, we present and evaluate an analysis toolkit that aims at by-
passing this issue by providing users with the possibility to model De-
clare constraints using their own way of expressing them. The toolkit
contains a Declare modeler equipped with a speech recognition mech-
anism. It takes as input a vocal statement from the user and converts it
into the closest (set of) Declare constraint(s). The constraints that can
be modeled with the tool cover the entire Multi-Perspective extension of
Declare (MP-Declare), which complements control-flow constraints
with data and temporal perspectives. Although we focus on Declare,
the work presented in this paper represents the first attempt to test the
feasibility of speech recognition in business process modeling as a whole.

Keywords: Declarative Process Modeling, Speech Recognition, Natural
Language Processing, Text Mining.

1 Introduction

Process models are an important means to capture information on organiza-
tional processes, serving as a basis for communication and often as the start-
ing point for analysis and improvement [10]. For processes that are relatively
structured, imperative process modeling notations, such as the Business Process
Model and Notation (BPMN), are most commonly employed. However, other

? Work supported by the Estonian Research Council (project PRG887).

processes, in particular knowledge-intensive ones, are more flexible and, there-
fore, less structured. An important characteristic of such processes is that it is
typically infeasible to specify the entire spectrum of allowed execution orders
in advance [9], which severely limits the applicability of the imperative process
modeling paradigm. Instead, such processes are better captured using declara-
tive process models defined in process modeling languages, like Declare, whose
semantics can be characterized using temporal logic properties. These models do
not require an explicit definition of all allowed execution orders, but rather use
constraints to define the boundaries of the permissible process behavior [5].

Although their benefits are apparent, establishing declarative process models
is known to be difficult, especially for domain experts that generally lack exper-
tise in temporal logics, and in most of the cases find the graphical notation of
Declare constraints unintuitive [12]. Due to these barriers to declarative model
creation, a preliminary approach has been presented in [1] that automatically
extracts declarative process models from natural language texts, similar to oth-
ers works that have investigated the generation of imperative process models
from natural language descriptions (cf., [3, 11,18,22]).

In this work, we go beyond this state-of-the-art by presenting and evalu-
ating an interactive approach, which takes vocal statements from the user as
input, and employs speech recognition to convert them into the closest (set of)
Declare constraint(s). The approach has been integrated into a declarative
modeling and analysis toolkit. With this tool, the user is not required to have
any experience in temporal logics nor to be familiar with the graphical notation
of Declare constraints, but can express temporal properties using her/his own
words. The temporal properties that can be modeled with the tool cover the
entire Multi-Perspective Declare (MP-Declare) language that cannot only ex-
press control-flow properties, but also conditions on the data, time, and resource
perspectives. A further important contribution of the paper is that the user eval-
uation presented in this paper can be considered the first test of the usability of
speech recognition in business process modeling. This evaluation revealed that
participants found that the tool would improve their efficiency, particularly in
mobile settings. However, it also pointed towards a learning curve, especially for
less experienced users. Based on the obtained feedback, we were able to make
various improvements to the user interface.

The remainder of the paper is structured as follows. Section 2 introduces MP-
Declare and the transformation of natural language into Declare. Section 3
presents our conceptual contributions to the generation of multi-perspective con-
straints based on natural language input, while Sect. 4 presents the implemented
toolkit. Section 5 discusses the evaluation conducted to assess the usability of
our tool. Finally, Sect. 6 considers related work, before concluding in Sect. 7.

2 Background

This section introduces MP-Declare followed by the main challenges associ-
ated with the translation of natural language into declarative constraints.

2.1 Declarative Process Modeling

Declare is a declarative process modeling language originally introduced by
Pesic and van der Aalst in [19]. Instead of explicitly specifying the flow of the
interactions among process activities, Declare describes a set of constraints
that must be satisfied throughout the process execution. The possible orderings
of activities are implicitly specified by constraints and anything that does not
violate them is possible during execution. MP-Declare is the Multi-Perspective
extension of Declare that was first introduced in [8] and can express constraints
over perspectives of a process like data, time, and resources.

To explain the semantics of Declare and MP-Declare, we have to intro-
duce some preliminary notions. In particular, we call a case an ordered sequence
of events representing a single “run” of a process (often referred to as a trace of
events). Each event in a trace refers to an activity, has a timestamp indicating
when the event occurred, and can have additional data attributes as payload.
Consider, e.g., the occurrence of an event ship order (O) and suppose that, after
the occurrence of O at timestamp τO, the attributes customer type and amount
have values gold and 155e. In this case, we say that, when O occurs, two spe-
cial relations are valid event(O) and pO(gold,155e). In the following, we identify
event(O) with the event itself O and we call (gold,155e), the payload of O.

Template LTL semantics Activation

Participation(A) FA A

Init(A) A A

Absence(A) ¬FA A

AtMostOne(A) ¬F(A ∧ X(FA)) A

Responded Existence(A,B) FA → FB A

Coexistence(A,B) FA ↔ FB A, B

Response(A,B) G(A → FB) A

Chain Response(A,B) G(A → XB) A

Precedence(A,B) G(B → OA) B

Chain Precedence(A,B) G(B → YA) B

Not Coexistence(A,B) FA → ¬FB A, B

Not Succession(A,B) G(A → ¬FB) A, B

Table 1: Semantics for Declare templates

Declare A Declare model consists of a set of constraints applied to activi-
ties. Constraints, in turn, are based on templates. Templates are patterns that
define parameterized classes of properties, and constraints are their concrete
instantiations (we indicate template parameters with capital letters and con-
crete activities in their instantiations with lower case letters). Templates have
a graphical representation and their semantics can be formalized using different
logics [16], the main one being LTL over finite traces, making them verifiable and
executable. Each constraint inherits the graphical representation and semantics
from its template. Table 1 summarizes some Declare templates (the reader can
refer to [5] for a full description of the language). Here, the F, X, G, and U LTL
(future) operators have the following intuitive meaning: formula Fφ1 means that

φ1 holds sometime in the future, Xφ1 means that φ1 holds in the next position,
Gφ1 says that φ1 holds forever in the future, and, lastly, φ1Uφ2 means that
sometime in the future φ2 will hold and until that moment φ1 holds (with φ1
and φ2 LTL formulas). The O, Y, and S LTL (past) operators have the following
meaning: Oφ1 means that φ1 holds sometime in the past, Yφ1 means that φ1
holds in the previous position, and, lastly, φ1Sφ2 means that sometime in the
past φ2 holds and since that moment φ1 holds.

Consider, for example, constraint Response(a,b). This constraint indicates
that if a occurs, b must eventually follow. Therefore, this constraint is satisfied
for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and t3 = 〈a, b, c, b〉, but not for
t4 = 〈a, b, a, c〉 because, in this case, the second instance of a is not followed by a
b. Note that, in t2, the considered response constraint is satisfied in a trivial way
because a never occurs. An activation of a constraint in a trace is an event whose
occurrence imposes, because of that constraint, some obligations on other events
(targets) in the same trace. For example, a is an activation for Response(a,b)
and b is a target because the execution of a forces b to be executed, eventually.
In Table 1, for each template, the corresponding activations are specified.

Multi-Perspective Declare MP-Declare extends Declare with additional
perspectives. We here describe its semantics informally and refer the interested
reader to [8] for more details.

The standard semantics of Declare is extended by requiring additional
conditions on data, i.e., the activation condition, the correlation condition, and a
time condition. As an example, we consider constraint Response(ship order, send
invoice), with ship order as activation and send invoice as target. The activation
condition ϕa is a relation that must be valid when the activation occurs. If the
activation condition does not hold the constraint is not activated. The activation
condition has the form pA(x)∧ra(x), meaning that when A occurs with payload
x, the relation ra over x must hold. For example, we can say that whenever ship
order occurs, the order amount is higher than 100e, and the customer is of type
gold, eventually an invoice must be sent. In case ship order occurs, but these
conditions are not satisfied, the constraint is not activated.

The correlation condition ϕc is a relation that must be valid when the target
occurs. It has the form pB(y)∧rc(x, y), meaning that when B occurs with payload
y, the relation rc involving the payload x of A and the payload y of B must hold.
For example, we can say that whenever ship order occurs with order amount
higher than 100e, and customer type gold, eventually an invoice must be sent
with the same order amount. Finally, a time condition can be specified through
an interval (I = [τ0, τ1)) indicating the minimum and the maximum temporal
distance allowed between the occurrence of the activation and the occurrence of
the corresponding target.

2.2 From Natural Language to Declarative Models

A crucial component of our work involves the extraction of declarative con-
straints from natural language. This extraction step involves the identification

of the described actions (activities), as well as the identification of the constraint
that applies to these actions. Due to the inherent flexibility of natural language,
this extraction step can be highly challenging. Its difficulty manifests itself in the
sense that, on the one hand, the same declarative constraint can be expressed in
a wide variety of manners, whereas, on the other hand, subtle textual differences
can completely change the meaning of the described constraint.

ID Description

s1 An invoice must be created before the invoice can be approved.

s2 A bill shall be created prior to it being approved.

s3 Invoice creation must precede its approval.

s4 Approval of an invoice must be preceded by its creation.

s5 Before an invoice is approved, it must be created.

Table 2: Different descriptions of Precedence(create invoice, approve invoice)

Variability of textual descriptions. As shown in Table 2, the same declar-
ative constraint can be described in a broad range of manners. Key types of
differences occur due to: the use of synonyms (e.g., create invoice in s1 and cre-
ate bill in s2) and due to different grammatical structures (e.g., s1 uses verbs to
denote activities, whereas s3 uses nouns, like “invoice creation”). Finally, con-
straint descriptions can differ in the order in which they describe the different
components of binary constraints, i.e., whether they describe the constraint in a
chronological fashion, e.g., s1 to s3, or in the reverse order, such as s4 and s5. To
support users in the elicitation of declarative process models, an approach must
not limit users too much in terms of the input that they can provide. Rather,
an approach must accommodate different manners in which users may describe
constraints. However, a successful approach must be able to do this while also
being able to recognize subtle distinctions among constraint types.

Subtle differences leading to different constraints. Small textual differ-
ences can have a considerable impact on the semantics of constraint descriptions
and, thus, on the constraints that should be extracted from them. To illustrate
this, consider the descriptions in Table 3. In comparison to description s6, the
three other descriptions each differ by only a single word. However, as shown in
the right-hand column, the described constraints vary greatly. For instance, the
difference between the Response constraint of s6 and the Precedence constraint
described by s7 lies in the obligation associated with the send invoice action.
The former specifies that this must occur, whereas the latter specifies that it can
occur. Further, the direction in which a constraint is described is often signaled
through small textual elements, typically through the use of temporal preposi-
tions. For instance, in s8, the use of first completely reverses the meaning of the
described constraint. Finally, the presence of a negation also drastically changes

the meaning of a constraint, as seen for s9. The addition of not to description
s6 changes Response into Not Succession.

ID Description Constraint

s6 If an order is shipped, an invoice must be sent. Response(A,B)

s7 If an order is shipped, an invoice can be sent. Precedence(A,B)

s8 If an order is shipped, an invoice must be sent first. Precedence(B,A)

s9 If an order is shipped, an invoice must not be sent. Not Succ.(A,B)

Table 3: Subtle textual differences (A as ship order, B as send invoice)

State of the art. So far, only one approach has been developed to automati-
cally extract declarative constraints from natural language text. This approach,
by van der Aa et al. [1], is able to extract five types of Declare templates,
Init, End, Precedence, Response, Succession, as well as their negated forms. Its
evaluation results show that it is able to handle a reasonable variety of inputs.
Recognizing its potential as well as its limitations, we extend this approach as
follows: (1) we generalize the pattern recognition mechanisms in order to handle
more flexible inputs, (2) we cover eight additional constraint templates, and (3)
we add support for augmentation with data and time conditions.

3 Conceptual Approach

Fig. 1 provides an overview of the main components of our Speech2RuM ap-
proach. As shown, the user provides inputs through speech as well as the inter-
action with the Graphical User Interface (GUI). In this way, users are able to
construct a declarative process model through three main functions: (1) using
speech to describe constraints in natural language, (2) augmenting constraints
with data and time conditions, and (3) editing and connecting the constraints.

In this section, we outline our conceptual contributions with respect to the
first two functions. We cover the implementation of the approach in Sect. 4.
There, we also show how a model can be edited after its creation.

Speech2RuM
1. Constraint generation

2. Multi-perspective
 augmentation

3. Model editing and
 integration

User

Speech-to-text

GUI interaction Declarative model

a b c

d e

a b c

d e

a b c

d ea b

a b c

d e

a.t < 5

Fig. 1: Overview of the Speech2RuM approach

3.1 Constraint generation

In this component, our approach turns a constraint description, recorded using
speech recognition, into one or more constraints. For this task, we take the result
of the parsing step of the state-of-the-art approach [1] as a starting point. Given
a sentence S, parsing yields a list AS of actions described in the sentence and the
interrelations that exist between the actions, i.e., a mapping relS : AS × AS →
relationType, with relationType ∈ {xor, and, dep}. As depicted in Fig. 2, an
action a ∈ AS consists of a verb and optional subjects and objects.

mainVerb
modals
prepositions
isNegative

Verb

nounPhrase
prepositions

Subject
nounPhrase
prepositions

Object

0..* 0..*

0..*0..*

relationType
Interrelation0..12..*

Fig. 2: Semantic components returned in the parsing step of [1]

Based on this parsing step, we have added support to handle eight additional
constraint types, presented in Table 4. Given a set of activities AS and a relation
relS extracted for a sentence S, these types are identified as follows:

– Participation and Absence. If AS contains only one action, either a Par-
ticipation or an Absence constraint is established for the action, depending
on whether it is negative or not.

– AtMostOne. If a Participation constraint is originally recognized, we sub-
sequently check if S specifies a bound on its number of executions, i.e., by
checking for phrases such as at most once, not more than once, one time.

Constraint Example

Participation An invoice must be created

Absence Dogs are not allowed in the restaurant.

AtMostOne An invoice should be paid at most once.

Coexistence An order should be shipped and paid.

Responded Existence If a product is produced, it must be tested.

Not Coexistence If an application is accepted, it cannot be rejected.

Chain Precedence After an order is received, it may immediately be refused.

Chain Response After an order is received, it must directly be checked.

Table 4: Additional constraint types in Speech2RuM

– Coexistence. Coexistence relations are identified for sentences with two
actions in an and relation, typically extracted from a coordinating conjunc-
tion like shipped and paid. Furthermore, some notion of obligation should be
present, in order to distinguish between actions that can happen together
and ones that should.

– Responded Existence. Responded Existence constraints are extracted
when two actions are in a dependency relation, i.e., a1 dep a2, for which
it holds that the target action, a2, is indicated to be mandatory, e.g., using
must. The key difference between Response and Responded Existence is that
the former includes a notion of order, i.e., a1 precedes a2, whereas no such
order is specified for Responded Existence constraints.

– Not Coexistence. This constraint type is identified as the negated form of
both Coexistence and Responded Existence. Semantically, in both cases, the
description states that two actions should not appear in the same process
instance. This is, e.g., seen in Table 4, where “If an application is accepted,
it cannot be rejected” is actually the negative form of a Responded Existence
description.

– Chain Precedence and Chain Response. These constraint types are
specializations of Precedence and Response constraints. Chain constraints
are recognized by the presence of a temporal preposition that indicates im-
mediacy. Generally, such a preposition is associated with the verb of either
action a1 or a2 in a relation a1 dep a2. For this, we consider the preposi-
tion immediately and several of its synonyms, i.e., instantly, directly, and
promptly.

3.2 Multi-Perspective Augmentation

Our approach supports the augmentation of constraints with conditions on
the data and time perspectives, turning Declare constraints into MP-
Declare ones. Our approach allows users to express three types of conditions
through speech recognition, i.e., activation, correlation, and time conditions (see
Sect. 2.1).

We note that descriptions of conditions likely reflect textual fragments rather
than full sentences. Furthermore, given that these are short statements, the ex-
pected variance is considerably lower than for descriptions of declarative con-
straints. For these reasons, our approach to extract conditions is based on pattern
matching as opposed to the grammatical parsing used in Sect. 3.1.

Activation conditions. Activation conditions denote specific requirements
that must be met in order for a constraint to be applicable, e.g., stating that
Response(ship order, send invoice) should only apply when the amount associ-
ated with ship order activity is above 500. Our approach allows users to express
complex conditions, i.e., conditions that concatenate multiple logical statements,
such as “The amount is higher than 500 and the color is not red”. Therefore,
given an input string S, our approach first splits S into sub-strings, denoted
by split(S). This is done by recognizing the presence of coordinating conjunc-
tions (and and or) and dividing S accordingly. Each sub-string s ∈ split(S) is

Condition Pattern Example

> or ≥ [greater|higher|more] than [or equal to] Amount higher than 500.

< or ≤ [smaller|lower|less] than [or equal to] Quantity is less than or
equal to 12.

= or 6= is [not] [equal to] The color is not red.

∈ or /∈ is [not] in [list] Size is not in small,
medium, large.

Table 5: Supported patterns for activation conditions

expected to correspond to an individual expression, which together are joined
using logical ∧ and ∨ operators. On each s ∈ split(S), we use pattern matching
based on the patterns depicted in Table 5. In this manner, we are able to handle
conditions related to both numerical, (e.g., amount and length) and categorical
attributes (e.g., color and customer type).

Correlation conditions. Correlation conditions must be valid when the target
of a constraint is executed. These express relations that must exist between
attributes associated with the activation and the target of the constraint, e.g.,
the employee receiving a loan application should not be the same as the employee
that checks it. Our approach handles two patterns here, either allowing a user to
express that an attribute should be equal for both activities, e.g., “The amount
is the same” or that they not equal, e.g., “The applicant is different”.

Condition Pattern Example

time ≤ x [in|at most|no later than] [x] At most 3 hours

x ≤ time ≤ y between [x] and [y] Between 3 and 5 days

x ≤ time ≤ y not [before|earlier than] [x] and Not before 3 hours and within

[within|not later than|not after] [y] 12 hours

Table 6: Supported patterns for time conditions

Time conditions. A time condition bounds the time between the occurrence
of the activation and target of a constraint, e.g., stating that the target of a
Response constraint should occur within 5 days after its activation. As shown in
Table 6, we allow users to specify time conditions according to three general pat-
terns. The first pattern only specifies an upper bound on the duration, whereas
the other two patterns specify ranges. Note that we support time conditions
specified using seconds, minutes, hours, and days.

4 The Tool

We integrated the proposed Speech2RuM approach into RuM, a modeling and
analysis toolkit for Rule Mining.1 The tool is implemented in Java 11 and uses the

1 The tool can be found at https://sep.cs.ut.ee/Main/RuM

https://sep.cs.ut.ee/Main/RuM

Fig. 3: Screenshot of the Speech2RuM implementation

(a) Inserting an Init constraint (b) Inserting a Response constraint

Fig. 4: Inserting control-flow properties

speech recognition API provided by Google Cloud Speech.2 In Fig. 3, a screenshot
of the latest version of the tool is shown. In the top-left area of the screen, the
recognized vocal input is shown. It is possible to record a constraint (control-
flow perspective) as shown in Fig. 4 where an Init and a Response constraint
are modeled. After having inserted a Declare constraint, the user can record
an activation, a correlation, and a time condition as shown in Fig. 3 where
an activation (amount is greater than 100 and customer type is gold) and a
correlation (activation and target share the same value for attribute amount)
condition have already been recorded and a time condition is extracted from the
vocal input “not before 2 hours and within 12 hours”. The constraints expressed

2 https://cloud.google.com/speech-to-text/

https://cloud.google.com/speech-to-text/

with their graphical notation are shown in the top-right area of the screen, and
modifiable lists of activities and constraints are shown in the bottom part of the
screen.

5 User Evaluation

To improve the current implementation and to assess the feasibility of the devel-
oped Speech2RuM approach based on user feedback, we conducted a qualitative
user study. Our aim was to (1) identify means for improving the interface, (2)
identify issues and demands of individuals with different backgrounds, and (3)
identify usage scenarios. In the following, we will describe the study before dis-
cussing our findings and potential threats to validity.

5.1 Study

Participants. For our study, we selected eight participants (P1 to P8) with
differing characteristics. We selected two participants that had experience related
to Business Process Management (BPM, tier 1, P6 and P7), two participants
with formal background on temporal logics (tier 2, P3 and P8), two participants
that had used Declare to model temporal constraints (tier 3, P2 and P4), and
two participants that had used different tools to model and analyze temporal
constraints with Declare (tier 4, P1 and P5). We chose this differentiation to
study how individuals with different levels of expertise perceive the tool and
identify potential issues and demands.

Study setup. The study was conducted via Skype by a team consisting of a
facilitator and an observer, with the facilitator guiding the participant and the
observer serving in a supporting role. We used a manufacturing process in a bicy-
cle factory3 to provide a scenario that is likely to be familiar for all participants.
We opted to use a common scenario rather than asking participants to describe
a process of their choice to ensure the comparability of our findings. We also
created a help document4 to outline the tool’s capabilities to the participants.

Prior to the study, the facilitator sent the participants a link to the sce-
nario, the help document, and the tool itself suggesting to read the documents
and install the tool. At the beginning of the study, the facilitator introduced
the study procedure and the tool. When ready, the participant shared her/his
screen, whereas the facilitator started the video recording and began guiding
the participant through the prepared scenario. The scenario required the partic-
ipants to construct a declarative process model. First, they added constraints by
reading prepared sentences, before being asked to establish their own constraint
descriptions. During this time, the facilitator and the observer noted down any
issues the participant mentioned or that appeared to come up.

3 The scenario can be found at https://git.io/JfHbl
4 The help document can be found at https://git.io/JfHbc

https://git.io/JfHbl
https://git.io/JfHbc

At the end of the study, the facilitator conducted a follow-up interview, fo-
cusing on clarifying questions about issues the participant had encountered. He
also asked the participants what s/he “liked about the tool”, “wished would be
different”, and “under which circumstances s/he would use it”. After the study,
the participants were asked to complete a short post-questionnaire. The ques-
tionnaires consisted of multi-point Likert scales including the System Usability
Scale (SUS) [7] and scales covering satisfaction, expectation confirmation, con-
tinuation intention, and usefulness which were adapted from the ones presented
by Bhattacherjee in [6] and used to assess continued use of information systems.5

The individual studies lasted between 14 and 35 minutes each.

Result analysis. To analyze the collected data, the research team first built an
affinity diagram [13] based on the video recordings, observations, and follow-up
interviews, by creating a single paper note for each issue that was reported. The
team then clustered the notes based on emerging themes, which resulted in 139
notes divided over 21 distinct clusters. The results of the questionnaires served
as an additional qualitative data point during the analysis.

5.2 Findings

In general, our study revealed that the tested interface was reasonably usable
as evidenced by an average SUS score of 73.13, which can be considered to be
a good result compared to the commonly reported average of 68 [7]. However,
our study also revealed usability issues, which served as a basis to improve the
tool (Fig. 3). The main changes include the possibility to undo changes to the
model based on the last recording, editing the recorded text directly rather than
having to re-record it, and adding data conditions through speech recognition
(instead of specifying those conditions manually).

Common observations. First, we found that all participants wrote sen-
tences down before saying them aloud. They either wrote them “on paper”
(P1), “typed them on [their] computer” (P2), or noted down key parts they
wanted to say (P7). Most participants also used somewhat unnatural sen-
tences when entering constraints. This is evidenced by them, e.g., using activity
names instead of natural sentences (“after [activity1], [activity2] is executed.”,
P7). Some even tried to identify keywords that the algorithm might pick up (“is
activity like a keyword?”, P8). Only P1 used natural sentences from the start.
Taking these findings together indicates that users might have felt insecure to
just use natural sentences and rather tried to create sentences that they felt the
system would be able to understand, but that were difficult for them to formulate
without writing them down first.

Trying to identify keywords and adapting the input statements for the tool
might have increased the complexity of entering constraints while being
counterproductive when using speech recognition since our tool was designed to
understand natural expressions. These issues indicate that individuals need to

5 The complete questionnaire can be found at https://git.io/JfHb8

https://git.io/JfHb8

learn how to effectively use speech as a means of modeling constraints
regardless of their previous experience related to BPM or Declare. Therefore, it
would be desirable for users to go through a training phase to better understand
how to interact with the tool and also appreciate the variety of vocal inputs the
tool can deal with.

Difference between participants with different backgrounds. There were
also noticeable differences between individuals from different backgrounds. For
example, participants from tiers 1 and 2 (having low confidence with Declare)
mainly relied on the visual process model to assess whether the tool had
understood them correctly, while participants from tiers 3 and 4 (more familiar
with Declare and analysis tools based on Declare) mainly relied on the
list providing a semistructured representation of the entered constraints
(bottom-right area in Fig. 3). This was evidenced by how they tried to fix po-
tential errors. Participants from tiers 1 and 2 initially tried to edit the visual
process model (observation of P6, “the activity label should be editable”, P2) –
which was not possible in the version of the tool we tested – while participants
from tiers 3 and 4 directly started editing the constraint list (observation of P1
and P5). Only P2 attempted both.

Findings from our study also indicated that the way the recognized text
was displayed (text field below Voice input in the top-left area of the screenshot
in Fig. 3) might not have been ideal. Participants checked the input correctness
after they entered the first constraint, but did not continue to do so afterward
(observation of P3 and P6) despite few sentences being wrongly translated from
speech into text during the tests. This led to confusion, particularly among less
experienced participants, who thought that they did not formulate a constraint
correctly, while the issue was that their vocal input was not recorded properly.
One way to address this issue is to highlight the text field containing the rec-
ognized text directly after a new text has been recorded to indicate to the user
that s/he should pay attention to the recognized text.

These findings indicate that, even if using speech recognition users can some-
how bypass the interaction with the graphical notation of Declare constraints,
it still appears difficult for less experienced users to assess the correct-
ness of their entered constraints. One approach to mitigate this issue might
be to provide the option to mark constraints that a user cannot verify and subse-
quently ask an experienced user to assess their correctness. In alternative, traces
representing examples and counterexamples of the recorded behaviors together
with a textual description of the constraint could be shown.

The aforementioned issues might also have led to less experienced par-
ticipants perceiving the tool as less useful (m = 2.63 for tier 1 and m =
3.50 for tier 4) and being less inclined to use the tool in the future (m =
2.33 for tier 1 and m = 3.65 for tier 4) than experienced participants. Related to
this finding, it thus appears counter-intuitive that experienced participants were
slightly less satisfied with the tool than less experienced participants (m = 3.00
for tier 3, m = 3.50 for tier 4, and m = 3.67 for tiers 1 and 2). This can however
potentially be explained by experienced participants having higher expectations

regarding the functionality of the tool (“what about recording data conditions as
well?”, P5).

Finally, it should be noted that participants from different backgrounds were
“excited” (P5) to use the tool. Some even continued to record constraints after
the actual evaluation was over (“let me see what happens when I [...]”, P8). It
thus appears reasonable to assume that addressing the identified shortcomings
can positively influence the perception of the tool.

Potential usage scenarios. The participants mentioned multiple scenarios
during which they would consider speech as useful for entering constraints. Most
of them stated that using speech would improve their efficiency because
they could “quickly input stuff” (P4) especially when reading “from a textual
description” (P1) with P5 pointing out that it would be particularly useful for
“people that are not familiar with the editor” (P5). On the other hand, P8 had
a different opinion stating that “manually is quicker” (P8). S/he did however
acknowledge that speech might be useful “when I forget the constraint name”
(P8). Moreover, participants also suggested that vocal input might be useful
“for designing” (P3) which points towards its usefulness for specific activities at
the early stages of modeling a process. Finally, P1 mentioned that speech input
would be useful for mobile scenarios such as “using a tablet” (P1), because
entering text in a scenario like that is usually much more time consuming than
when using a mechanical keyboard.

5.3 Threats to validity

The goal of our study was to collect feedback for improving the tool, identify
potential usage scenarios, and pinpoint any issues for individuals with different
backgrounds. It thus appeared reasonable to conduct an in-depth qualitative
study with selected participants from a diverse range of backgrounds related to
their knowledge and experience with BPM in general and temporal properties
and Declare in particular. Conducting a study with a small sample of par-
ticipants is common because research has shown that the number of additional
insights gained deteriorates drastically per participant [17]. There are, however,
some threats to validity associated with this particular study design. A first
threat is related to the fact that we developed a specific tool and studied its
use by specific people in a specific setting over a limited period of time. Despite
carefully selecting participants and creating a setting that would be close to how
we envision the tool would be commonly used, it is not possible to generalize
our findings beyond our study context since conducting the same study with
different participants using a different setup might yield different results. In ad-
dition, the study results were synthesized by a specific team of researchers which
poses a threat to validity since different researchers might potentially interpret
findings differently. We attempted to mitigate this threat by ensuring that obser-
vations, interviews, and the analysis of the obtained data were collaboratively
conducted by two researchers. We also abstained from making causal claims
providing instead a rich description of the behavior and reporting perceptions of
participants.

6 Related work

Organizations recognize the benefit of using textual documents to capture pro-
cess specifications [4, 23], given that these can be created and understood by
virtually everyone [11]. To allow these documents to be used for automated pro-
cess analysis, such as conformance checking, a variety of techniques have been
developed to extract process models from texts [11, 18, 22]. Other works exploit
textual process specifications for model verification [2, 20] or directly for pro-
cess analysis [3, 21]. In the context of declarative process models, some recent
works also provide support for the extraction of DCR graphs from textual de-
scriptions [14, 15], whereas the preliminary work on the extraction of Declare
constraints from texts presented in [1] represents the foundation of our work.

7 Conclusion

In this work, we presented an interactive approach that takes vocal statements
from the user as input and employs speech recognition to convert them into
multi-perspective, declarative process models. Our Speech2RuM approach goes
beyond the state-of-the-art in text-to-constraint transformation by covering a
broader range of Declare templates and supporting their augmentation with
data and time conditions. The integration of our approach into the RuM toolkit
enables users to visualize and edit the obtained models in a GUI. Furthermore,
it also allows these models to directly serve as a basis for the toolkit’s analysis
techniques, such as conformance checking and log generation. Finally, we note
that the conducted user evaluation represents the first study into the feasibility of
using speech recognition for business process modeling. The results demonstrated
its promising nature, although modeling purely based on speech recognition is
especially suitable for mobile environments.

In future work, we aim at further developing Speech2RuM based on the ob-
tained user feedback. In particular, we are going to integrate the speech recog-
nition tool with a chatbot which represents a valid alternative in the context
of desktop applications. In addition, the text-to-constraint component shall be
improved to support less natural descriptions, e.g., those that explicitly mention
the term activity to denote a process step. Finally, it will be highly interesting
to investigate how speech recognition can be lifted to also support the elicitation
of imperative process models.

References

1. van der Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting declarative
process models from natural language. In: CAiSE. pp. 365–382. Springer (2019)

2. van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to
process models: The automatic detection of inconsistencies. Inf. Syst. 64, 447–460
(2017)

3. van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance against
natural language specifications using behavioral spaces. Inf. Syst. 78, 83–95 (2018)

4. van der Aa, H., Leopold, H., van de Weerd, I., Reijers, H.A.: Causes and conse-
quences of fragmented process information: Insights from a case study. In: AMCIS
(2017)

5. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balanc-
ing between flexibility and support. CSRD 23(2), 99–113 (2009)

6. Bhattacherjee, A.: Understanding information systems continuance: an
expectation-confirmation model. MIS quarterly pp. 351–370 (2001)

7. Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability evaluation in
industry 189(194), 4–7 (1996)

8. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

9. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: character-
istics, requirements and analysis of contemporary approaches. JoDS 4(1), 29–57
(2015)

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of
business process management, vol. 1. Springer (2013)

11. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: CAiSE. pp. 482–496. Springer (2011)

12. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera,
J., Weber, B.: Understanding Declare models: strategies, pitfalls, empirical results.
Software & Systems Modeling 15(2), 325–352 (2016)

13. Holtzblatt, K., Wendell, J.B., Wood, S.: Rapid contextual design: a how-to guide
to key techniques for user-centered design. Elsevier (2004)

14. López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process highlighter:
From texts to declarative processes and back. BPM (Demos) 2196, 66–70 (2018)

15. López, H.A., Marquard, M., Muttenthaler, L., Strømsted, R.: Assisted declarative
process creation from natural language descriptions. In: EDOCW. pp. 96–99. IEEE
(2019)

16. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on the Web 4(1) (2010)

17. Nielsen, J., Landauer, T.: A mathematical model of the finding of usability prob-
lems. In: SIGCHI. pp. 206–213 (1993)

18. de Oliveira, J.P.M., Avila, D.T., dos Santos, R.I., Fantinato, M.: Assisting process
modeling by identifying business process elements in natural language texts. In:
ER Workshops, p. 154. Springer (2017)

19. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: EDOC. pp. 287–300 (2007)

20. Sànchez-Ferreres, J., van der Aa, H. and Carmona, J., Padró, L.: Aligning textual
and model-based process descriptions. Data Knowl. Eng. 118, 25–40 (2018)

21. Sànchez-Ferreres, J., Burattin, A., Carmona, J., Montali, M., Padró, L.: Formal
reasoning on natural language descriptions of processes. In: BPM. pp. 86–101.
Springer (2019)

22. Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching work-
flows from text. In: IRI. pp. 285–292. IEEE (2013)

23. Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural lan-
guage specifications using a cognitive linguistic/configuration based approach. Inf.
Syst. 54, 191–208 (2015)

	Say It In Your Own Words: Defining Declarative Process Models Using Speech Recognition

