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Abstract. Mobile robots like drones or ground vehicles can be a valu-
able addition to emergency response teams, because they reduce the risk
and the burden for human team members. However, the need to manage
and coordinate human-robot team operations during ongoing missions
adds an additional dimension to an already complex and stressful situa-
tion. BPM approaches can help to visualize and document the disaster
response processes underlying a mission. In this paper, we show how data
from a ground robot’s reconnaissance run can be used to provide process
assistance to the officers. By automatically recognizing executed activi-
ties and structuring them as an ad-hoc process instance, we are able to
document the executed process and provide real-time information about
the mission status. The resulting mission progress process model can be
used for additional services, such as officer training or mission documen-
tation. Our approach is implemented as a prototype and demonstrated
using data from an ongoing research project on rescue robotics.

Keywords: Rescue Robotics · Process Assistance · Internet of Things ·
Activity Recognition · Emergency Process Management

1 Introduction

In any natural or man-made disaster, first response teams have to save and
protect humans, animals, assets, and the environment. These responsibilities,
along with a lack of real-time information, public interest, the need to act quickly,
and an often hectic and confusing situation, put officers under a high amount
of pressure [3]. To reduce both the mental burden and the physical danger to
the officers, rescue robots are increasingly used to support disaster response
operations [17]. Ground vehicles, for example, can transport heavy equipment
or search for victims in areas that would be too dangerous for human officers to
enter, while drones may take aerial pictures of a disaster site, which can help in
identifying victims or finding access routes in unsafe territory [18].
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However, integrating rescue robots into first response teams adds an addi-
tional dimension to an already complex and stressful situation, increasing the
cognitive load of the officers in charge [16]. One way to support the officers in this
situation is to provide them with real-time information about the status of the
mission [29]. For this purpose, Business Process Management (BPM) approaches
are particularly interesting, because disaster response missions are organized in
a process-oriented way [7]. The actions of both officers and robots during an
emergency mission follow predefined processes that are well documented and
frequently practiced. Therefore, BPM methods can be used to capture and vi-
sualize ongoing processes for live-mission monitoring and to document them for
after-mission reporting and debriefing. However, since the execution of disas-
ter response processes depends on the concrete circumstances of a mission, any
useful BPM solution requires real-time data about the executed activities.

For human first responders, we designed a system that interprets verbal com-
munications, recognizes activities, structures them into processes, and visualizes
the processes to provide assistance to the officers [30]. Since radio communi-
cation does not provide a complete status of the mission, there is a need for
additional data sources. (Teleoperated) Rescue robots are equipped with sensors
that record data about themselves and their surroundings, such as the robot’s
position, acceleration, or direction of movement. This sensor data can be used
to recognize the activities that the robot operator executes during a mission.

In this paper, we design, develop, and evaluate an approach for the real-time
recognition of robot activities that can be used for process assistance during
robot-assisted disaster response. We define an ad-hoc process with a set of ac-
tivities, which are executed as the mission status requires. Using a machine
learning approach, we automatically recognize the ongoing activity from sensor
data collected during execution. These activities are mapped to an instance of
the ad-hoc process and stored in an event log, which is visualized to provide real-
time information on the mission status to the officer in charge. In addition, this
system supports the robot operator, as it documents all their activities during a
mission. The collected data can afterwards be used for automatically generating
a mission documentation report, as illustrative material for training new robot
operators, or to improve the processes by means of post-mission process mining.

Our research is objective-centered, motivated by the opportunity to use avail-
able sensor data to provide process assistance. In this paper, we focus on detect-
ing activities by a teleoperated ground robot in a specific application scenario
described in Sect. 2. Sections 3 and 4 describe the design and development of our
activity recognition approach, which is demonstrated and evaluated in Sect. 5.
We report on related work in Sect. 6, before concluding the paper in Sect. 7.

2 Application Scenario

Automatic activity recognition depends on the capabilities of the robot and the
situation in which it is used. In this paper, we focus on the application scenario
of a medium-sized unmanned ground vehicle (UGV) in an industrial fire, where



IoT-Based Activity Recognition for Process Assistance 3

Name Search for unconscious human and take gas probe after industrial fire

Description After an industrial fire, the robot UGV is sent into the factory to inspect a gas tank. Once
the tank is found, the robot takes a gas probe to find out whether it was damaged by the
fire and might therefore be leaking dangerous gases. After taking the probe, the robot
searches for a missing human that could be unconscious due to the fire or any dangerous
fumes. Once the human is detected, the robot returns to the base. Based on the result of
the  probe,  first  responders  know  if  they  can  safely  enter  the  building  to  rescue  the
unconscious human or if any additional steps must be taken beforehand.

Actors UGV, Unconscious victim

Preconditions A factory has burned down. A potentially damaged gas tank is located inside a building
and a human is lying unconsciously on the floor of the same building.

Postconditions The human is detected, a gas probe was taken, and UGV has arrived back at the base.

Main Success
Scenario

1.

2.
3.
4.
5.

6.
7.
8.

9.

UGV is navigated across the factory site to approach the entrance in a direct path. Once
there, it enters the building.
UGV is navigated inside the room to search for the gas tank.
The operator detects the gas tank by classifying it on the camera picture.
UGV is navigated to the gas tank.
A gas probe is taken next to the tank, by raising UGV’s sensor arm and holding it close
to the tank. After taking the probe, the arm is lowered into the standard position.
UGV is navigated through the building to search for an unconscious human.
The operator detects an unconscious human by classifying it on the camera picture.
UGV is navigated towards the human so the operator can determine his/her health
status.
UGV is navigated back to the base.

Fig. 1. Application scenario of an industrial fire formulated as a use case

using a robot is particularly beneficial. Since production processes often require
highly explosive or flammable materials, they are stored within the plants, mak-
ing industrial fires both dangerous and frequent. The American National Fire
Protection Association reports that between 2011 and 2015 municipal fire de-
partments in the U.S. responded to an average of 37,910 industrial fires every
year. Annual losses from these fires are estimated at 16 civilian deaths, 273 civil-
ian injuries, and $1.2 billion direct property damage [2]. At the same time, those
fires can be challenging for first responders. For instance, gas tanks stored within
a plant might be damaged by a fire, making it dangerous to enter the building
without proper safety measures. In this case, a robot can be sent into the build-
ing to locate the gas tank of interest and take a gas probe to determine if any
gas has leaked. Furthermore, the robot can search for any victims that might be
trapped or unconscious to communicate their position to a rescue team.

To illustrate the application possibilities of the concept and implementation
of the artifact presented in this paper, we propose the use case depicted in Fig. 1
in the form of a modified version of the Use Case Template according to [4].

3 Conceptual Design

3.1 Outline

Our approach for automatic activity recognition consists of several steps to over-
come an abstraction gap from low-level sensor data to a top-level process. These
sensor data are obtained from sensing devices, which can communicate over com-
munication networks, including the Internet, i.e. the Internet of Things (IoT)[8].
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Given the set of available activities, we can use machine learning to automati-
cally recognize the ongoing activity from fine-grained sensor data acquired from
UGV’s on-board sensor unit. Therefore, we train a classifier to assign a sequence
of sensor data to one of the activity types, as described in Sect. 3.3.

Conceptually, the set of relevant robot activities constitutes an ad-hoc pro-
cess, i.e., a process whose control flow cannot be modeled in advance, but instead
is defined at run-time [5]. This is because the robot operator has to adapt his
actions to the terrain and the needs in a new and unforeseeable emergency situa-
tion. This ad-hoc process is the basis for our process assistance tool, as described
in Sect. 3.4, where we log and visualize each process execution as a sequential
process instance. As a post-processing step, process discovery methods can be
applied to the recorded event log, allowing insights into how the robot operators
are performing their tasks and enable process improvements based on that.

3.2 Activity Type Definition

For our approach, we assume activity types that are defined a priori. Those
activities are derived from the robot’s capabilities within the application sce-
nario and based on the human operators’ understanding of high-level activities
(e.g. “Search”) instead of the low-level capabilities of the robot (e.g. “Drive For-
ward”), which are components of the higher-level activities. We aim at directly
recognizing the activities that are relevant to the process. In this way, a direct
mapping between activity and task in a process model is achieved. A different
approach would be recognizing the robot’s capabilities and deriving higher-level
activities, which are only subsequently mapped onto a process model. Both ap-
proaches however, require prior knowledge of higher-level activities.

3.3 Recognizing Activities from IoT data

Sensor data, like those acquired from the UGV, are frequently recorded represen-
tations of some kind of state. A state could be a temperature, a velocity, a level
of humidity, a position, or a distance to a specific point in a space. The main
challenge is to assign those fine-grained state representations to activities, more
precisely to instances of activity types on a process-relevant abstraction level.
Those activities commonly occupy larger time frames than the ones between two
sensor captures. Therefore, time frames of sensor data have to be assigned to
activity instances. This can be modeled as

〈s1, . . . , sn〉 → a (1)

where s1,...,n are n data points captured by an individual sensor s and a is
one of the given activity types. This solves an individual assignment problem
between sensor data and activity type. In order to train a machine learning
model, we need a sufficient amount of labeled input data, which is considered
as a great challenge in detecting activities, due to its high effort [11]. In our
case, we manually label the sensor data that belong to certain activity instances
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with the corresponding activity name. In the described application scenario,
it was sufficient to rely on a single sensor as a data source to distinguish all
relevant activity types. Limiting ourselves to one sensor with low payload per
measurement, can also prevent problems such as transfer speeds from the mobile
robot to other processing components, especially since data transmission can
become difficult in an emergency situation. A scenario, where multiple sensors of
the same type or even multiple types of sensors are necessary to fully capture all
relevant activities, would require a mechanism for synchronizing, aggregating,
filtering, and merging sensor data, making a reliable process assistance much
more challenging.

3.4 Providing Ad-Hoc Process Assistance

After training a machine learning classifier for activity recognition, we can use it
to recognize, document, and visualize the robot’s actions in real time. Therefore,
we model UGV’s behavior as an ad-hoc process, as shown in Fig. 2. Within an
instance of this sub-process, all tasks can be executed arbitrarily many times
and in any order. Readers should note that the application scenario and the
activity names indicate a partial ordering, which is not represented in the process
model. For example, Navigate Back to Base appears to be the last activity in a
trace. A prior activity filtering based on a more structured process model is also
interesting and will be addressed in future work.

The process model is the basis for our process assistance system. We connect
the activity recognition to a process model repository and process execution en-
gine, where the model is instantiated at the beginning of a robot mission. The
process execution engine is controlled by the activity recognition, such that the
process status is continuously captured and automatically recorded in an event
log. For example, whenever the recognition approach detects an activity instance
that differs from the currently active activity instance, it triggers the completion
of the active one and starts the newly detected one. With a continuous pipeline
from the robotic sensors to the activity recognition and process execution engine
to an event log, we are now able to provide process assistance to the first respon-
ders. The active process instance is visualized, providing process assistance to
the operator, as well as real-time information on the mission status to the officer
in charge. After completing a mission, the logged event data captures all actions
of the robot in sequence and can be used for post-mission process mining, de-
briefing the mission participants, improving the mission processes and protocols,
as well as training new officers [30].

Fig. 2. Ad-hoc process for the behavior of UGV, modelled as a BPMN diagram
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4 Implementation

In order to implement the conceptual design, we created an overall system ar-
chitecture that is easily extendable by new components, shown in Fig. 3.

Process Tagging
Interface

Process Model
Designer

Recognition and Matching

Process
repository

Sensor data
store

ROS-Bridge Application

MQTT

Mission Control
Application

Kafka
Messaging

REST RESTREST

Data acquisition
Data preprocessing

Data fusion

Training/Recognition
Task matching

Process executor

Model repository

Execution engine

Log Generator

Log Exporter

Process Monitoring and Logging

Fig. 3. System architecture and relevant connected components.

Data Acquisition. The UGV collects its IoT data using the Robot Operating
System (ROS)5, which uses a proprietary data format and is organized in top-
ics, similar to Kafka6. Both systems implement a publisher subscriber pattern.
Topics or Channels are categories or feed names to which records are published
and subscribed. We implemented a bridge application that consumes sensor data
from topics relevant for task recognition, translates them into a format, which
is simpler to process by our system, and re-publishes them to an MQTT7 bro-
ker. From there, other components of the system, in particular recognition and
matching, can subscribe to the data channels relevant to them.

The robot collects a variety of different sensor data. For our goal of recog-
nizing tasks on the process-level of an operator, we assume motion data to be
most discriminative. Therefore, we base our implementation on the data col-
lected by the Inertial Measurement Unit (IMU) sensor, attached to the base of
the robot. Using a combination of accelerometer and gyroscope, the IMU mea-
sures linear accelerations, angular velocities, and the orientation for each 3D-axis
at high frequency. Each of the three quantities has three dimensions yielding a
9D-measurement in total. Even though the IMU is located at the base of the
robot, operating actuators induce small motions, which are recognized by the
IMU and allow for conclusions about the state of the manipulator arm.
Data Pre-processing. The recognition approach essentially consists of a con-
tinuous multi-class classification using sliding windows of pre-processed IoT data
streams. These classification results need to be mapped to pre-defined activity
types. Therefore, we define a fixed window size and compute feature vectors

5 https://www.ros.org
6 https://kafka.apache.org
7 http://mqtt.org

https://www.ros.org
https://kafka.apache.org
http://mqtt.org
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based on segments of sensor time series. Then, we classify each segment indi-
vidually. To ensure that no boundaries of activity instances are missed, we use
segments overlapping by 50%, as proposed by [26]. Thus, given an individual sen-
sor s and segments consisting of t points in time when sensor data is captured
(segment size), the sensor time series data are segmented as follows:

segment1 : s1 ... st
segment2 : st/2 ... s3t/2
segment3 : st ... s2t

...
. . .

. . .
. . .

(2)

In order to achieve accurate classification results, we compute representative
features of the raw sensor data and use them as input for the classification. We
consider each dimension of the IMU measurements as a separate time series and
compute the mean, standard deviation, root mean squares, kurtosis, skewness,
interquartile range, and mean absolute deviation [10,1]. Besides those statistical
features, frequency domain features are used as additional input because they
provide additional insights. Specifically, we include the energy, entropy, and sig-
nal magnitude area for each time series as features. Moreover, for all time series
within each quantity, we include the pairwise correlation.
Training. After the sensor data is pre-processed, segmented, and labeled with
the activities from Fig. 2, it can be used to train the activity recognition. There-
fore, we need a machine learning approach that allows for multi-class classifi-
cation. We selected a Random Forest, as it produced promising results in past
applications [21] and does not require vast amounts of training data, as opposed
to, e.g., neural networks. The Random Forest classifier we finally deployed was
trained as an ensemble of 200 trees with a maximum tree depth of 16. As entropy
measure, we used the Gini impurity. The sensor data used for training is stored
in a relational database as shown in the system architecture.
Recognition. While a disaster response process is executed, the trained model
is queried continuously. Whenever a segment of the defined size is completed,
we apply the same pre-processing as for the training data. Since segments are
overlapping by 50%, the last half of the previous segment becomes the first half
of the current segment for classification. To complete the activity recognition, the
classification outcome needs to be mapped to the process model tasks, as stored
in the process model repository. The available activity instances as published by
the process execution engine are matched with the classification results of the
activity classifier. This is done on the basis of the activity label, which in our
case is identical to the respective activity label in the process model. Based on
the activity label, life-cycle transitions of activity instances of the ad-hoc process
can be controlled. For example, if an activity instance is currently active but the
classification yields a different activity, the active activity instance is completed
and the detected activity instance is started. This enables the process assistance.
Process Monitoring and Assistance. The process assistance is based on the
deployed process execution engine, which instantiates processes at the beginning
of a mission and monitors their execution depending on the results of the activity
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recognition. Therefore, the process engine bridges the gap between the activity
recognition and the ad-hoc process execution. We used the open source process
engine from jBPM8 for this purpose. Accessing the results of all previous pro-
cessing steps, we implemented a status monitoring visualization as a web-based
application, which can be shown on any display. The app depicts an integrated
view of the current mission status with all active and completed disaster re-
sponse processes. Aggregating information about each process gives the officers
in charge a better overview of the overall situation, as well as information about
the progress in critical processes, such as reconnaissance.

5 Evaluation

5.1 Evaluation Approach

To ensure repeatable experiments and efficient data capturing, we train and
evaluate our approach using data generated by a physics-based simulation of the
UGV. The simulation is based on the open-source framework Gazebo9, which
includes accurate simulation of multi-body dynamics and realistic sensor data
generation for common robotic sensors. We use a digital twin of the Telerob
Telemax Hybrid UGV, which is deployed by the German Rescue Robotics Cen-
ter.10 The simulation exactly mirrors the real robot with respect to the software
interface and the available sensors.

Based on this, we performed a two-stage evaluation. For the first step, we
gave the use case description from Fig. 1 to ten case study participants and asked
them to execute the described reconnaissance process using the simulation ap-
plication. During the execution of each individual process instance, sensor data
of the simulated robot were produced and consumed by our system. Simultane-
ously, the performed activities were manually labeled with the respective activity
type. Based on this data, we trained the machine learning model as introduced in
Sect. 4 and derived per-class accuracies as well as overall accuracies of the recog-
nition. Using the trained and evaluated model, we performed a second case study
to validate the process assistance system in real-time. Five study participants
were asked to execute a reconnaissance sub-process in the same setting as the
first case study. In order to measure the validation accuracy, we compared the
actually executed activities to the ones the system detected and visualized in the
developed mission control application. The use case executed in the simulation
application with the running mission control app can be viewed in [22].

5.2 Case Study Implementation

While the study participants controlled the robot, we used a web-based tool
(also depicted in Fig. 3) to tag the start and completion of process and activity

8 https://jbpm.org
9 http://gazebosim.org/

10 https://rettungsrobotik.de

https://jbpm.org
http://gazebosim.org/
https://rettungsrobotik.de


IoT-Based Activity Recognition for Process Assistance 9

instances. Available instances were determined according to the respective pro-
cess model and the process instance’s current state. This way, labelling was done
implicitly via timestamps. Every recorded sensor data point was saved with the
timestamp of its creation. Then, the activity time frames were used to label the
data. We acquired a total of 45 process instances for training and testing includ-
ing different variants of activity orders. Next, the data was prepared according
to Sect. 3. The recorded and labeled data were used to train a random for-
est classifier, which is capable of performing multi-class classification as well as
producing probability distributions over all possible classes for each unlabeled
feature vector. The model was trained using different segment sizes (4-8-16).
Segment size 16 yielded slightly better results, but since larger segments take
longer to complete, this resulted in longer intervals between classifications and
therefore a longer latency in the process assistance. We therefore chose to use
a rather small segment size of 4, which performed comparably well and has the
advantage of generating more training data. We initially evaluated each trained
model using 20% of the collected data as test data. This classifier was then used
for the overall evaluation in the second case study. Participants controlled the
robot, performing both the same use case as for the training data acquisition and
a different variant to show that the classifier can handle different orders of ac-
tivities. For that second variant, we asked them to execute the original scenario,
but since the human could be detected immediately, participants skipped the
search step and directly approached the human. Afterwards, they searched for
the gas tank, took a probe, and approached the tank to examine it visually. This
was followed by another search activity to detect any other possible victims. 14
evaluation instances were captured, while the system was running. The efficacy
of the approach can be shown by comparing the process instances produced by
the system to the actual process execution.

5.3 Results

Activity Classifier Performance. Fig. 4 shows the results of the individual
performance evaluation of the activity classifier, which was trained on the sensor
data of the previously recorded training process instances. We split the data into
80% training data and 20% test data. Additionally, Fig. 4 shows the evaluation
metrics (precision, recall and f1-score) for the classifier evaluation. The results
indicate that the classifier is capable of differentiating the robot’s activities very
accurately. A close look at the individual mis-classification revealed that confu-
sions mainly occur because Approach destination is often classified mistakenly
and therefore produces false positives. Also, the classifier mostly fails to correctly
classify Standby, however, there are no false positives. Even in this case, the per-
formance is sufficient to accurately determine the activities given the selected
segment size and overlap. It should also be considered that standby times hardly
occurred in the process executions of our case study, which is why this activity
is underrepresented in training and test data. The activity Detect target is not
considered in the classifier evaluation, as it is a point-based activity, which can
be recognized using image data rather than motion data.
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A B C D E

A

B

C

D

E

0.95 0.042 0 0.006 0

0.087 0.74 0 0.16 0.015

0.19 0.16 0.51 0.14 0

0 0.12 0 0.87 0.012

0 0.13 0 0.058 0.81
0.0

0.2

0.4

0.6

0.8 precision recall f1-score

A 0.84 0.95 0.89

B 0.70 0.74 0.84

C 1.00 0.51 0.68

D 0.73 0.87 0.79

E 0.97 0.81 0.88

Fig. 4. Normalized confusion matrix (left) and classification metrics (right) for the
activity classifier per class (A=Take probe; B=Approach Destination; C=Stand by;
D=Search; E=Navigate back to base)
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Fig. 5. Normalized confusion matrices showing all classified segments, including (left)
and excluding (right) activity transitions (A=Take probe; B=Approach Destination;
D=Search; E=Navigate back to base)

Overall System Performance. To evaluate the overall efficacy of the approach
and the implemented artifact, we compare instances produced by the system in
the form of an event log with the actual activities the robot performed, while be-
ing controlled by the case study participants. Fig. 5 shows normalized confusion
matrices of the classifications of the overall evaluation. The left matrix shows
the performance of all classifications throughout all use case instances, whereas
the right one displays all classifications that were executed as long as no activity
transition took place. Label C (Stand by) is not depicted, as this activity was
never executed during the overall system evaluation.

5.4 Discussion

The evaluation shows that our approach can monitor and capture process exe-
cution. The individual classifier performs well for all activities in our use case,
despite limited training data, using a simple random forest classifier, and a single
sensor as data source. Based on this classifier, we can map the results acquired
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Fig. 6. Single overall execution instance of the scenario, with actual labels in the top
row and predicted labels in the bottom row

4

26

14 15

30

4 3

9

9

5

14

3

2

9

Approach Destination

58

Search

39

Take Probe

18

Navigate back to base

18

Fig. 7. Process map generated from the process instances that were recorded by the
execution engine during the overall system evaluation (100% activities; 100% paths)

in an online mode to tasks of our reconnaissance sub-process and control the
process execution. As expected, the recognition accuracy is better for segments
of the sensor data that are completely contained in an activity time frame. To
further support this observation, Fig. 6 shows a single execution instance of
our scenario comparing actual labels with predicted ones, illustrating that mis-
classifications mainly occur at activity transitions. To demonstrate post-mission
process mining, we exported the event log produced during the overall system
evaluation and used Disco to generate a process map, as shown in Fig. 7. For this
log, subsequent identical events were merged, such that each recognized activity
was logged only once. The process map shows that despite the ad-hoc process
model, there is a clear structure to the executed process. For example, the first
activity was always Approach Destination and Take Probe is always an interme-
diate activity. Other than expected, Navigate back to base was not always the
last activity in the recorded cases. Overall, this discovered process model might
give first hints to first responders regarding the recommended execution of a
reconnaissance process.
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Limitations The conducted evaluation is limited due to rather few cases avail-
able for training. However, regarding the number of training samples, the avail-
ability of the simulation application allowed for obtaining far more data than we
could have obtained using the actual robot. Moreover, in this case study, only
two scenarios have been carried out. Future work will address these limitations.

Reproducibility. Our data repository11 contains an export of the PostgreSQL
database, which stores the IMU data as well as the process instance and re-
spective activity instance data that we collected in the case study and used
for the evaluation. This data can be used to reproduce our classification ap-
proach. Unfortunately, the simulation environment and our process assistance
implementation cannot be made available due to licensing problems.

6 Related Work

Human Activity Recognition. The robot used in this paper could operate
at least semi-automated, but currently, all actions are remotely controlled by
a human operator, because disaster response missions require absolute depend-
ability. Hence, our approach is related to Human Activity Recognition (HAR)
in disaster response, as for example Lieser et al. present [12]. They describe an
approach for situation detection based on activity recognition using wearable
devices. Specifically, they detect people in disaster related situations by recog-
nizing their physical activities using two smartwatches and three smartphones.
Although the approach uses machine learning for HAR, an integration with a
process-aware assistance system is not provided. The authors of [20] apply HAR
based on data from wearable sensors with the goal of providing workers with
ergonomic recommendations during the execution of manual commissioning pro-
cesses. The approach allows for real-time monitoring, however, it uses predefined
process sequences and does not consider ad-hoc behaviour. In their literature
analysis, Mannhardt et al. give a comprehensive overview of approaches that
employ activity recognition on sensor data, with the goal of enabling process
discovery [13]. However, the focus is specifically on industrial settings.

Event abstraction. Our approach aims at abstracting low-level events in the
form of sensor data to tasks in a disaster response process. Therefore, it is re-
lated to a line of work in process mining that aims to identify high-level activities
from low-level event logs. For example, Tax et al. present an approach for the
abstraction of events in an XES event log based on supervised learning [27]. It
consists of a feature representation of an XES event and a learning step based on
a conditional random field. The authors evaluated their approach using, among
others, a data set of sensor data from a smart home. Compared to our approach,
however, no online monitoring is performed. In [28], a machine learning frame-
work for log abstraction is proposed. It consists of two phases, log segmentation
and classification. The approach is evaluated using a low-level SAP log and fo-
cuses on existing event logs in a narrower sense. Therefore, the applicability in

11 https://github.com/a-rebmann/iot-processassistance

https://github.com/a-rebmann/iot-processassistance


IoT-Based Activity Recognition for Process Assistance 13

IoT scenarios needs to be investigated. Mannhardt et al. present a method for
event abstraction based on behavioral patterns [14]. Their goal is to create an
abstracted log by matching low-level event logs with activity patterns. The user
has to create a model for each high-level activity to be able to use the approach.
Futhermore, analyses are conducted on historical data only. Compared to this
approach, we focus on real-time monitoring of ad-hoc processes, with the aim
of giving timely process assistance to relevant stakeholders. An approach that
transforms sensor data, in particular real-time location system data (RTLS),
into event logs is presented by the authors of [24]. Interactions are used as an
additional knowledge layer to close the gap between sensor data and process
instances. The approach was implemented and evaluated using simulated event
logs and is focused on RTLS. Process assistance is not targeted.

Process Management in Rescue Robotics. From a process management
view, disaster response missions are an interesting but challenging field. On the
one hand, both the team structure and the processes, including communications
and actions, are predefined and strictly followed. In many practice sessions, team
members internalize all rules such that they are the most efficient during a mis-
sion. Therefore, there have been many attempts at applying business process
management (BPM) methods in disaster response, including, e.g., [7,6,9]. On
the other hand, each disaster situation is unique on its own. No one can fore-
see which processes have to be executed in which kind of environment. These
decisions have to be made on-site and in real time, often without knowing the
entire situation. Researchers have argued that this unforeseeable nature of dis-
aster missions made conventional process management methods ineffective [19].
Our approach deviates from previous research, as we do not attempt to plan
disaster response processes, but instead take a data-driven bottom-up approach
for managing them in real-time [30].

BPM and IoT. The authors of [8] postulate a series of challenges for integrat-
ing BPM and IoT. The paper at hand addresses the specific challenge of Dealing
with unstructured environments, in addition to the challenges Detecting new pro-
cesses from data and Monitoring of manual activities. Related work exists in the
discovery of models of daily routines, where activity recognition is embedded into
a BPM context. The authors of [25] use an existing sensor log from a smart space
to mine processes of human habits, which they depict using process modeling
techniques. Presence Infrared sensors were used as a single data source. In [21]
the development and evaluation of an approach which recognizes and logs manu-
ally performed assembly and commissioning activities is presented. The goal is to
enable the application of process discovery methods. The presented system uses
a body area network, image data of the process environment and feedback from
the executing workers in case of uncertainties. In [23] an architecture is proposed
that integrates IoT and BPM. The authors present a provenance framework for
IoT data and consider IoT objects in the process model. The system architecture
is implemented and demonstrated, e.g. in a use cases in the production industry
using wearable devices. The authors of [15] present an autonomous monitoring
service for inter-organizational processes. Using this approach, human operators
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e.g. from service providers do not need to notify about the execution of their
tasks. An extension of the Guard–Stage–Milestone (GSM) makes it possible to
monitor the process even if the control flow is not strictly followed.

7 Conclusion and Outlook

In this paper, we presented an approach for process assistance based on IoT
data collected during a robot’s reconnaissance run during a disaster response
mission in the application scenario of an industrial fire. We presented the design,
implementation, and evaluation of a system for the real-time recognition of robot
activities. The robots’ set of capabilities defines a set of activities, which can
be mapped to tasks in an ad-hoc process models. Based on this, the process
assistance system captures process instances of the disaster response operation.

As our evaluation shows, process behavior can be monitored accurately using
a single activity classifier. The classifier itself is trained on sensor data of rather
few process instances, captured from a single sensor mounted on the robot. It can
therefore be said that we presented a light-weight approach with respect to train-
ing effort as well as to the required capacity for the transmission of sensor data.
We showed that the approach allows for the IoT-based capturing of unstructured
processes, which can otherwise not be captured by information technology. Yet,
there are many possible starting points for future research. First, the machine
learning model used for activity recognition can be improved either by further
optimizing segmentation and overlapping ratios of the sliding windows or by
training different model types. In order to preserve an efficient data transmis-
sion, edge computing scenarios could be investigated. All data pre-processing
or even model training and querying could be done on a machine deployed on
the robot. Then, only the results need to be sent to a server to enable process
assistance. Second, our system has been tested and evaluated using a simulation
application to mimic real-life reconnaissance processes. Although the applica-
tion is an accurate virtual representation, the results need to be validated in the
field. This would also allow to test the approach with respect to environmental
factors and phenomena such as lossy data streams happening due to connection
problems between the robot and the other components.

Furthermore, the evaluation as it was conducted here, aimed at showing the
efficacy of the presented IoT-based process monitoring and logging approach.
We did not evaluate the acceptance of target users, which is required before
introducing the system to real disaster response missions. In addition, incorpo-
rating further application scenarios would allow to show the generalizability of
the approach. This should not only be limited to including other types of robots
into the scenario, but different types of missions should be considered as well.
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