
Sampling and Approximation Techniques for
Efficient Process Conformance Checking

Martin Bauera, Han van der Aab, Matthias Weidlicha

aDepartment of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
bData and Web Science Group, University of Mannheim, Germany

Abstract

Conformance checking enables organizations to automatically assess whether their business processes are executed
according to their specification. State-of-the-art conformance checking algorithms perform this task by establishing
alignments between behaviour recorded by IT systems to a process model capturing desired behaviour. While such
alignments clearly highlight conformance issues, a major downside is that these algorithms scale exponentially in the
size of both the event data, capturing recorded behaviour, and the process model used as input. At the same time, it
is crucial to recognise that event data used for such analyses typically only relates to a specific interval of process
execution rather than the entire history, meaning that the employed event data is inherently incomplete. Therefore, we
argue that statistical methods allow one to obtain a proper understanding of the overall conformance of a process by
considering only a fraction of the available data. In this paper, we therefore present a statistical approach to conformance
checking that employs trace sampling and result approximation in order to derive conformance results in an efficient
manner. The approach reduces the runtime significantly, while still providing guarantees on the accuracy of the
estimated conformance result. We instantiate the general approach for different measures of the overall conformance of
an event log and a process model, including fitness as a direct quantification of conformance as well as the distribution
of deviations over activities and deviations related to contextual factors, such as the involved resources. Moreover,
to increase the robustness of our approach, we elaborate on mechanisms to reveal biases in sampling procedures.
Experiments with real-world and synthetic datasets show that our approach speeds up state-of-the-art conformance
checking algorithms by up to three orders of magnitude, while largely maintaining the analysis accuracy.

Keywords: Conformance Checking, Trace sampling, Result Approximation

1. Introduction

The execution of business processes is often supported
by information systems [1]. The way these systems shall
support the process is then captured by a process model,
which defines the elementary units of work, known as
activities of the process, along with causal dependencies
for their execution. A process model, therefore, provides
a specification against which the process execution as
it materialises in terms of event data may be assessed.
The comparison of the modelled behaviour of a system
with its recorded behaviour is known as conformance
checking [2]. Once differences between the model of

Email addresses: martin.bauer@hu-berlin.de (Martin
Bauer), han@informatik.uni-mannheim.de (Han van der
Aa), matthias.weidlich@hu-berlin.de (Matthias
Weidlich)

an information system and its actual execution are de-
tected, they may be interpreted, analysed, and potentially
compensated, thereby leading to more consistent under-
standing of how the system supports the process. Yet,
it is important to see that conformance analysis is not a
one-off operation, but a continuous process that acknowl-
edges the frequent changes applied to business processes
and the supporting information systems [3].

These days, information systems tend to produce in-
creasing amounts of event data. Drivers for this trend are
wide-spread process automation and large-scale instru-
mentation of process resources. As a consequence, event
logs of process executions may contain up to billions of
events [4], which imposes computational challenges for
conformance checking since state-of-the-art, alignment-
based techniques [5] show an exponential run-time com-
plexity. In recent years, various techniques for efficient
conformance checking have been proposed that exploit

Preprint submitted to Elsevier October 6, 2020

search-based methods [6, 7], planning algorithms [8],
and distributed computing [9, 10]. Also, it was sug-
gested to compromise correctness and to approximate
conformance results. Examples for such techniques in-
clude notions of approximate alignments [11] as well
as divide-and-conquer schemes for the computation of
conformance results [12, 13, 14, 15]. Interestingly, tech-
niques that strive for a general, but potentially not en-
tirely precise understanding of the conformance of an
event log and a process model, so far, considered mostly
the adopted algorithms. Fundamentally, they still require
the consideration of all, possibly billions, of recorded
events.

The above observation has to be seen in light of com-
mon application scenarios of conformance checking,
where an event log is extracted for a certain interval
of process execution. In most cases, the event log does
not cover the entire history of process execution, which
renders it inherently incomplete [16, 17, 18]. Moreover,
conformance checking may be conducted for different
purposes and, hence, assume different levels of granu-
larity. For instance, if conformance checking is driven
by compliance requirements, it focuses on the perspec-
tive of individual cases and carves out single deviations
related to a specific execution of the process. However,
if conformance checking is used to achieve operational
excellence, e.g., based on reference models and best
practices, aggregated results are derived to provide a
general understanding of the overall conformance of the
process. Here, the quantification and the identification
of hot-spots of non-conformance help to guide efforts
for process improvement, re-design, and the repair of
process models. Different notions for such an aggregated
view on process conformance may be adopted, though.
Examples include fitness measures [5], the identification
of activities that are frequently part of conformance vio-
lations [12], or contextual aspects of non-conformance,
such as the resources that are typically involved.

In this paper, we argue that for a general understanding
of the overall conformance, it is sufficient to compute
aggregated conformance results for only a small frac-
tion of an event log. As mentioned above, an event
log is typically incomplete by definition. Hence, minor
differences between the conformance results obtained
for the whole log and a partial log may be attributed to
the inherent uncertainty of the conformance checking
setting. As an example, consider a simple claim han-
dling process as visualised in Fig. 1. Here, the events
recorded for the first case (ignoring the information on
the involved resources) indicate non-conformance, as a
previous claim is fetched twice (f). Considering also the
second case, the aggregated conformance results are the

F: Fetch
Previous

Claim

P:
Plausibility

Check

U: Update
Claim
Status

R: Claim
Received

S: Send
Result

Employees:
Ine, Joe

Employees:
Pete, Sue

(a)

Case Event Sequence Resources for F (Fetching Previous Claims)

1 r p f f u s Sue,Pete
2 r f p u f s Ine, Ine
3 r p f u u u s Sue
4 r p f f⊥ s Pete,Pete

(b)

Figure 1: (a) Model of a claim handling process; (b) events of four
process executions.

same, though, despite the different sequence of events:
There is one deviation per trace on average and the set
of non-conforming activities contains a single activity
({F}). Considering also the third and fourth case, new
information on the overall conformance of process ex-
ecution is obtained. Yet, the fourth case resembles the
first one. Hence, its conformance (two deviations w.r.t.
the model) may be approximated based on the result of
the first case (one deviation) and the difference between
both event sequences (one event differs).

The example illustrates two complimentary angles that
can be followed to avoid computation of conformance
results for all available data. First, conformance may
be assessed based on trace sampling. Selecting random
traces iteratively from an event log, for each trace, it is
assessed whether it yields new information on the overall
conformance. In this paper, we formulate this approach
as a series of binomial experiments, each experiment
being a random trace selection. Based thereon, we es-
tablish bounds on the error of the conformance result
derived from a partial event log, in comparison to the
whole log. A second angle for efficient conformance
checking is to include result approximation for the im-
pact of an individual trace on the overall conformance.
In this paper, we show how a worst-case approximation
of the implications of a single trace can be assessed to
further reduce the amount of data for which conformance
results are actually computed.

Our main contributions can be summarized as follows:
• We present a general framework for conformance

checking based on trace sampling. We instantiate
this framework for three types of conformance re-

2

sults: fitness, deviation distributions, and contextual
deviations. The latter is exemplified for the context
being defined by the involved resources.

• We demonstrate how conformance results can be
approximated, which avoids the need to compute
alignments even for certain previously unseen trace
variants. We present such approximations for all
the aforementioned types of conformance results.

• We show how the quality of the samples on which
conformance results are based can be assured.
Specifically, we propose methods to assess the in-
ternal and external quality of a sample based on
behavioural representativeness and data attribute
coverage and incorporate these into the proposed
conformance checking techniques.

This paper is an extended and revised version of our
earlier work on process conformance estimation [19].
The main conceptual extensions in this work are: (1) the
consideration of context-based conformance measures
in trace sampling, (2) an improved approximation tech-
nique when considering deviation distributions, and (3)
methods to assess the quality of utilized log samples.
Each of these extensions is assessed through additional
evaluation experiments.

The remainder is structured as follows. Section 2 pro-
vides essential preliminaries. Section 3 presents a gen-
eral framework and its instantiations for sample-based
conformance checking, whereas Section 4 considers
approximation-based methods. Section 5 considers the
assessment of sample quality. Section 6 presents com-
prehensive evaluation experiments using both real-world
and synthetic datasets conducted to assess the efficiency,
accuracy, and sensitivity of the proposed conformance
checking techniques. Finally, we review our contribu-
tions in light of related work (Section 7) before conclud-
ing in Section 8.

2. Preliminaries

This section provides essential definitions regarding
events and event logs, process models, and alignment-
based conformance checking.

Events and event logs. We adopt an event model that
builds upon a finite set of activitiesA. An event recorded
by an information system is assumed to be related to
the execution of one of these activities. By E , we de-
note the universe of all events. A single execution of
a process, called a trace, is modelled as a sequence
of events ξ ∈ E∗, such that no event can occur in
more than one trace. An event log is a set of traces,
L ⊆ 2E

∗
. Our example in Fig. 1b defines four traces.

While each event is unique, we represent them with small
letters {r, p, f, u, s}, that indicate for which activity of
the process model, denoted by respective capital letters
{R,P, F, U, S}, the execution is signalled. For an event
e ∈ E , we also write e.activity ∈ A to denote the
activity of an event. Two distinct traces that indicate the
same sequence of activity executions are of the same
trace variant.

Each event furthermore carries information on its exe-
cution context, such as the data consumed or produced
during the execution of an activity. This payload is de-
fined by a set of data attributes D = {D1, . . . , Dp} with
dom(Di) as the domain of attribute Di (1 ≤ i ≤ p). We
write for e.D the value of attribute D for an event e. As
an illustration, an event of type R (Claim Received) may
be associated with an amount attribute that reflects the
claimed compensation, e.g., e.amount = 1.000. More-
over, for an event of type F (Fetch Previous Claim), an at-
tribute resource indicates the employee that accessed
information about prior claims, e.g., e.resource =
Pete .

Process models. First and foremost, a process model
defines the control-flow of a process, i.e., the execution
dependencies between the activities of a process. For
our purposes, it is sufficient to abstract from specific
process modelling languages and focus on the set of ex-
ecution sequences defined by a model. It is denoted by
M ⊆ A∗ and captures the sequences of activity execu-
tions that lead the process to its final state. For instance,
the model in Fig. 1a defines the execution sequences
〈R,P, F, U, S〉 and 〈R,F, P, U, S〉, potentially includ-
ing additional repetitions of U .

Process models may be enriched with information on
further process perspectives that formalise in more de-
tail the context of process execution. Examples include
branching-conditions that refer to the data of a case (e.g.,
claims of a certain amount are processed differently),
temporal constraints on the execution of activities (e.g.,
results for a claim are sent out solely on working days,
or the result needs to be sent at most three weeks after
the claim has been received), or resource assignments
(e.g., the execution of certain activities is limited to au-
thorized employees). To ease the presentation in the
remainder of the paper, we focus on resource assign-
ments as one particular example of such contextual in-
formation. To this end, we define responsibilities for the
execution of activities by assigning each of them a set
of resources. Formally, with R as the set of resources,
the model includes a function Mres : A → 2R. Re-
ferring to the above example, this function would, for
instance, define that there are two out of four employees

3

that are responsible for fetching previous claims, i.e.,
the resources includeR = {Pete, Joe,Sue, Ine} while
Mres(F) = {Pete,Sue}.

In the remainder, we writeM for the set of all process
models, assuming that it includes the definition of the
execution sequences and, potentially, further information
on other process perspectives.

Alignments. State-of-the-art techniques for confor-
mance checking construct alignments between traces
and execution sequences of a model to detect devia-
tions [5, 13]. An alignment between a trace ξ and a
model M , denoted by σ(ξ,M) in the remainder, is a
sequence of steps, each step comprising a pair of an
event and an activity, or a skip symbol ⊥, if an event or
activity is without counterpart. For instance, for the non-
conforming trace ξ1 (case 1 from Fig. 1b), an alignment
is constructed as follows:

Trace ξ1 r p f f u s

Execution sequence R P F ⊥ U S

Assigning costs to skip steps, a cost-optimal alignment
is constructed for a trace in relation to all execution
sequences of a model [5]. Note though, that an optimal
alignment is not necessarily unique, i.e., for a single
trace, there may be multiple cost-optimal alignments
with the same execution sequence or with other execution
sequences of the model.

While alignments enable conclusions on the confor-
mance of an individual trace, they also form the basis of
a large range of measures for the overall conformance
of a log. The respective measures may refer to differ-
ent process perspectives, such as the control-flow, the
data consumed and produced by activities, temporal as-
pects, and resource assignments. Moreover, they may
employ various levels of aggregation; from a single nu-
meric value for the whole log to a distribution for each of
the activities of the process under consideration. In the
remainder, we consider three measures to illustrate the
spectrum of conformance checking and highlight that our
approach is largely independent of a specific measure.

Fitness. The fitness of a log with respect to a given
model provides a quantification of the control-flow con-
formance. With an optimal alignment σ(ξ,M) for each
trace ξ, we denote the aggregated alignment cost by
c(ξ,M). Then, a common fitness measure is defined as
the ratio of this cost to the maximum possible cost per
trace, i.e., the sum of the costs of aligning a trace with an
empty model, c(ξ, ∅), and the minimal costs of aligning
an empty trace with the model, minx∈M c(〈〉, {x}). Ag-
gregating the respective costs over all traces, the fitness

measure returns a single numeric value for the control-
flow conformance of a log:

fitness(L,M) =

1−
∑
ξ∈L c(ξ,M)∑

ξ∈L c(ξ, ∅) + |L| ×minx∈M c(〈〉, {x})
(1)

Using a standard cost function (all skip steps have
equal costs), the fitness value of the example log
{ξ1, ξ2, ξ3, ξ4} in Fig. 1b is 0.9.

Deviation distribution. As a second conformance mea-
sure, we consider the deviation distribution of a log that
enables the detection of hotspots of non-conformance
in the control-flow. It captures the relative frequency
with which an activity (not to be confused with a task
of a process model) is part of a conformance violation.
For a log L and a model M , this distribution follows
from skip steps in the optimal alignments of all traces.
It is formalised based on a bag of activities, which is
captured as a function coined dev(L,M) that assigns
multiplicities to activities, i.e., its signature is given as
dev(L,M) : A → N0. Note that multiple skip steps
may relate to a single activity even in the alignment of a
single trace. In the remainder, we use subscript notation
for bag cardinalities, i.e., for a bag X over A, we write
X = [an1

1 , . . . , anmm] with X(ai) = ni and ni > 0, for
1 ≤ i ≤ |A|. The relative deviation frequency of an
activity a ∈ A is then obtained by dividing the number
of occurrences of a in the bag of deviations by the total
number of deviations:

fdev(L,M)(a) =
dev(L,M)(a)∑
a∈A dev(L,M)(a)

(2)

Consider again the example in Fig. 1 and assume that
skip steps relate to the highlighted trace positions. Then,
we derive that dev({ξ1, ξ2, ξ3, ξ4},M) = [F 3, U] and
fdev({ξ1,...,ξ4},M)(F) = 3/4, so that the fetching of a
previous claim (F) is identified as a hotspot of non-
conformance.

Contextual deviations. As a third measure, we go be-
yond the control-flow perspective and consider confor-
mance with respect to contextual factors. That is, we
assess whether the context definition as given in the
process model (e.g., data-based branching conditions,
temporal constraints, resource assignments) is consistent
with the context information recorded in the payload of
the events in an event log.

Let F be a universe of contextual factors. Contextual
deviations as considered here, may be captured by a func-
tion sfac(L,Mfac) that assigns these factors to activities,

4

given a log L and model Mfac that is annotated with con-
textual information. That is, the signature of this func-
tion, in general, is given as sfac(L,Mfac) : A → 2F .

As mentioned, we illustrate the notion of a contextual
deviation with the example of the resources involved in
the execution of a process, which leads to the notion
of a resource deviation. On the one hand, this includes
violations where employees executed activities, which,
according to the process model, should not have been
executed, i.e., as identified in an alignment. On the other
hand, it includes cases where the responsibilities for
activities, defined in a process model, where violated,
i.e., activities performed by unauthorized resources.

To define this conformance measure, we
use devr(e,Mres) = {e.resource} \
Mres(e.activity) to denote a set that contains
the resource that was unauthorized to perform event
e, i.e., if e.resource is not part of the possible
assignments defined by the model for the activity,
Mres(e.activity). If the resource was authorized,
the set devr(e,Mres) is empty. Then, we aggregate
the resource deviations per activity, leading to the set
of employees involved in non-conforming activity
executions:

sres(L,Mres)(a) =⋃
ξ=〈e1,...,en〉∈L

〈(e1,t1),...,(em,tm)〉∈σ(ξ,M)
1≤i≤m

ei.activity=a ∧ ti=⊥

{ei.resource} ∪

⋃
ξ=〈e1,...,en〉∈L

1≤i≤n
ei.activity=a

devr(ei,Mres)

(3)

In Eq. 3, the left-hand side of the join identifies those
resources associated with non-conforming event execu-
tions (i.e., skip steps), whereas the right-hand side cap-
tures the aforementioned cases involving unauthorized
resources.

Assuming that, as illustrated in Fig. 1, the employees
involved in the fetching of previous claims had been
Sue and Pete for the first and second activity execution
in ξ1, respectively; Ine for both activity executions in
ξ2; Sue for ξ3; and Pete for both activity executions in
ξ4. Then, we would obtain a set of resource deviations
as sres(L,Mres)(F) = {Pete, Ine} highlighting that the
two employees were involved in fetching of previous
claims that was not in line with the process model.

The above formalisation illustrates contextual devi-
ations being defined by the resources involved in non-
conforming execution of activities. Of course, the notion
of resource deviations may be elevated to a higher level

of detail, allowing the identification of resource roles
involved in violations rather than individuals. Yet, in the
same vein, contextual deviations may also be defined for
other perspectives of process executions. For instance, if
certain activities must not be executed for claims of a cer-
tain amount, contextual deviations may be captured for
pairs of activities and amounts (potentially after applying
some predicate abstraction to the latter). If the execution
of some activities is limited to working days, extracting
the day-of-week from the events, yields insights on the
activities for which these constraints are violated.

3. Sample-Based Conformance Checking

This section describes how trace sampling can be used
to improve the efficiency of conformance checking. The
general idea is that it often suffices to only compute
alignments for a subset of all trace variants to gain in-
sights into the overall conformance of a log to a model.
However, we randomly sample an event log trace by
trace, not by trace variant, which avoids to load the en-
tire log and step-wise reveals the distribution of traces
among the variants. At some point, though, the sampled
traces then do not provide new information on the overall
conformance of the process.

In the remainder of this section, we first describe a
general framework for sample-based conformance check-
ing (Section 3.1), which we then instantiate for different
types of conformance results: the overall fitness of log
(Section 3.2), its deviation distribution (Section 3.3), and
observed contextual deviations related to resource as-
signments (Section 3.4)

3.1. Statistical Sampling Framework

To operationalise sample-based conformance check-
ing, we regard it as a series of binomial experiments. In
this, we follow a log sampling technique introduced in
the context of process discovery [20, 21] and lift it to the
setting of conformance checking.

Information novelty. When parsing a log trace by trace,
some traces may turn out to provide information on the
conformance of a log to a model that is similar or equiv-
alent to the information provided by previously encoun-
tered traces. To assess whether this is the case, we cap-
ture the conformance information associated with a log
by a conformance function ψ : 2E

∗ ×M→ X . That is,
ψ(L,M) is the conformance result (of some domain X)
between a log L and a model M . If we are interested in
the fitness of the log, ψ returns the fitness value; for the
distribution of deviations, ψ provides information on the
model activities for which deviations are observed; and

5

for context information in terms of assigned resources, ψ
captures the sets of employees who executed an activity
not according to the process model, i.e., at the wrong
position in the trace or despite being not responsible for
the activity.

Based thereon, we define a random Boolean predicate
γ(L′, ξ,M) that captures whether a trace ξ ∈ E∗ pro-
vides new information on the conformance with model
M , i.e., whether it changes the result obtained already
for a set of previously observed traces L′ ⊆ 2E

∗
. Assum-

ing that the distance between conformance results can
be quantified by a function d : X ×X → R+

0 , we define
a new information predicate as:

γ(L′, ξ,M)⇔ d(ψ(L′,M), ψ({ξ} ∪ L′,M)) > ε.
(4)

Here, ε ∈ R+
0 is a relaxation parameter. If incorporating

trace ξ changes the conformance result by more than ε,
then it adds new information over L′.
Framework. We exploit the notion of information nov-
elty for hypothesis testing when sampling traces ran-
domly from an event log L. We determine when enough
sampled traces have been included in a log L′ ⊆ L to
derive an understanding of its overall conformance to a
model M . Following the interpretation of log sampling
as a series of binomial experiments [21], L′ is regarded
as sufficient if the algorithm consecutively draws a cer-
tain number of random traces that did not contain new in-
formation. Specifically, with δ as a measure that bounds
the probability of a newly sampled trace to provide new
information over L′, at a significance level α, a mini-
mum sample size N is computed. Based on the normal
approximation to the binomial distribution, the latter is
given as N ≥ z2 ∗ (1 − δ)/δ, where z corresponds to
the realisation of a standardised normal random variable
for 1 − α (one-sided hypothesis test). As such, N is
calculated given values for δ and α for the desired levels
of similarity and significance, respectively.

Consider α = 0.01 and δ = 0.05, so that N ≥ 128.
Hence, after observing 128 traces without new informa-
tion, sampling can be stopped knowing with 0.99 confi-
dence that the probability of finding new information in
the remaining log is less than 0.05.

Using the above formulation, our framework for
sample-based conformance checking is presented in
Alg. 1. The algorithm takes as input an event log L,
a process model M , the number of trials that need to
fail N , a predicate γ to determine whether a trace pro-
vides new information, and a conformance function ψ.
Going through L trace by trace (lines 4–14), the algo-
rithm conducts a series of binomial experiments that
check, if a new, randomly sampled, trace provides new

information according to the predicate γ (line 8). Once
N consecutive traces without new information have been
selected, the procedure stops and the conformance result
is derived based on the sampled log L′.
Result re-use. Note that the algorithm provides a con-
ceptual view, in the sense that checking the new informa-
tion predicate γ(L′, ξ,M) in line 8 according to Eq. 4, re-
quires the computation of ψ(L′,M) and ψ({ξ}∪L′,M)
in each iteration. A technical realisation of this algo-
rithm, of course, shall exploit that most types of con-
formance results can be computed incrementally. For
instance, considering the aforementioned conformance
measures, an alignment is computed only once per trace
variant, i.e., per unique sequence of activity executions,
and reused in the iterations of the algorithm. Also, the
value of ψ(L′,M) for γ(L′, ξ,M) in line 8 is always
known from the previous iteration, while the confor-
mance result in line 15 is not actually computed at this
stage, as the respective result is known from the last
evaluation of γ(L′, ξ,M).

In the next sections, we discuss how to define γ when
the conformance function assesses the fitness of a log to a
model, the observed deviation distribution, or contextual
deviations related to resources.

Algorithm 1: Framework for Sample-Based
Conformance Checking

input : L, an event log; M , a process model; N , a number
of failed trials to observe; γ, a predicate that holds
true, if a trace provides new information; ψ, a
conformance function.

output : ψ(L′), the conformance results for sampled traces.

1 L′ ← ∅; /* The sampled log */

2 i← 0; /* Iterations without new information */

3 L′′ ← ∅; /* Traces sampled since i was reset */

4 repeat
5 ξ ← sampleRandomTrace(L \ L′);
6 L′′ ← L′′ ∪ ξ;
7 if γ(L′, ξ,M) /* Check if new information */

8 then
9 L′ ← L′ ∪ L′′; /* add current traces */

10 L′′ ← ∅;
11 i← 0; /* Reset the counter */

12 else
13 i← i+ 1; /* Increment the counter */

14 until i ≥ N ∨ (L′ ∪ L′′) = L;
/* Repeats until N traces without new

information are seen consecutively */

15 return ψ(L′) ; /* Return conformance results */

3.2. Sample-Based Fitness
The overall conformance of a log to a model may be

assessed by considering the log fitness (see Section 2)

6

as a conformance function, ψfit(L,M) = fitness(L,M).
Then, determining whether a trace ξ provides new in-
formation over a log sample L′ requires us to assess, if
incorporating ξ leads to a difference in the overall fitness
for the sampled log. Following Eq. 4, we capture this
by computing the absolute difference between the fitness
value for traces in the sample L′ and the value of the
sample plus the new trace:

dfit(ψfit(L
′,M), ψfit({ξ} ∪ L′,M)) =∣∣fitness(L′,M)− fitness({ξ} ∪ L′,M)

∣∣ (5)

If this distance is smaller than the relaxation parameter ε,
the change in the overall fitness value induced by trace ξ
is considered to be negligible.

To illustrate this, consider a scenario with ε = 0.03
and a sample consisting of the traces ξ1 and ξ3 of
our running example (Fig. 1). Then, the log fitness
for {ξ1, ξ3} is 0.95. In this situation, if the next
sampled trace is ξ2, the distance function yields
|fitness({ξ1, ξ3},M)− fitness({ξ1, ξ2, ξ3},M)| =
0.95 − 0.93 = 0.02. In this case, since the distance is
smaller than ε, we would conclude that the additional
consideration of ξ2 does not provide new information.
By contrast, considering trace ξ4 would yield a distance
of 0.95 − 0.89 = 0.06. This indicates that trace ξ4
would imply a considerable change in the overall fitness
value, i.e., it provides new information.

3.3. Sample-Based Deviation Distributions
Next, we instantiate the above framework for con-

formance checking based on the deviation distribution.
As detailed in Section 2, this distribution captures the
relative frequency with which activities are related to
conformance issues.

To decide whether a trace ξ provides new information
over a log sample L′, we assess if the deviations obtained
for ξ lead to a considerable difference in the overall
deviation distribution. As such, the distance function for
the predicate γ needs to quantify the difference between
two discrete frequency distributions. This suggests to
employ the Euclidean distance as a measure:

ddev(ψdev(L
′,M), ψdev({ξ} ∪ L′,M)) =√∑

a∈A

(fdev(L′,M)(a)− fdev({ξ}∪L′,M)(a))2
(6)

Taking up our example from Fig. 1, processing only
the trace ξ1, all deviations are related to the activity of
fetching an earlier claim, i.e., fdev({ξ1},M)(F) = 1. No-
tably, this does not change when incorporating traces
ξ2 and ξ3, i.e., fdev({ξ1,ξ2,ξ3},M)(F) = 1, as they do

not provide new information in terms of the deviation
distribution. If, after processing trace ξ1, however, we
sample ξ4, we do observe such a difference: based on
fdev({ξ1,ξ4},M)(F) = 2/3 and fdev({ξ1,ξ4},M)(U) =
1/3, we compute a distance of 0.47. For a relaxation
parameter ε that is smaller than this value, we would
thus conclude that ξ4 provides novel information.

Given the distance functions based on trace fitness and
deviation distribution, it is interesting to note that these
behave differently, as illustrated in our example: If the
log is {ξ1, ξ2} and trace ξ3 is sampled next, the overall
fitness changes. Yet, since ξ3 is a conforming trace, it
does not provide new information on the distribution of
deviations.

3.4. Sample-based Resource Deviations

Finally, we consider conformance issues related to the
context of process execution. As detailed in Section 2,
we illustrate the handling of contextual factors for the
example of resource assignments. Specifically, a set of
resource deviations includes the resources that, accord-
ing to the event log, executed an activity even though
this execution should not have happened in the respective
state, so that the event is part of a skip step in an optimal
alignment of the trace. Moreover, the set of resource
deviations contains resources that executed activities, de-
spite not being in charge of the activities according to
the process model.

From the above it follows that a trace ξ provides new
information over a log sample L′, if the set of resource
deviations changes considerably. The latter is determined
as a relative change in the size of the set, which leads
to the following formulation of the distance function as
part of the definition of the predicate γ:

dres(ψres(L
′,M), ψres({ξ} ∪ L′,M)) =

1

|A|
∑
a∈A

sres({ξ}∪L′,Mres)(a)6=∅∣∣sres({ξ}∪L′,Mres)(a) \ sres(L′,Mres)(a)∣∣∣∣sres({ξ}∪L′,Mres)(a)∣∣
(7)

Returning to our running example, see Fig. 1, we ob-
serve the following. Processing only trace ξ1, the
set of resource deviations for the activity of fetching
previous claims (F) includes a single employee, i.e.,
sres({ξ1},Mres)(F) = {Pete}. Upon processing trace
ξ2, this set changes and now also includes a second em-
ployee, i.e., sres({ξ1,ξ2},Mres)(F) = {Pete, Ine}. The
respective distance would be computed as 1/5 · 1/2 = 0.1.

7

Traces ξ3 and ξ4, in turn, do not provide further infor-
mation on resource deviations. While trace ξ4 also in-
cludes a deviation linked to the employee Pete, this
does not constitute new information in terms of the set
of resourced involved in non-conforming activities.

4. Approximation-Based Conformance Checking

In this section we propose methods that approximate
the impact of a sampled trace on the overall conformance
result, which can be employed to further reduce the num-
ber of computationally expensive alignments that need
to be established. As such, the approximation methods
complement the sampling methods introduced in the pre-
vious section: Even when a trace of a yet unseen variant
is sampled, we decide whether to compute an actual
conformance result or whether to approximate it. This
decision is based on the worst-case impact that a con-
formance result can have according to the approximated
result, which is obtained by comparing the trace at hand
to similar variants for which conformance results have
previously been derived.

In Section 4.1, we describe how result approximation
can be integrated into our sample-based conformance
checking approach. Section 4.2 discusses how similarity
between trace variants can be assessed, while Section 4.3
presents instantiations of the approximation method for
conformance results based on log fitness, deviation dis-
tribution, and contextual deviations related to resources.

4.1. Conformance Approximation Framework

Against this background, our technique for
approximation-based conformance checking, formalised
in Alg. 2, extends our procedure given in Alg. 1. In
fact, it primarily provides a realisation of checking
the new information predicate γ(L′, ξ,M), as done in
line 8 of Alg. 1. That is, whether the sampled trace ξ,
which is of an unseen variant, provides new information
may be decided based on its approximated, rather
than its computed impact on the overall conformance
result. At the same time, however, the algorithm also
needs to keep track of all sampled traces L′a ⊆ L′, for
which the approximated results shall be used whenever
a conformance result is computed. This leads to an
adaptation of the conformance function ψ, i.e., we con-
sider a partially approximating conformance function
ψ̂ : 2E

∗ × 2E
∗ ×M→ X . Given a log L′ and a subset

L′a ⊆ L′, this function approximates the conformance
result ψ(L′,M) by computing solely ψ(L′ \ L′a,M),
i.e., the impact of traces L′a is not precisely computed.
In the same way, to use the approximation technique as

part of sample-based conformance checking, the use
of the conformance function ψ in Alg. 1 also has to be
adapted accordingly.

Algorithm 2: Framework for Approximation-
Based Conformance Checking

input : L′, a log sample; M , a process model; ξ, a trace
sampled of a yet unseen variant with ξ /∈ L′; d, a
distance function; ε, a relaxation parameter; k, a
similarity threshold; ψ̂, a partially approximating
conformance function; L′

a ⊆ L′, traces for which
approximated results are used.

output : v ∈ {true,false}, indicates whether ξ provides
new information.

1 ξr ← argminξ′∈L′\L′a sim(ξ, ξ′); /* Select most

similar trace */

2 if sim(ξ, ξr) ≤ k ; /* Check if k-similar */

3 then
4 Φ← approx(ξ, ξr, L′,M) ; /* Derive all

possible approximations */

5 if ∃ φ ∈ Φ : d(ψ̂(L′, L′
a,M), φ) > ε ; /* Check if

approximation indicates new information */

6 then
7 return true ; /* Approach will compute

actual result */

8 else /* Approach uses approximated result */

9 L′
a ← L′

a ∪ {ξ} ; /* Add ξ to traces with

approximated results */

10 return false;

11 else /* No k-similar trace available, compute

real result to check for new information */

12 v ← d(ψ̂(L′, L′
a,M), ψ̂({ξ} ∪ L′, L′

a,M)) > ε;
13 return v;

Turning to the details of Alg. 2, its input includes a
log sample L′, a sampled trace ξ /∈ L′, and a process
model M , i.e., the arguments of γ in line 8 of Alg. 1, as
well as a distance function d and relaxation parameter
ε from the definition of γ (Eq. 4). Moreover, there is a
similarity threshold k to determine which traces may be
used for approximation. Finally, the aforementioned set
of traces L′a for which results shall be approximated and
the respective adapted conformance function ψ̂ are given
as input.

From the sampled traces for which approximation is
not applied (i.e., L′ \ L′a), the algorithm first selects the
trace that is most similar to ξ, referred to as the reference
trace ξr (line 1). Then, to reduce the introduced error
of the approximation, we assess whether the similarity
is above the similarity threshold k (line 2). If not, we
check the trace for new information as done before, just
using the adapted conformance function (lines 12–13).
If ξr is sufficiently similar, however, we perform a worst-
case approximation of the impact of ξ on the overall
conformance result based on ξr (line 4). As part of that,

8

we may obtain several different approximations Φ, each
of which is checked whether it indicates new information
over the current sample L′ (line 6). Only if this is not
the case, we conclude that ξ indeed does not provide
new information and under ε. By adding it to L′a we
make sure that its impact on the overall conformance
will always only be approximated, but never precisely
computed, and that the conformance approximation of
new traces will never be based on ξ (line 9).

Next, we give details on the assessment of trace simi-
larity (function sim, Section 4.2) and the conformance
result approximation (function approx, Section 4.3).

4.2. Trace Similarity

Given a trace ξ and the part of the sample log for which
approximation did not apply (L′ \ L′a), Alg. 2 requires
us to identify a reference trace ξr that is most similar
according to some function sim : E∗ × E∗ → [0, 1].
As we consider conformance results that are based on
alignments, we define this similarity function based on
the alignment cost of two traces. To this end, we consider
a function ct, which, in the spirit of function c discussed
in Section 2, is the sum of the costs assigned to skip steps
in an optimal alignment of two traces. It is important to
note here that the complexity of trace-to-trace alignment
using the algorithm by Needleman and Wunsch [22],
as suggested by Bose et al. [23], has a considerably
smaller computational complexity (|ξ| × |ξ′|) than the
exponential complexity of the trace-to-model alignment
that our approximation method aims to avoid.

To obtain a similarity measure, we normalise this ag-
gregated cost by a maximal cost, which is obtained by
aligning each trace with an empty trace. This normalisa-
tion resembles the one discussed for the fitness measure
in Section 2. We define the similarity function for traces
as sim(ξ, ξ′) = 1− ct(ξ, ξ′)/(ct(ξ, 〈〉) + ct(ξ

′, 〈〉)).
Considering trace ξ4 = 〈r, p, f, f, s〉 of our running

example, the most similar trace (assuming equal costs for
all skip steps) is ξ1 = 〈r, p, f, f, u, s〉, with ct(ξ1, ξ4) =
1 and, thus, sim(ξ1, ξ4) = 10/11.

4.3. Conformance Result Approximation

In the approximation step of Alg. 2, we derive a set
of worst-case approximations of the impact of the trace
ξ on the overall conformance result, using the reference
trace ξr (which is at least k-similar). Based thereon, it
is decided whether ξ provides new information. The
approximation, however, depends on the type of confor-
mance result.

4.3.1. Fitness Approximation
To approximate the impact of trace ξ on the

overall fitness, we compute a single value, i.e.,
approx(ξ, ξr, L

′,M) in line 4 of Alg. 2 yields a sin-
gleton set. This value is derived by reformulating Eq. 5,
which captures the change in fitness induced by a sample
trace. That is, we assess the difference between the cur-
rent fitness, fitness(L′,M), and an approximation of the
fitness when incorporating ξ, i.e., fitness({ξ} ∪ L′,M).
This approximation, denoted by fît(ξ, ξr, L

′,M), is de-
rived from (i) the change in fitness induced by the refer-
ence trace ξr, and (ii) the differences between ξ and ξr.
The former is assessed using the aggregated alignment
cost c(ξr,M), whereas the latter leverages the aggre-
gated cost of aligning the traces, ct(ξ, ξr). Normalis-
ing these costs, function approxfit(ξ, ξr, L

′,M) yields
a worst-case approximation for the change in overall
fitness imposed by ξ, as follows:

approxfit(ξ,ξr, L
′,M) ={∣∣∣fitness(L′,M)− fît(ξ, ξr, L

′,M)
∣∣∣} (8)

Where fît(ξ, ξr, L
′,M) is defined as:

fît(ξ, ξr, L
′,M) = 1−∑
ξ′∈L′

c(ξ′,M) + c(ξr,M) + ct(ξ, ξr)∑
ξ′∈L′

c(ξ′, ∅) + max
ξ′∈

{ξ,ξr}

c(ξ′, ∅) + (|L′|+ 1) min
x∈M
·c(〈〉, {x})

(9)

Turning to our running example, assume that we have
sampled {ξ1, ξ2} and computed the precise fitness value
based on both traces, which is 1− 2/(12 + 10) ≈ 0.909
using a standard cost function. If trace ξ4 is sampled
next, we approximate its impact using the most similar
trace ξ1. To this end, we consider c(ξ1,M) = 1 and
ct(ξ1, ξ4) = 1, which yields an approximated fitness
value of 1−(2+1+1)/(12+6+15) = 1−4/33 ≈ 0.879.
This is close to the actual fitness value for {ξ1, ξ2, ξ4},
which is 1−4/(17+15) ≈ 0.875. The minor difference
stems from ξ1 being slightly longer than ξ4.

4.3.2. Deviation Distribution Approximation
To approximate the impact of trace ξ on the deviation

distribution, we follow a similar approach as for fitness
approximation. However, we note that the approxima-
tion function here yields a set of possible values, as there
are multiple different distributions to be considered when
measuring the distance to the current distribution. The

9

reason being that the difference between ξ and the ref-
erence trace ξr induces a set of possible changes of the
distribution.

Specifically, we denote by ed(ξ, ξr) the edit distance
of the two traces, i.e., the pure number of skip steps in
their alignment. This number gives an upper bound for
the number of conformance issues that need to be incor-
porated in addition to those stemming from the alignment
of the reference trace and the model, i.e., dev({ξr},M).
Yet, the exact activities associated to these skips steps are
not known. Therefore, we need to consider all bags of
activities of size ed(ξ, ξr), the set of which is denoted by
[A]ed(ξ,ξr). Each bag in [A]ed(ξ,ξr), representing a spe-
cific combination of activities from A of size ed(ξ, ξr),
reflects a potential combination of deviations. As such,
each of these bags can have a different impact on the
approximated deviation distribution, i.e., leading to a
different approximation f̂dev(β, ξr, L′,M) of the distri-
bution fdev({ξ}∪L′,M). We compute those approximated
impacts as follows:

approxdev(ξ, ξr, L
′,M) =⋃

k=ed(ξ,ξr)

β∈[A]k

{∑
a∈A

∣∣∣fdev(L′,M)(a)− f̂dev(β, ξr, L′,M)(a)
∣∣∣}

(10)

Here, approxdev(ξ, ξr, L′,M) contains the set of po-
tential distances between the observed deviation distri-
bution fdev(L′,M)(a) and the deviation distributions ob-
tained after adding each of the possible combinations
β ∈ [A]ed(ξ,ξr), computed using the following distance
function:

f̂dev(β,ξr, L
′,M)(a) =

dev(L′,M)(a) + dev({ξr},M)(a) + β(a)

|dev(L′,M)|+ |dev({ξr},M)|+ |β|
(11)

Reconsider our example: Based on a sample consist-
ing {ξ1, ξ2}, we determine that dev({ξ1, ξ2},M) =
[F 2] and that fdev({ξ1,ξ2},M)(F) = 1. If ξ4 is
then sampled, we obtain an approximation based on
dev({ξ1},M) = [F] and ed(ξ4, ξ1) = 1. We there-
fore consider the change in the distribution incurred
by approximating the deviations of ξ4 as [F]] β with
β ∈ {[R], [P], [F], [U], [S]}, i.e., the approximated de-
viation is any combination between [F] and another ac-
tivity. For instance, f̂dev([R], ξ4, {ξ1, ξ2},M) yields a
distribution assigning relative frequencies of 3/4 and 1/4
to activities F and R, respectively.

The above approximation method may be tuned heuris-
tically by narrowing the set of activities that are consid-
ered for β, i.e., the possible deviations incurred by the
difference between ξ and ξr. While this means that f̂dev
is no longer a worst-case approximation, it may steer
the approximation in practice, hinting at which activi-
ties shall be considered for possible deviations. Such
an approach is also beneficial for performance reasons:
Since β may be any bag built of the activities in A, the
number of potential combinations increases exponen-
tially. This blow-up limits the applicability of the ap-
proximation only to traces that are rather similar, i.e., for
which ed(ξ, ξr) is small. Here, we describe three specific
heuristics to prune the number of possible combinations:

1. A first heuristic, already described in [19], deter-
mines the overlap between ξ and ξr in terms of
their maximal shared prefix and suffix of activities,
for which the execution is signalled by their events.
The heuristic then identifies those events that are not
part of the shared prefix and suffix, so that we only
consider the activities referenced by the non-shared
events for the construction of β.

2. Second, we consider only those activities of ξ and
ξr that correspond to skip steps while aligning ξ
to ξr. This heuristic is more precise than the first
one, given that it also recognises overlaps that occur
outside of a shared prefix and suffix. Furthermore,
it has the added benefit that this heuristic yields a
single, uniquely defined set of activities β of size
ed(ξ, ξr), rather than a number of possible combi-
nations.

3. Third, we refine the second heuristic by aiming to
further reduce approximation error. We achieve this
by only considering activities for β that have al-
ready been observed to be deviating, i.e., for which
an alignment between trace and model indicated a
skip step. This avoids the case where approxima-
tion identifies potential deviations for activities that
actually never deviate. This, furthermore, reduces
a bias of the approximation method against rela-
tively uncommon activities, as they are less likely
to occur in a reference trace ξr and, therefore, are
more likely to be related to a skip step during the
alignment of ξ to ξr.

In our example, traces ξ1 and ξ4 share the prefix
〈r, p, f, f〉 and suffix 〈s〉. Thus, ξ1 contains one event
between the shared prefix and suffix, u, while there
is none for ξ4. Hence, if the first heuristic is applied,
we consider a single bag of deviations, β = [U], and
f̂dev([U], ξ4, {ξ1, ξ2},M) is the only distribution con-
sidered in the approximation. The alignment-based sec-

10

ond heuristic would identify the same, unique potential
deviation set.

To illustrate the difference between the third heuristic
and the others, we consider traces ξ1 and ξ3. The align-
ment of these traces results in three skip steps, related
to the executions of activities F and U (two times). The
application of the first and second heuristics would con-
sider the execution of activity U as a potential deviating
activity, given that it differs between ξ3 and the refer-
ence trace ξ1. However, in the traces analysed so far,
we have never observed a deviation involving activity U .
Therefore, the third heuristic considers only activity F
as potentially deviating.

4.3.3. Resource Deviation Approximation
When approximating the impact of a trace ξ on the

resource deviations, we first assess the worst-case sce-
nario: Given the resource violations already observed,
we check if there would be new information (according
to the predicate γ), if all resources involved in ξ would
lead to resource violations. Put differently, we exploit
that the number of resources referenced in the events of
a trace provides an upper bound for the difference be-
tween the sizes of the sets of resource deviations before
and after incorporating the trace. While this is a rather
coarse-grained approximation, it can be expected to be
beneficial in various application scenarios. If a trace re-
lates to only a few resources (or none at all) or if virtually
all the referenced resources have already been observed
as violating, even such a worst-case approximation is
likely to yield a negative γ, in which case we know for
sure that no new information can be observed for ξ.

If the above test yields a positive γ for a trace ξ, we
approximate its impact in a more fine-granular manner.
In general, approximation should consider the two poten-
tial sources of resource deviations, i.e., (1) the resources
referenced in events that are part of skip steps in an opti-
mal alignment and (2) resources that executed activities
without being assigned the respective responsibility in
the process model, see also Eq. 3. The latter type of
deviations does not impose any computational challenge.
It can be determined precisely in linear time in the length
of the trace by verifying the containment of the resources
referenced by the events in the set of resources assigned
to the respective activities in the process model. As such,
we do not approximate this type of resource deviation.
We denote the respective set of deviations for trace ξ
that originate from the execution of an activity a by re-
sources that are not responsible according to modelMres

as devres(ξ,Mres)(a).
To approximate the resource deviations stemming

from skip steps, we first identify a reference trace

ξr for ξ based on the edit distance of the traces,
ed(ξ, ξr), as described above for the approximation
of the deviation distribution. From the optimal align-
ment σ(ξr,M) = 〈(e′1, t1), . . . , (e′m, tm)〉 of the ref-
erence trace, we then derive the set of activities
of events that are part of skip steps in the align-
ment, i.e., devact(ξr) =

⋃
1≤i≤m,ti=⊥{e

′
i.activity}.

Based on these activities, we derive all resources
that are referenced in trace ξ = 〈e1, . . . , en〉
for executions of these activities, mapres(ξ, ξr) =⋃

1≤i≤n,ei.activity∈devact(ξr){ei.resource}. In addi-
tion, we need to take into account that the difference
between trace ξ and the reference trace ξr may also
lead to additional resource deviations. Here, the com-
putation of the edit distance ed(ξ, ξr) identifies a set
of events ev(ξ, ξr) of ξ that differ from ξr, which,
in turn, lead to another set of resources, defined as
diff res(ξ, ξr) =

⋃
1≤i≤n,ei∈ev(ξ,ξr){ei.resource}.

Summarizing the above arguments, we approximate
the impact of resource deviations by defining the set of
resources potentially involved in deviations of an activity
a. This set encompasses the known deviations of ξ,
i.e., devres(ξ,Mres)(a), the known deviations of ξr, i.e.,
mapres(ξ, ξr)(a), and the resources not yet observed for
violations of a, i.e., diff res(ξ, ξr)(a))\sres(L′,Mres)(a).
Formally given as:

ŝres(ξ, ξr, L
′,Mres)(a) =

(devres(ξ,Mres)(a) ∪ mapres(ξ, ξr)(a) ∪
diff res(ξ, ξr)(a)) \ sres(L′,Mres)(a)

(12)

Then, we approximate the change in resource devia-
tions for trace ξ as the number of potential new resource
deviations per activity:

approxres(ξ, ξr, L
′,Mres) ={∑

a∈A

∣∣ŝres(ξ, ξr, L′,Mres)(a)
∣∣}

(13)

5. Sample Quality Assurance

The approaches proposed in our work estimate con-
formance results based on a sample of traces taken at
random from a log, yielding considerable gains in terms
of efficiency, while still providing statistical guarantees
on the results quality. Despite these clear benefits, the
random sampling that is necessary for our approach
leaves the possibility that the obtained conformance re-
sults stem from a biased sample and, therefore, may be
inaccurate. In particular, if a series of sampled traces
is more homogeneous than the log, our approach may

11

return conformance results based on a sample that does
not represent the variety observed in the full event log.
Directly assessing whether the conformance results for
a sample L′ are representative is infeasible, given that
it would require what our approach aims to avoid: com-
puting conformance results for an entire log. To still
be able to assess sample quality, this section proposes
alternative techniques that analyse samples of traces in
terms of their behavioural and data attribute coverage. In
particular, we introduce methods for:

• Internal sample quality assessment: We consider
how the quality of a sample can be assessed by
looking at the control-flow and data-attribute char-
acteristics of the traces within the sample itself.
This is achieved by extending the new information
predicate of the sampling approach.

• External sample quality assessment: We consider
how the quality of a sample can be assessed by
comparing it against traces outside the sample, i.e.,
by selecting an set of traces and comparing their
control-flow and data-attribute characteristics.

The two methods provide a trade-off between the quality
assurance they provide and the additional runtime they
require, where the external quality checks can provide
stronger guarantees, but introduces more computational
overhead. The internal and external checks can be em-
ployed individually, as well as together.

In the remainder, Section 5.1 first discusses various
control-flow and data-attribute characteristics of a trace
sample that may indicate its quality. Afterwards, Sec-
tions 5.2 and 5.3 respectively describe our proposed
methods for internal and external sample quality assess-
ment.

5.1. Sample Quality Characteristics
We propose to assess the quality of log samples by con-

sidering their behavioural representativeness and data
attribute coverage.
Behavioural representativeness. When determining
process conformance based on a sample taken from an
event log, it is important that the process behaviour con-
tained in the sample reflects the behaviour of the traces
in the full log. To achieve this, we follow existing ap-
proaches that assess the completeness of (a sample of)
an event log, see [24, 25, 26], and consider quality by
analysing the behavioural relations contained in a log
sample. In the remainder we shall consider the directly
follows relation for this, as suggested by the aforemen-
tioned approaches. Nevertheless, we note that this re-
lation can be substituted by other behavioural relations,
such as (causal) behavioural profile relations [27] or the
relations of the 4C spectrum [28].

When quantifying the behavioural representativeness
of a sample, we consider the included behavioural re-
lations, as well as their frequencies. The latter is done
to ensure that the distribution of the relations in a log
sample reflects the distribution of a full event log [24].
Therefore, given some set of traces L, (which can be a
full log or a sample), we represent the behaviour of L
as a function that captures the number of times that two
activities directly follow each other in the traces of L,
i.e., df(L) : A×A → N0. The function df(L) can be
used to compare the behaviour of two sets of traces, e.g.,
of two samples or of a sample to an event log.

Data attribute coverage. Aside from representative-
ness in terms of behaviour, it can be important to ensure
that the data attributes associated with sampled traces
(and their events) provide a proper reflection of the data
perspective for the full event log. Such coverage of data
attributes is important, given that there may be a clear
correlation between data attribute values and process
behaviour (and thus also conformance issues). For in-
stance, if an event log contains traces corresponding to
80% regular and 20% premium customers, using a
sample that consists for 95% of traces for regular cus-
tomers likely introduces a certain bias into the obtained
conformance results.

To incorporate data attribute coverage in our sam-
pling framework, we capture the distribution of data
attribute values. For a nominal attribute D ∈ D, with
a domain dom(D), we capture the value distribution
for a set of traces L as: val(D,L) : dom(D) →
N0. For instance, given a log sample L with 100
traces, we would observe val(customer_type, L) =
[regular80,premimum20] for a representative sam-
ple, whereas a non-representative one would have a con-
siderably different value distribution. For numeric at-
tributes, we simply capture the values for attribute D per
trace, i.e., val(D,L) : L→ R.

Note that domain knowledge can be particularly help-
ful when considering data attribute coverage. Users may
select a subset of data attribute values D′ ⊆ D ∪ {df}
that are known to be of particular relevance to ob-
served process behaviour. For instance, in a loan han-
dling process, attributes such as customer_type and
loan_amountmay be known to be important, whereas
attributes such as zip_code may be omitted from con-
sideration. We consider the directly follows relation as a
special attribute that can be included in a subsetD′, since
it shall be handled in the same way as other qualitative
attributes in the procedures defined next.

12

5.2. Internal Sample Quality Analysis

The first way in which we propose to consider sample
quality analysis based on behavioural representativeness
and data attribute coverage is to directly incorporate such
characteristics into the incremental conformance check-
ing framework introduced in Section 3. The goal of this
internal sample quality analysis is to check whether the
characteristics of a sample are stable or are still fluctu-
ating when new traces are added. We achieve this by
extending the predicate γ from Eq. 4, which is used to
determine if a trace ξ provides new information w.r.t. a
log sample L′.

In particular, given a set D′ ⊆ D ∪ {df} of attributes
to incorporate, we now use the predicate γ to check if
the addition of an additionally sampled trace ξ leads to a
significant difference for either the conformance result,
captured by function ψ or in any of the quality assurance
attributes in D′, i.e., we check if any distance function
for ψ or an element in D′ yields a result greater than ε.
The extended predicate, γq is formalized as follows:

γq(L
′, ξ,M)⇔(
d(ψ(L′,M), ψ({ξ} ∪ L′,M)) > ε

)
∨(

max
D∈D′

(dD(L
′, ξ)) > ε

)
.

(14)

To determine the distance dD for an attribute D ∈
D′, we differentiate between nominal and numerical
attributes. Nominal attributes (including the directly
follows relation df) are represented as the number of
occurrences for each of the values in a domain (i.e.,
dom(D) → N0). Therefore, to determine if new infor-
mation regarding such a data attribute is observed when
considering a new trace, we adapt the distance predicate
used when considering the distribution of deviations (see
Eq. 6), as follows:

dnomD (L′, ξ) =

√ ∑
d∈dom(D)

(fD(L′, d)− fD(ξ ∪ L′, d))2

(15)
In Eq. 15, we use fD(L′, d) to denote the relative

frequency of attribute D being associated with value
d for the traces in L′. For instance, if a sample L′

so far consists of 4 traces, with 1 premium and 3
regular customers and ξD = regular, the distance
dD =

√
(3/4− 4/5)2 + (1/4− 1/5)2 = 0.07. To quan-

tify the change in a df relation, there are alternatives
to the relative frequency fD depicted in Eq. 15. For in-
stance, one can employ the dependency measure, part
of the Heuristics miner [17, p.165], as an alternative
that considers relations in a bi-directional manner, i.e.,

it considers the number of times an activity a is directly
followed by b, as well as the number of times b is directly
followed by a.

For numerical attributes, we adapt the distance metric
used in the context of fitness-based sampling, as shown
in Eq. 5, which defines a distance metric based on the
average value of an attribute D.

dnumD (L′, ξ) =

∣∣∣∣∣∣∣ avge∈ξ′
ξ′∈L′

(e′.D) − avg
e∈ξ′

ξ′∈L′∪{ξ}

(e′.D)

∣∣∣∣∣∣∣ (16)

By extending the new information predicate γ with
such additional distance functions, our approach shall
only return conformance results when it has been deter-
mined that both the conformance results and the attribute
values over sample L′ are statistically likely to be rep-
resentative for the log L. Whereas this method incor-
porates additional assurances through internal sample
analysis, we next consider how sample representative-
ness can also be achieved by looking at traces outside a
sample.

5.3. External Sample Quality Analysis

To assess the quality of a sample externally, we com-
pare the chosen data attributes in a post-hoc test against
additionally sampled data. In particular, given a sample
L′ ⊂ L, we compare the value distributions for the char-
acteristics in D′ to those of a set of traces outside the
sample, i.e., a validation set L′′. Formally, we are testing
whether the distributions

Given a log sampleL′ and a validation setL′′, our goal
is to ensure that L′ is representative along all attributes
in D′. To achieve this, we check if there is a statistically
significant difference (given a desired significance level
α) for any D ∈ D′. To this end, we perform tests that
determine if the value distributions for an attribute D
statistically differ between L′ and L′′, i.e., we test the
null hypothesis that val(D,L′) and val(D,L′′) are sta-
tistically likely to stem from the same distribution. For
this, we employ the well-known chi-square two sample
test [29] for nominal attributes and the Kolmogorov-
Smirnov test [30] for numerical attributes.

Conducting the statistical tests is incorporated as an
additional check into the conformance checking frame-
work described in Alg. 1. In particular, when sufficient
consecutive traces without new information have been
observed, i.e., when i = N , the algorithm draws an addi-
tional random sample of traces from L\L′, referred to as
L′′. Then, for each attribute D ∈ D′, a statistical check
is performed between the value distributions ofD for the

13

two samples, i.e., comparing val(D,L′) to val(D,L′′).
As soon as any attribute yields a significant difference,
i.e., larger than a desired α, we conclude that the sam-
ple L′ is not sufficiently unbiased. Therefore, we then
reset parameter i to 0, indicating that a new run of N
consecutive traces without new information is required.

Note that selecting the size of the validation sample
L′′ represents an interesting parameter here, set to the
size of the current sample L′ by default. A larger size
increases the confidence that can be placed into the per-
formed quality check, although it also requires additional
computation. Nevertheless, it is important to recognise
that sampling additional traces for quality analysis is
considerably more efficient than increasing the sample
size of L′ itself given that we avoid the need to compute
additional alignments in this case.

6. Evaluation

This section reports on an experimental evalua-
tion of the proposed techniques for sample-based and
approximation-based conformance checking. Section 6.1
describes the three real-world and seven synthetic event
logs used in the experimental setup, described in Sec-
tion 6.2. We present an in-depth analysis evaluation of
various aspects of our approach in Section 6.3. Over-
all, these demonstrate that our techniques achieves con-
siderable efficiency gains, while still providing highly
accurate conformance results.

6.1. Datasets
We conducted our experiments based on three real-

world and seven synthetic event logs, which are all pub-
licly available.
Real-world data. The three real-world event logs differ
considerably in terms of the number of unique traces
they contain, as well as their average trace lengths, which
represent key characteristics for our approach:

• BPI-12 [31] is a log of a process for loan or over-
draft applications at a Dutch financial institute that
was part of the Business Process Intelligence (BPI)
Challenge. The log contains 13,087 traces (4,366
variants), with 20.0 events per case (avg.).

• BPI-14 [32] is the log of an ICT incident manage-
ment process used in the BPI Challenge. For the
experiments, we employed the event log of inci-
dence activities, containing 46,616 traces (31,725
variants), with 7.3 events per case (avg.).

• Road Traffic Fines [33] is a log of an information
system managing road traffic fines (RTF). The log
contains 150,370 traces (231 variants), with 3.7
events per case (avg.).

We obtained accompanying process models for these
logs by applying the inductive miner infrequent [34] with
its default parameter settings (i.e., 20% noise filtering)
on the full log. Furthermore, for the Traffic Fines log, we
also conducted experiments with a manually established
process model from [35]. Note that we shall refer to the
results obtained with this model as RTFr, whereas the
results from the discovered model are referred to as RTF.

Table 1: Characteristics of the synthetic data collection

Characteristic PrA PrB PrC PrD PrE PrF PrG

Activities 363 317 317 429 275 299 335
Traces 1,200 1,200 500 1,200 1,200 1,200 1,200
Variants 1,049 1,126 500 1,200 1,200 1,200 1,200
Events per trace 31.6 41.5 42.9 248.6 98.8 240.8 143.1

Synthetic data. To analyse the scalability of our
techniques, we employed a synthetic dataset specifi-
cally designed to stress-test conformance checking tech-
niques [36]. It consists of seven process models and
accompanying event logs. The models are considerably
large and complex, as characterised in Table 1, which im-
pacts the computation of alignments. Also, the included
event logs consist of a high number of variants compared
to the number of traces (i.e., almost no repeated variants),
which may affect the effectiveness of sampling.

6.2. Experimental Setup

We employed the following measures and experimen-
tal setup to conduct the evaluation.

Measures. We measure the efficiency of our techniques
by the fraction of traces from a log required to obtain
our conformance results. This fraction indicates for
how many traces the conformance computation was not
needed due to the trace not being sampled. Simultane-
ously, we consider the fraction of the total trace vari-
ants for which our techniques actually had to establish
alignments. As these fractions provide us with analyt-
ical measures of efficiency, we also assess the runtime
of our techniques, based on a prototypical implemen-
tation. Again, this is compared to the runtime of the
conformance checking over the complete log. Finally,
we assess the impact of sampling and approximation on
the accuracy of conformance results. We determine the
accuracy by comparing the results, e.g., the fitness value
or the deviation distribution, obtained using sampling
and approximation, to the results for the total log.

All presented results are determined based on 10 ex-
perimental runs (i.e., replications) of which we report on
the mean value, along with the 10th and 90th percentiles.

14

To ensure that the results of the various experiments can
be fairly compared, we fixed the seeds for the replica-
tions throughout the evaluation.

Environment. Our approach has been implemented as
a publicly available1 plugin in ProM [37]. For the com-
putation of alignments, we rely on the ProM implemen-
tation of the search-based technique proposed in [7].

All runtime measurements have been obtained on
a NUMA server featuring 120 CPUs (Xeon E7-4880,
2.50GHz) and 1TB RAM, running Oracle Java 1.8. We
used 10 parallel threads to obtain the results. Note that
this high degree of parallelization means that it is more
difficult to improve over baseline techniques that con-
sider the complete log. Therefore, the reported improve-
ments obtained using our techniques would be stronger
in sequential settings. Our experimental setup, there-
fore, corresponds to an enterprise-level infrastructure
that would be used in cloud-based commercial tooling.

6.3. Evaluation Results

This section first considers the overall efficiency and
accuracy of our approach on the real-world event logs
(Section 6.3.1), before conducting a parameter sensi-
tivity analysis (Section 6.3.2), and demonstrating the
scalability of our approach by showing that its perfor-
mance also applies to complex, synthetic datasets (Sec-
tion 6.3.3). Afterwards, we evaluate the performance of
the novel contributions w.r.t. the conference paper [19],
i.e., we evaluate the new approximation heuristics (Sec-
tion 6.3.4), the techniques developed for the detection of
contextual deviations related to resources (Section 6.3.5),
and the introduced quality assessment methods (Sec-
tion 6.3.6). Finally, Section 6.3.7 provides a recap of the
main configurations of our approach and their impact on
conformance checking accuracy and efficiency.

For brevity and clarity, we often highlight results ob-
tained for a subset of the employed data collection in
the remainder of this section. However, we note that the
overall trends were consistent across all event logs and,
furthermore, provide the raw result data and detailed fig-
ures obtained for the entire collection on the repository
linked in Section 6.2.

6.3.1. Overall Results
We first assess the overall efficiency and accuracy ob-

tained with our approach using default parameter values,
i.e., for δ = 0.01, α = 0.99, ε = 0.01, k = 0.2 and the

1https://github.com/Martin-Bauer/Conformance_

Sketching

third heuristic for deviation approximation introduced in
Section 4.3.2.

Efficiency. We explore the efficiency in terms of sample
size and runtime for four configurations: conformance
in terms of fitness, without (f) and with approximation
(fa), as well as for the deviation distribution without (d)
and with approximation (da).

f fa dda
0.1%

1%

10%

100%

Sa
m

pl
ed

 tr
ac

es

BPI-12

f fa dda

BPI-14

f fa dda

RTF

f fa dda

RTFr

Figure 2: Percentage of total traces used to obtain results relative to
the baseline

f fa dda
0.1%

1%

10%

100%

1000%

Ru
nt

im
e

(re
la

tiv
e)

BPI-12

f fa dda

BPI-14

f fa dda

RTF

f fa dda

RTFr

Figure 3: Runtime of our approach relative to the baseline

Fig. 2 reveals that all configurations only used a frac-
tion of the complete log in order to produce conformance
results. For instance, for BPI-14, the sample-based fit-
ness computation (f) requires only 681 traces (on aver-
age) out of the total of 46,616 traces (i.e., 1.4% of the
log). This sample included traces from 327.1 variants
on average, which means that the approach established
just 327.1 alignments as opposed to the total number of
31,725 variants in the log (roughly 1%). The smallest
sample sizes are required for the Traffic Fines dataset,
where the computation of fitness requires only about
0.5% of the event log. This result is due to the relatively

15

https://github.com/Martin-Bauer/Conformance_Sketching
https://github.com/Martin-Bauer/Conformance_Sketching

low number of variants (231 against 150,370 traces) and
short traces (3.7 events per case on average). Both fac-
tors positively impact the number of traces necessary to
obtain accurate conformance results. In fact, for almost
all configurations, the required sample size is close to the
minimal sample size, which highlights the fast conver-
gence of the targeted conformance measures. Only for d
and da for RTF and RTFr larger samples are generated,
due to the lower convergence rate. Here, the low number
of deviations occuring in these logs causes the few traces
containing deviations to induce significant changes in
the relative deviation distribution, if they are sampled,
thus effectively increasing the sample size.

The small samples also lead to considerable gains for
the runtime of our approach, as shown in Fig. 3. We
observe that our approach is able to obtain fitness results
in about 5.0% of the time for BPI-12, 0.06% for BPI-14,
41.5% for RTF and 51.2% for RTFr. These gains are
slightly smaller when considering the deviation distribu-
tion for the BPI-12 and BPI-14 logs. In contrast, for RTF
and RTFr the runtime of d and da actually exceeds the
runtime of the baseline. This is due to the fact that these
evaluation scenarios are very simplistic and, hence, do
not impose computational challenges. Specifically, the
RTF traces are very short (3.7 events on average), the
associated process models have a simple structure, and
there is a low number of trace variants (231). Exploiting
parallelization on the aforementioned NUMA server, the
runtime for RTF and RTFr becomes negligible, since the
baseline only requires about 300ms. As such, any over-
head induced by an incremental update to the deviation
distributions does not amortize.

When considering the impact of approximation, we
observe that the fa and da configurations are typically
faster than their counterparts without approximation.
The biggest gain is observed for fa on the BPI-12 log,
where the relative runtime is reduced from 5.0% to only
3.3%. However, we do note that the inclusion of approx-
imation can also lead to an increased runtime. This can
be observed for fitness approximation (fa) in the BPI-14
log and for deviation distribution approximation (da) for
the RTF case. In these cases, the additional overhead
required to approximate the impact of a trace on the
conformance result may outweigh the time required to
compute an alignment.

Accuracy. The observed gains in efficiency are obtained
while maintaining highly accurate conformance results.
According to both Fig. 4, the fitness computed using
sample-based conformance checking differs by less than
0.1% from the original fitness (indicated by the dashed,
blue line).

f fa
0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s

BPI-12

f fa

BPI-14

f fa

RTF

f fa

RTFr

Figure 4: Result accuracy (fitness). Dashed, blue lines denote fitness
values obtained for the complete log

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Activities
0.00

0.05

0.10

0.15

0.20

0.25
Fr

eq
ue

nc
y

(re
la

tiv
e)

Complete Log
Sampled Log

Figure 5: Result accuracy (deviation distribution) for BPI-12. Blue
points denote deviation frequencies as observed in the complete log

Since accuracy in terms of deviation distribution is
hard to capture in a single value, we use Fig. 5 to demon-
strate that the deviation distributions obtained by our
sample-based technique closely follow the distribution
for the complete BPI-12 log. In decreasing order Fig. 5
depicts the activities with their relative deviation fre-
quency observed in the complete log and in the sampled
log. As shown, our technique clearly identifies the activ-
ities that are most often affected by deviations, i.e., our
technique correctly identifies the main hotspots of non-
conformance. Note that the accuracy of the da approach
is not depicted here, but shall be explored in detail in
Section 6.3.4. Finally, we highlight that the results for
the other datasets (available online at the aforementioned
repository) confirm the observed trends.

6.3.2. Parameter Sensitivity
We analysed the sensitivity of our proposed approach

to differing parameter values for the BPI-12, BPI-14, and
Traffic Fines (RTF and RTFr) cases. While we show the

16

0.
01

0.
05 0.

1

Delta

0.1%

1%

10%

100%

Sa
m

pl
ed

 tr
ac

es

0.
9

0.
95

0.
99

Alpha

0.
01

0.
05 0.

1

Epsilon
0.

1
0.

2
0.

3
k

Figure 6: Effect of parameter values on the number of sampled traces
for BPI-12

results for BPI-12 in detail, the reported trends turned out
to be consistent across all cases (and, again, the results
can be found in the accompanying repository).

Sampling approach. To determine the impact of the
parameters on the sampling approach, we explored how
parameters δ (probability bound), α (significance value)
ε (relaxedness value), and k (approximation pruning pa-
rameter) affect the performance of our approach in terms
of efficiency (number of traces) and accuracy (fitness).2

Fig. 6 shows that the selection of δ and α has a consid-
erable impact on the sample required for conformance
checking. For instance, for δ = 0.01 we require an av-
erage sample size of 680.4, whereas when we relax the
bound to δ = 0.10, the average size is reduced to 85.1
traces. For α, i.e., the confidence, we observe a range
from 289.5 to 680.4 traces. By contrast, varying epsilon
is shown to result in only marginal differences (ranging
between 661.1 and 696.0). Still, for all these results, it
should be considered that even the largest sample sizes
represent only 5% of the traces in the original log.

Notably, as shown in Fig. 7, the average accuracy
of the sample-based approach remains highly stable
throughout this sensitivity analysis. However, we do
observe that the variance across replications differs for
the parameter settings using smaller sample sizes, specif-
ically for δ = 0.1. Here, the obtained fitness values
range between 0.945 and 0.959. This indicates that for
such sample sizes, the selection of the particular sample
may impact the obtained conformance result in some
replications.

Approximation approach. By contrast, when incorpo-
rating approximation alongside sampling, we observe

2While keeping the other parameters at their respective defaults.

0.
01

0.
05 0.

1

Delta

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s

0.
9

0.
95

0.
99

Alpha

0.
01

0.
05 0.

1

Epsilon

Figure 7: Effect of parameter values on the obtained fitness for BPI-12
using sampling. Dashed, blue lines denote the fitness value obtained
for the complete log

that the parameter settings allow users to trade-off result
accuracy against computational efficiency. In particular,
as shown in Fig. 8, we observe a loss in accuracy for
smaller values of δ, larger values of α, and larger val-
ues of k. The size of this accuracy loss differs per case,
though. For instance, comparing the results shown here
for the relatively complex model and log of BPI-12 with
those of RTF and RTFr (available online), we note that
approximation errors become smaller for the latter cases,
which are significantly simpler. For BPI-12, see Fig. 8,
the mean fitness ranges from 0.835 for δ = 0.01 to 0.909
for δ = 0.1. For δ and α this quality loss indicates, that
the accuracy gains obtained for larger sample sizes in
the sample-based approach are lost due the introduction
of the approximation error during approximation. This
error accumulates for larger sample sizes (i.e smaller δ
and larger α), as more trace variants are explored, which
are then approximated. Thus, for approximation, more
accurate results are expected for smaller sample sizes.

Regarding the pruning parameter k, we observe a loss
in accuracy, ranging from an average of 0.925 for k = 0.1
to 0.769 for k = 0.3, as well as an increase in variance
for larger values. We also note that, while the pruning
parameter k has an impact on the accuracy, it has no
impact on the number of sampled traces, as seen in Fig. 6,
as it is only used to assess whether the conformance
result of a trace may be approximated or not.

6.3.3. Scalability
The results obtained for the synthetic datasets confirm

that our approaches are able to provide highly accurate
conformance checking results in a small fraction of the
runtime. Here, we reflect on experiments performed
using our fitness-based sampling approach with δ =

17

0.
01

0.
05 0.

1

Delta

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s

0.
9

0.
95

0.
99

Alpha

0.
01

0.
05 0.

1

Epsilon

0.
1

0.
2

0.
3

k

Figure 8: Effect of parameter values on the obtained fitness for BPI-12
using sampling and approximation. Dashed, blue lines denote the
fitness value obtained for the complete log

PrA PrB PrC PrD PrE PrF PrG
0%

20%

40%

60%

80%

100%

Ru
nt

im
e

(re
la

tiv
e)

Figure 9: Relative runtime of the sample-based approach for fitness
computation obtained for the synthetic data collection

0.05, α = 0.99, and ε = 0.01. Fig. 9 shows that, for
all seven cases, runtime is reduced to ranges between
10.0% and 27.5% of the time needed for the total log
(sample sizes range from 10.67% to 30.12%). At the
same time, for all cases, the obtained fitness results are
virtually equivalent to those of the total log, see Fig. 10,
where the fitness values of the total logs are given by
blue crosses. When comparing these results to those
of the real-world datasets, it should be noted that the
synthetic logs hardly have any re-occurring trace variants,
which makes it harder to generalize over the sampled
results. Still, overall, the results on the synthetic data
demonstrate that our approach is beneficial in highly
complex scenarios.

6.3.4. Novel Approximation Heuristics
In the context of the approximation of deviation dis-

tributions, Section 4.3.2 describes three heuristics for
the selection of deviating activities in the currently sam-

PrA PrB PrC PrD PrE PrF PrG
0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s

Figure 10: Result accuracy (fitness) obtained for the synthetic data
collection. Blue crosses denote fitness obtained for the complete log

pled trace, of which two are novel in comparison to our
earlier work [19]. In this section, we evaluate their effi-
ciency and accuracy for different values of the pruning
parameter k. Again, we rely on the BPI-12 log for illus-
tration purposes, whereas results for the other datasets
are available online.

In Fig. 11, the aggregated runtime measurements for
the three heuristics are depicted compared to the average
mean runtime of conformance checking without approxi-
mation. Specifically, we observed that for Heuristic 1 no
value of k yields runtime improvements when compared
to the sample-based approach. Even though a larger
k indicates that more trace variants are approximated,
this comes at the cost of the aforementioned exponen-
tial blow-up during the creation of the bags of deviating
activities. Thus, the potential runtime improvements of
larger k are neutralized by this overhead for larger traces.
For the alignment-based heuristics, we observe runtime
reductions for larger k that are somewhat consistent be-
tween both Heuristic 2 and 3. On the contrary, for the
simple cases, RTF and RTFr, Heuristic 2 is not able to
provide any runtime improvement, whereas Heuristic 3
results in steady runtime improvements for larger k. The
reason being that the alignment-based heuristic incorpo-
rating all deviations needs to incorporate more activities
into the relative distribution, which ultimately results in
a lack of runtime gains for larger values of k, due to
the increased update overhead. The results in Fig. 8 and
Fig. 11, again emphasize that the value of k provides a
trade-off between accuracy and runtime.

Also, we note that low values of k result in worse
run times than without approximation. In these cases,
fewer traces are approximated, thus alignment calcula-
tion is employed most of the time on top of the overhead
required to select trace variants and performing the ap-
proximation.

18

0.01 0.05 0.1
k

0.50

0.75

1.00

1.25

1.50

Ru
nt

im
e

(re
l.)

1: pref.-suff.

0.1 0.2 0.3
k

2: all dev

0.1 0.2 0.3
k

3: known dev

Figure 11: Runtime sensitivity of approximation heuristics for varying
k compared to the sample-based approach for BPI-12

0.01 0.05 0.1
k

0.0

0.2

0.4

0.6

Ap
pr

ox
im

at
ed

 tr
ac

e
va

ria
nt

s (
re

l.) 1: pref.-suff.

0.1 0.2 0.3
k

2: all dev

0.1 0.2 0.3
k

3: known dev

Figure 12: Fraction of sampled trace variants that are approximated
for varying k for BPI-12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Activities
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y
(re

la
tiv

e)

Complete Log
Sampled Log

Figure 13: Result accuracy of Heuristic 2 (deviation distribution) for
BPI-12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Activities
0.00

0.05

0.10

0.15

0.20

0.25
Fr

eq
ue

nc
y

(re
la

tiv
e)

Complete Log
Sampled Log

Figure 14: Result accuracy of Heuristic 3 (deviation distribution) for
BPI-12

Furthermore, in Fig. 12, we depict the fraction of the
sampled trace variants that our approach approximated
instead of aligned. For k = 0.2, on average 62% of
approximated trace variants signal significant change for
Heuristic 3, while only 56% signal a significant change
for Heuristic 2. Likewise, for k = 0.3, on average 67%
of approximated trace variants signal a significant change
for Heuristic 2, while this value increases only to 59%
for Heuristic 3. To assess the accuracy of the two, new
alignment-based heuristics, Fig. 13 and Fig. 14, respec-
tively, depict the activities and their deviation frequencies
for the complete and sampled logs using k = 0.2. The
figures show the improvement that Heuristic 3 provides
over Heuristic 2. The latter heuristic estimates deviations
for a considerable number of activities that never deviate,
whereas Heuristic 3 avoids this issue and, thus obtains
more accurate results.

6.3.5. Resource Deviation Detection
To assess the efficacy of our sampling and approxima-

tion techniques when incorporating contextual factors,

we consider the detection of resource deviations and
evaluate it based on two recall values: (1) the fraction
of the unique resources involved in deviations our tech-
nique detected and (2) the fraction of total deviations
that these resources were involved in. Given that there
are no resource schedules available for any of the real-
world event logs (Mres), we generated these using an
80/20 principle (similar as used for the inductive miner
to obtain process models). In particular, for each activity,
we computed the average number of activity executions
individual resources were associated with in an event log.
Given this average, we marked any resource performing
this activity fewer than 20% of the average as an unau-
thorized resource, whereas the others were considered to
be part of Mres for that particular activity. In the BPI-
12 log, there are 68 unique resources recorded, which
are together involved in a total of 896 activity-resource
combinations, with a minimum of 1 resource per activ-
ity and an observed maximum of 60. By using a 20%
threshold to identify authorized resources, we retain a
total of 602 combinations in the resource authorization

19

functionMres, with a minimum of 1 authorized resource
per activity and a maximum of 49 authorized resources.

Table 2: Average results obtained for the detection of resource devia-
tions (BPI-12 log)

Config. Traces Recall (uniq.) Recall (total)

S 4,974.4 (38.0%) 72.8% 97.2%
S+A 3,983.9 (30.0%) 55.6% 94.8%

The main results when detecting resource deviations
based on this established authorization are presented
in Table 2, where S denotes the results obtained using
sampling and S+A those obtained using both sampling
and approximation. We observe that the sample sizes
required here are slightly larger than for the conformance
checking based on fitness and deviation distribution, re-
quiring samples of about 38.04% of the traces, rather
than the 7.5% for the deviation distribution. This is in
line with expectations, given the monotonic nature of
this conformance measure. These samples contain on
average 72.8% of the resources involved in deviations for
S and 55.6% for S+A. Furthermore, we recognize that
there is a considerable long tail of resources involved in
only a small amount of deviations. This becomes clear
when looking at the fraction of the total deviations that
these resources are involved in. In particular, for S, these
72.8% sampled deviating resources are involved in more
than 97% of all resource deviations. Likewise, for S+A,
these 55.6% of sampled deviating resources are involved
in 94% of deviations. This means that by sampling less
than 30% of the traces, we are already able to detect more
than half of the violating resources that, also, provide a
near-complete coverage of the total resource deviations.

6.3.6. Quality Checking Methods
We performed experiments to assess the impact of

both the internal and external quality methods proposed
in Section 5, each involving various configurations.
Again, we use the BPI-12 case for illustration, whereas
the results for the other cases are available online. While
trends are mostly consistent, we discuss differences ex-
plicitly.
Internal quality checking. To assess the impact of the
proposed methods internal quality checking for five con-
figurations:

1. Behavioural representativeness according to the
directly-follows relation (configuration DF).

2. Behavioural representativeness according to the de-
pendency measure relation (configuration DM).

3. Data attribute coverage based on the
org:resource attribute associated with

the completion activity, W_completeren
aanvraag (configuration attribute).

4. Both directly follows and attribute-based quality
checking (configuration DF + attribute).

5. Both dependency measure and attribute-based qual-
ity checking (configuration DM + attribute)

The results obtained for these configurations, as well as a
baseline without quality checks are depicted in Table 3.

The sample sizes depicted in the table clearly show
that all configurations of the internal quality checking
mechanism have an impact on the conformance checks
performed: specifically, for the setting with no quality
checking, on average 681 traces are sampled, whereas
this number increases to up to 828.5 for the DM + at-
tribute configuration. These greater sample sizes lead to
increased runtimes (from 7.0s on average to up to 9.1s),
though they also improve the results accuracy, as can be
seen by the fitness error, which is reduced from 0.00223
(on average) to 0.00146 for the last configuration.

However, comparing the sample sizes of BPI-12 and
RTFr, we notice that those for RTFr are significantly
larger, showing that the effect of quality checking is
highly dependent on the convergence of an analysed dis-
tribution and, thus, input-dependent. For instance, while
the DM configuration results in an increased sample size
of 92.3 traces (on average) for BPI-12, it leads to an
increase of 1,856.2 traces for RTFr.

Furthermore, we can observe that the two configura-
tions that include the dependency measure (DM) have
a larger impact on the sample size than those only in-
corporating the directly-follows relations (DF), which
means that this measure converges less quickly. The
main cause for this is that the normalization of the depen-
dency measure does not consider the number of times a
certain directly-follows relation has been observed. As a
result this measure leads to more triggers of the quality
checking mechanism than the other configurations.

External quality checking. We assessed the external
quality checking methods in the same manner as for the
internal checks. However, the configurations using the
dependency measure (DM) cannot be applied here, given
that this measure is not suitable for the statistical tests
required to perform external quality checks.

Table 4 depicts the results obtained given α = 0.05.
Here, we observe that the external quality checking meth-
ods were triggered various times, resulting in increased
sample sizes for many configurations (and replications).
For instance, we obtain sample sizes that are on average
more than 10 times as large than for the configuration
without quality checking when we incorporate an anal-
ysis of attribute values. These larger sample sizes are

20

Table 3: Results obtained using internal quality checking methods for sample-based fitness computation (BPI-12 log)

Configuration Sample size Runtime Fitness error
avg. max. avg. max. avg. max.

No q. checking 681.0 692 7.0s 9.0s 0.00223 0.00507
DF 690.9 754 7.4s 10.3s 0.00197 0.00482
DM 773.3 941 8.5s 12.1s 0.00205 0.00314
Attribute 762.9 886 8.2s 10.8s 0.00195 0.00342
DF + attribute 788.5 889 8.4s 11.0s 0.00159 0.00475
DM + attribute 828.5 949 9.1s 13.4s 0.00146 0.00242

Table 4: External quality checking results for sample-based fitness computation (BPI-12 log, α = 0.05)

Configuration Sample size Runtime Fitness error
avg. max. avg. max. avg. max.

No q. checking 681 692 7.0s 9.0s 0.00223 0.00507
DF 1,139.9 3,970 12.0s 37.7s 0.00213 0.00369
Attribute 8,266.8 9,877 84.6s 98.0s 0.00052 0.00125
DF + attribute 7,251.2 9,230 74.2s 97.3s 0.00049 0.00117

also mirrored by proportionally larger runtimes, e.g., up
to 98.0s for the longest run, versus 9.0 seconds without
quality checking. While we do observe that, naturally,
such larger sample sizes lead to lower fitness errors, it is
also important to note that the gains are marginal in ab-
solute terms, whereas the relative gain does not increase
linearly along with the runtime. For example, an average
runtime that is more than 12 times as large (7.0s versus
84.6s) results in an average error that is only about 4
times as low (0.00223 versus 0.00052).

Overall, the quality checking results, especially those
obtained using the external quality checking methods,
provide some interesting insights. First, one can ob-
serve that by incorporating the quality checking meth-
ods, one can obtain slightly more accurate results for
an increase in runtime. However, it is important to note
that the results obtained using just sampling are already
highly accurate, whereas the accuracy gains resulting
from quality checking are not necessarily proportional
to the additional runtime that is required. Second, it is
also interesting to observe that there is not necessarily
a correlation between, for instance, the distribution of
attribute values and conformance checking results. In
particular, even when external quality checking methods
conclude that the distribution of attribute values may
not be statistically representative, the obtained confor-
mance checking results nonetheless are highly accurate.
Still, when users have domain knowledge about the im-
portance of a certain attribute or want to ensure that
conformance checking results are obtained on the basis
of a sample that is representative with respect to such

an attribute, the quality checking methods allow one to
obtain this insurance in a convenient manner.

6.3.7. Recap
Finally, we bring everything together with a brief re-

cap that compares the impact of the main configurations
that our approach provides for all the considered cases,
BPI-12, BPI-14, RTF, and RTFr. In particular, our ap-
proach includes techniques for:

• Trace Sampling, which determines when sufficient
traces have been observed to provide reliable re-
sults,

• Approximation, to further reduce the runtime by
approximating results for specific traces instead of
computing expensive alignments, and

• Quality Checking, to increase the results accuracy,
by ensuring the conformance results are provided
on the basis of a representative sample.

Trace sampling represents the core notion of our ap-
proach and is therefore always incorporated in a con-
figuration. Then, users can optionally choose to add
approximation and/or quality checking. Where, gen-
erally, approximation can improve the computational
efficiency, though it may reduce the result accuracy. The
incorporation of quality checking, by contrast, generally
has the reverse effects. To highlight these trade-offs, we
here report on results obtained for the various main con-
figurations of our approach for the four inputs, as shown
in Table 5 for fitness-based conformance checking. The
table presents the results for the baseline algorithm, the
standard configuration with only sampling (S), sampling

21

and approximation (S+A), sampling with internal quality
checking3 (S+Q), and both approximation and quality
checking (S+A+Q).

First, we observe that for BPI-12 and BPI-14 all com-
binations of techniques result in runtimes that are a
fraction of the runtime achieved by the baseline algo-
rithm. In contrast, for RTF and RTFr the incorporation
of quality checking methods results in runtimes that are
significantly higher than those obtained by applying the
baseline conformance checking method. This again high-
lights that the overhead of our techniques can outweigh
the benefits for such simplistic cases where runtime is
not an issue in general.
Impact of approximation. Furthermore, the results
show that the incorporation of approximation noticeably
decreases the runtime whilst increasing the mean error
in accuracy for those inputs, with a moderate amount of
trace variants and average trace length. For these inputs,
we expect, a reasonably fast selection of a k-similar trace
variant and subsequent higher fraction of approximated
traces. For BPI-14 we have a large number of trace vari-
ants, as well as long traces, thus increasing the overhead
introduced by the approximation schemes.
Impact of quality checking. In contrast to approxi-
mation, the incorporation of quality checking methods
mitigates the error, while increasing the runtime, con-
sistently for all inputs. This can also be seen in the
maximum sample sizes for the settings that incorporate
quality checking, i.e. for S+Q and S+A+Q. For these
configurations, the maximum sample size observed in
the repetitions is noticeably larger than for those con-
figurations without quality checking. Here, the quality
checking ensures a more unbiased result, by enforcing
larger samples.

For the case, in which both approximation and quality
checking were used (S+A+Q), we can observe that the
negative accuracy impact of approximation outweighs
the positive impact of the quality checking methods,
while the runtime and sample size is bounded by the
quality checking methods. Here, the increased sample
size enforced by the quality checking come with a propor-
tionally increasing approximation error. This ultimately
leads to runtimes comparable to the runtimes obtained
by configuration S+Q, as well as higher error rates than
configuration S+A. As a result, this configuration has a
lower accuracy than the S configuration, though it is also
faster.
Runtime versus accuracy. These results clearly show

3The configuration here corresponds to the DM + attribute configu-
ration discussed in Section 6.3.6

the applicability of the sampling procedure for a signif-
icant reduction in runtime under acceptable error rates.
Furthermore, the results illustrate the flexibility that our
approach provides to users, who can choose to incorpo-
rate approximation when runtime is more important or
to add quality checking when result accuracy is key. As
shown in Section 6.3.2 and Section 6.3.6, this trade-off
can be further tuned by altering the parameters of the
individual components. For instance, by increasing the
value for k in the approximation component, one can
further trade-off result accuracy against more efficiency
gains.

7. Related Work

Conformance checking can be grounded in various
notions. Non-conformance may be detected based
on a comparison of sets of binary relations defined
over events of a log and activities of a model, respec-
tively [38]. Other work suggests to ‘replay’ traces in
a process model, thereby identifying whether events
denote valid activity executions [39]. However, both
of these streams have limitations with respect to com-
pleteness [2]. Therefore, alignment-based conformance
checking techniques [5, 13], on which we focus in this
work, are widely recognized as the state-of-the-art. A
considerable downside of these techniques is their com-
putational complexity.

Acknowledging this, various approaches [7, 6, 9, 40],
discussed in Section 1, have been developed to improve
the runtime efficiency of alignment computation. Other
works aim to achieve efficiency gains by sacrificing ac-
curacy through alignment approximation [41]. These
include techniques that approximate total sets of optimal
alignments [42] and recent work that uses relaxation la-
beling to obtain approximate results [43]. While these
approaches also lead to efficiency gains, their goal and
methods are fundamentally different from ours. In par-
ticular, these approaches aim to approximate individual
trace alignments, whereas our approach estimates a con-
formance result for an entire event log. As a result, the
runtime gains that our approach is able to achieve, possi-
bly reducing the runtime to less than 1% of the original,
are of a different order of magnitude than those of meth-
ods that aim to approximate alignments. However, any
method that more efficiently obtains alignments (whether
approximated or not) should be regarded as complemen-
tary to our work, since such methods can be incorporated
in our framework.

The sampling technique that we employ is based on
sampling used in sequence databases, i.e., datasets that
contain traces. Sampling techniques for event logs have

22

Table 5: Overview of the main results obtained using various combinations of the proposed contributions.

Case Configuration Sample size Runtime Fitness error
avg. max. avg. max. avg. max.

BPI-12

Baseline 13,087.0 13,087 147.3s 156.3s - -
S 681.0 691 7.4s 10.7s 0.00219 0.00476
S+A 680.4 693 4.8s 6.1s 0.10023 0.11516
S+Q 828.5 949 9.1s 13.4s 0.00146 0.00242
S+A+Q 808.3 1061 5.0s 6.6s 0.10281 0.1154

BPI-14

Baseline 46,616.0 46,616 2,315.2s 2,415.6s - -
S 680.1 702 14.5s 23.3s 0.00374 0.00927
S+A 679.6 702 17.2s 24.2s 0.03914 0.05578
S+Q 865.2 971 18.2s 27.5s 0.00303 0.00643
S+A+Q 843.6 932 19.0s 27.8s 0.04307 0.05893

RTF

Baseline 150,370.0 150,370 0.379s 0.499s - -
S 660.2 666 0.157s 0.272s 0.00184 0.00339
S+A 660.3 669 0.149s 0.298s 0.00629 0.03115
S+Q 20,822.1 37,894 120.574s 138.718s 0.00044 0.00124
S+A+Q 22,225.7 38,067 125.137s 138.137s 0.02068 0.13018

RTFr

Baseline 150,370.0 150,370 0.244s 0.29s - -
S 658.0 658 0.125s 0.20s 0.00079 0.00156
S+A 658.0 658 0.097s 0.15s 0.00774 0.01679
S+Q 20,056.8 32,654 118.136s 129.0s 0.00012 0.00029
S+A+Q 27,466.4 36,161 126.815s 139.3s 0.01205 0.02322

been previously applied for specification mining [44],
for mining of Markov Chains [45], and for process dis-
covery [46, 21]. This focus on sampling has also yielded
various works that assess the samples themselves, as
well as their impact on various tasks [47]. This includes
completeness assessment techniques [24, 25, 26] sim-
ilar to those employed in Section 6.3.6. Despite such
earlier works, we are the first to apply these sampling
techniques to conformance checking, a use case in which
computational efficiency is arguably even more impor-
tant than in discovery scenarios. Following up on our
original work [19], we have successfully lifted the no-
tions underlying our approach for efficient conformance
checking in the presence of ordering uncertainty [48].

8. Conclusion

This paper advocates the usefulness of sampling and
approximation in the context of the computationally ex-
pensive conformance checking task. Our focus is on
application scenarios that require insights into the over-
all conformance of an event log with respect to a process
model, i.e., where aggregated conformance results in-
stead of single deviations are of interest. For such a
scenario, we argued that conformance results can be ob-
tained without computing conformance results for all

traces. Specifically, we considered two angles to achieve
efficient conformance checking: First, through trace sam-
pling, we achieve that only a small share of the traces
of a log are considered in the first place. By phrasing
this sampling as a series of random experiments, we are
able to give guarantees on the introduced error in terms
of a potential difference of the overall conformance re-
sult. Second, we introduced result approximation as a
means to avoid the computation of conformance results
even for some of the sampled traces. Exploiting simi-
larities of two traces, we derive an upper bound for the
conformance of one trace based on the conformance of
another trace. Both techniques, trace sampling and result
approximation, have been instantiated for three notions
of conformance results: fitness as a numerical measure
of overall conformance, the deviation distribution that
highlights hotspots of non-conformance in terms of in-
dividual activities, and deviations that incorporate the
execution context into conformance checking. We illus-
trated the latter for resource assignments in particular.
Moreover, to increase the robustness of our approach, we
introduced mechanisms to reveal and counteract biases
in log samples.

To assess the efficiency and accuracy of our proposed
techniques, we conducted comprehensive evaluation ex-
periments using both real-world and synthetic data sets.

23

The experimental results highlight dramatic improve-
ments in terms of conformance checking efficiency: Only
a fraction of the traces of event logs are required in or-
der to obtain virtually equivalent conformance results to
those obtained without sampling. As such, we are able to
gain orders of magnitude improvements in the runtime of
conformance checking, without sacrificing the accuracy
of the overall conformance results. The experiments also
revealed that our approximation technique has consid-
erably improved in comparison to its previous version,
presented in [19], while furthermore covering a broader
scope of conformance results.

Acknowledgment

This work has received funding from the Deutsche
Forschungsgemeinschaft (DFG), grant number
421921612, and the Alexander von Humboldt Founda-
tion.

References

[1] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers, Fundamentals
of Business Process Management, Second Edition, Springer,
2018. doi:10.1007/978-3-662-56509-4.

[2] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance
Checking – Relating Processes and Models, Springer, 2018.

[3] B. Weber, M. Reichert, S. Rinderle-Ma, Change patterns and
change support features - enhancing flexibility in process-aware
information systems, DKE 66 (3) (2008) 438–466. doi:10.
1016/j.datak.2008.05.001.

[4] W. M. P. Van der Aalst, Data Scientist: The Engineer of the
Future, Springer International Publishing, Cham, 2014, pp. 13–
26. doi:10.1007/978-3-319-04948-9_2.

[5] A. Adriansyah, B. van Dongen, W. M. P. Van der Aalst, Con-
formance checking using cost-based fitness analysis, in: EDOC,
2011, pp. 55–64.

[6] D. Reißner, R. Conforti, M. Dumas, M. L. Rosa, A. Armas-
Cervantes, Scalable conformance checking of business processes,
in: OTM to Meaningful Int. Syst., 2017, pp. 607–627. doi:
10.1007/978-3-319-69462-7_38.

[7] B. F. van Dongen, Efficiently computing alignments - us-
ing the extended marking equation, in: Business Pro-
cess Management, 2018, pp. 197–214. doi:10.1007/
978-3-319-98648-7_12.

[8] M. de Leoni, A. Marrella, How planning techniques can help
process mining: The conformance-checking case, in: Italian
Symp. on Advanced Database Syst., 2017, p. 283.

[9] J. Evermann, Scalable process discovery using map-reduce,
IEEE TSC 9 (3) (2016) 469–481. doi:10.1109/TSC.2014.
2367525.

[10] C. Luo, F. He, C. Ghezzi, Inferring software behavioral models
with MapReduce, Sci. Comput. Program. 145 (2017) 13–36.
doi:10.1016/j.scico.2017.04.004.

[11] F. Taymouri, J. Carmona, A recursive paradigm for aligning
observed behavior of large structured process models, in: Busi-
ness Process Management, Springer, 2016, pp. 197–214. doi:
10.1007/978-3-319-45348-4_12.

[12] W. M. P. V. der Aalst, H. M. W. Verbeek, Process discovery and
conformance checking using passages, Fundam. Inform. 131 (1)
(2014) 103–138. doi:10.3233/FI-2014-1006.

[13] J. Munoz-Gama, J. Carmona, W. v. d. Aalst, Single-entry single-
exit decomposed conformance checking, Inf. Syst. 46 (2014)
102–122.

[14] S. J. J. Leemans, D. Fahland, W. M. P. V. der Aalst, Scal-
able process discovery and conformance checking, Software
and System Modeling 17 (2018) 599–631. doi:10.1007/
s10270-016-0545-x.

[15] P. M. Dixit, J. C. A. M. Buijs, H. M. W. Verbeek, W. M. P. V.
der Aalst, Fast incremental conformance analysis for interactive
process discovery, in: BIS, Springer, 2018, pp. 163–175. doi:
10.1007/978-3-319-93931-5_12.

[16] K. M. van Hee, Z. Liu, N. Sidorova, Is my event log complete? -
A probabilistic approach to process mining, in: Int. Conf. on
Research Challenges in Information Science, 2011, pp. 1–7.
doi:10.1109/RCIS.2011.6006848.

[17] W. M. P. Van der Aalst, Process Mining - Discovery, Confor-
mance and Enhancement of Business Processes, Springer, 2011.
doi:10.1007/978-3-642-19345-3.

[18] A. Rogge-Solti, A. Senderovich, M. Weidlich, J. Mendling,
A. Gal, In log and model we trust? A generalized conformance
checking framework, in: BPM, 2016, pp. 179–196.

[19] M. Bauer, H. van der Aa, M. Weidlich, Estimating process con-
formance by trace sampling and result approximation, in: Inter-
national Conference on Business Process Management, 2019, pp.
179–197.

[20] N. Busany, S. Maoz, Behavioral log analysis with statistical
guarantees, in: ICSE, ACM, 2016, pp. 877–887.

[21] M. Bauer, A. Senderovich, A. Gal, L. Grunske, M. Weidlich,
How much event data is enough? A statistical framework for
process discovery, in: CAiSE, 2018, pp. 239–256. doi:10.
1007/978-3-319-91563-0_15.

[22] S. B. Needleman, C. D. Wunsch, A general method applicable
to the search for similarities in the amino acid sequence of two
proteins, Journal of molecular biology 48 (3) (1970) 443–453.

[23] R. P. J. C. Bose, W. M. P. van der Aalst, Process diagnostics
using trace alignment: Opportunities, issues, and challenges, Inf.
Syst. 37 (2) (2012) 117–141. doi:10.1016/j.is.2011.
08.003.
URL https://doi.org/10.1016/j.is.2011.08.003

[24] B. Knols, J. M. E. M. van der Werf, Measuring the Behavioral
Quality of Log Sampling, in: 2019 International Conference
on Process Mining (ICPM), IEEE, 2019, pp. 97–104. doi:
10.1109/ICPM.2019.00024.

[25] L. Bao, N. Busany, D. Lo, S. Maoz, Statistical Log Differencing,
in: Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering, 2019, pp. 851 – 862.

[26] H. Yang, L. Wen, J. Wang, An approach to evaluate the local
completeness of an event log, Proceedings - IEEE International
Conference on Data Mining, ICDM (2012) 1164–1169doi:10.
1109/ICDM.2012.66.

[27] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Causal be-
havioural profiles–efficient computation, applications, and evalu-
ation, Fundamenta Informaticae 113 (3-4) (2011) 399–435.

[28] A. Polyvyanyy, M. Weidlich, R. Conforti, M. L. Rosa, A. H. M.
ter Hofstede, The 4c spectrum of fundamental behavioral re-
lations for concurrent systems, in: Application and Theory of
Petri Nets and Concurrency - 35th International Conference,
PETRI NETS 2014, 2014, pp. 210–232. doi:10.1007/
978-3-319-07734-5_12.

[29] M. L. McHugh, The chi-square test of independence, Biochemia
medica: Biochemia medica 23 (2) (2013) 143–149.

[30] N. M. Razali, Y. B. Wah, et al., Power comparisons of shapiro-

24

https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1007/978-3-319-04948-9_2
https://doi.org/10.1007/978-3-319-69462-7_38
https://doi.org/10.1007/978-3-319-69462-7_38
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1109/TSC.2014.2367525
https://doi.org/10.1109/TSC.2014.2367525
https://doi.org/10.1016/j.scico.2017.04.004
https://doi.org/10.1007/978-3-319-45348-4_12
https://doi.org/10.1007/978-3-319-45348-4_12
https://doi.org/10.3233/FI-2014-1006
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-319-93931-5_12
https://doi.org/10.1007/978-3-319-93931-5_12
https://doi.org/10.1109/RCIS.2011.6006848
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-319-91563-0_15
https://doi.org/10.1007/978-3-319-91563-0_15
https://doi.org/10.1016/j.is.2011.08.003
https://doi.org/10.1016/j.is.2011.08.003
https://doi.org/10.1016/j.is.2011.08.003
https://doi.org/10.1016/j.is.2011.08.003
https://doi.org/10.1016/j.is.2011.08.003
https://doi.org/10.1109/ICPM.2019.00024
https://doi.org/10.1109/ICPM.2019.00024
https://doi.org/10.1109/ICDM.2012.66
https://doi.org/10.1109/ICDM.2012.66
https://doi.org/10.1007/978-3-319-07734-5_12
https://doi.org/10.1007/978-3-319-07734-5_12

wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests,
Journal of statistical modeling and analytics 2 (1) (2011) 21–33.

[31] B. Van Dongen, BPI Challenge 2012, https://doi.org/10.
4121/uuid:3926db30-f712-4394-aebc-75976070e91f

(2012). doi:10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f.

[32] B. Van Dongen, BPI Challenge 2014, https://doi.org/10.
4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

(2014). doi:10.4121/uuid:
c3e5d162-0cfd-4bb0-bd82-af5268819c35.

[33] M. M. De Leoni, F. F. Mannhardt, Road traffic fine
management process, https://doi.org/10.4121/

uuid:270fd440-1057-4fb9-89a9-b699b47990f5

(2015). doi:10.4121/UUID:
270FD440-1057-4FB9-89A9-B699B47990F5.

[34] S. J. J. Leemans, D. Fahland, W. M. P. V. der Aalst, Discover-
ing block-structured process models from event logs containing
infrequent behaviour, in: BPM Workshops, Vol. 171 of LNBIP,
Springer, 2013, pp. 66–78.

[35] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. V. der
Aalst, Balanced multi-perspective checking of process confor-
mance, Computing 98 (4) (2016) 407–437. doi:10.1007/
s00607-015-0441-1.
URL https://doi.org/10.1007/s00607-015-0441-1

[36] Munoz-Gama, J., Conformance checking in the
large (dataset) (2013). doi:10.4121/UUID:
44C32783-15D0-4DBD-AF8A-78B97BE3DE49.

[37] E. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, W. M. P. V. der
Aalst, Prom 6: The process mining toolkit, in: Business Process
Management (Demonstration Track), 2010.

[38] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, M. Weske,
Process compliance analysis based on behavioural profiles, Inf.
Syst. 36 (7) (2011) 1009–1025.

[39] A. Rozinat, W. M. P. Van der Aalst, Conformance checking
of processes based on monitoring real behavior, Information
Systems 33 (1) (2008) 64–95.

[40] F. Taymouri, J. Carmona, Model and event log reductions to
boost the computation of alignments, in: SIMPDA, 2016, pp.
1–21.

[41] B. F. van Dongen, J. Carmona, T. Chatain, F. Taymouri, Aligning
modeled and observed behavior: A compromise between compu-
tation complexity and quality, in: CAISE, Vol. 10253, 2017, pp.
94–109.

[42] F. Taymouri, J. Carmona, An evolutionary technique to approxi-
mate multiple optimal alignments, in: BPM, 2018, pp. 215–232.

[43] L. Padró, J. Carmona, Approximate computation of alignments of
business processes through relaxation labelling, in: International
Conference on Business Process Management, Springer, 2019,
pp. 250–267.

[44] H. Cohen, S. Maoz, Have we seen enough traces?, in: ASE,
IEEE, 2015, pp. 93–103.

[45] A. W. Biermann, J. A. Feldman, On the synthesis of finite-state
machines from samples of their behavior, IEEE Trans. Computers
100 (6) (1972) 592–597.

[46] J. Carmona, J. Cortadella, Process mining meets abstract inter-
pretation, in: ECML/PKDD (1), Vol. 6321 of Lecture Notes in
Computer Science, Springer, 2010, pp. 184–199.

[47] M. F. Sani, S. J. van Zelst, W. M. P. van der Aalst, The impact
of event log subset selection on the performance of process dis-
covery algorithms, in: New Trends in Databases and Information
Systems ADBIS, 2019, pp. 391–404.

[48] H. van der Aa, H. Leopold, M. Weidlich, Partial order resolu-
tion of event logs for process conformance checking, Decision
Support Systems 136 (2020) 113347.

25

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/UUID:270FD440-1057-4FB9-89A9-B699B47990F5
https://doi.org/10.4121/UUID:270FD440-1057-4FB9-89A9-B699B47990F5
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.4121/UUID:44C32783-15D0-4DBD-AF8A-78B97BE3DE49
https://doi.org/10.4121/UUID:44C32783-15D0-4DBD-AF8A-78B97BE3DE49

	Introduction
	Preliminaries
	Sample-Based Conformance Checking
	Statistical Sampling Framework
	Sample-Based Fitness
	Sample-Based Deviation Distributions
	Sample-based Resource Deviations

	Approximation-Based Conformance Checking
	Conformance Approximation Framework
	Trace Similarity
	Conformance Result Approximation
	Fitness Approximation
	Deviation Distribution Approximation
	Resource Deviation Approximation

	Sample Quality Assurance
	Sample Quality Characteristics
	Internal Sample Quality Analysis
	External Sample Quality Analysis

	Evaluation
	Datasets
	Experimental Setup
	Evaluation Results
	Overall Results
	Parameter Sensitivity
	Scalability
	Novel Approximation Heuristics
	Resource Deviation Detection
	Quality Checking Methods
	Recap

	Related Work
	Conclusion

