
Extracting Semantic Process Information from the
Natural Language in Event Logs

Adrian Rebmann and Han van der Aa

Data and Web Science Group, University of Mannheim, Mannheim, Germany
{rebmann|han}@informatik.uni-mannheim.de

Abstract. Process mining focuses on the analysis of recorded event data in order
to gain insights about the true execution of business processes. While founda-
tional process mining techniques treat such data as sequences of abstract events,
more advanced techniques depend on the availability of specific kinds of informa-
tion, such as resources in organizational mining and business objects in artifact-
centric analysis. However, this information is generally not readily available, but
rather associated with events in an ad hoc manner, often even as part of unstruc-
tured textual attributes. Given the size and complexity of event logs, this calls
for automated support to extract such process information and, thereby, enable
advanced process mining techniques. In this paper, we present an approach that
achieves this through so-called semantic role labeling of event data. We combine
the analysis of textual attribute values, based on a state-of-the-art language model,
with a novel attribute classification technique. In this manner, our approach ex-
tracts information about up to eight semantic roles per event. We demonstrate the
approach’s efficacy through a quantitative evaluation using a broad range of event
logs and demonstrate the usefulness of the extracted information in a case study.

Keywords: Process mining · Natural language processing · Semantic labeling

1 Introduction

Process mining [1] enables the analysis of business processes based on event logs that
are recorded by information systems in order to gain insights into how processes are
truly executed. Process mining techniques obtain these insights by analyzing sequences
of recorded events, also referred to as traces, that jointly comprise an event log. Most
foundational process mining techniques treat traces as sequences of abstract symbols,
e.g., 〈a, b, c, d〉. However, more advanced techniques, such as social network analy-
sis [3] and object-centric process discovery [2] go beyond this abstract view and con-
sider specific kinds of information contained in the events’ labels or attributes, such as
actors, business objects, and actions.

A key inhibitor of such advanced process mining techniques is that the required
pieces of information, which we shall refer to as semantic components, are not readily
available in most event logs. A prime cause for this is the lack of standardization of
attributes in event logs. While the XES standard [4] defines certain standard extensions
for attributes (e.g., org:resource), the use of these conventions is not enforced and,
thus, not necessarily followed by real-life logs (cf., [9]). Furthermore, the standard only

2 A. Rebmann, H. van der Aa

covers a limited set of attributes, which means that information on components such as
actions and business objects, are not covered by the standard at all and, therefore, often
not explicitly represented in event logs.

Rather, relevant information is often captured as part of unstructured, textual data
attributes associated with events, most commonly in the form of an event’s label. For
example, the “Declaration submitted by supervisor” label from the most recent BPI
Challenge [10] captures information on the business object (declaration), the action
(submitted), and the actor (supervisor). Since these components are all encompassed
within a single, unstructured text, the information from the label cannot be exploited
by process mining techniques. Enabling this use, thus, requires the processing of each
individual attribute value in order to extract the included semantic information. Clearly,
this is an extremely tedious and time-consuming task when considered in light of the
complexity of real-life logs, with hundreds of event classes, dozens of attributes, and
thousands of instances. Therefore, this calls for automated support to extract semantic
components from event data and make them available to process mining techniques.

To achieve this, we propose an approach that automatically extracts semantic infor-
mation from events while imposing no assumptions on a log’s attributes. In particular,
it aims to extract information on eight semantic roles, covering various kinds of infor-
mation related to business objects, actions, actors, and other resources. The choice for
these specific roles is based on their relevance to existing process mining techniques
and presence in available real-life event logs. To achieve its goal, our approach com-
bines state-of-the-art natural language processing (NLP) techniques, tailored to the task
of semantic role labeling, with a novel technique for semantic attribute classification.

Following an illustration of the addressed problem (Section 2) and presentation
of our approach itself (Section 3), the quantitative evaluation presented in Section 4
demonstrates that our approach achieves accurate results on real-life event logs, span-
ning various domains and varying considerably in terms of their informational structure.
Afterwards, Section 5 highlights the usefulness of our approach by using it to analyze
an event log from the 2020 BPI Challenge (BPI20). Finally, Section 6 discusses streams
of related work, before concluding in Section 7.

2 Motivation

This section motivates the goal of semantic role labeling of event data (Section 2.1) and
discusses the primary challenges associated with this task (Section 2.2).

2.1 Semantic Roles in Event Data

Given an event log, our work sets out to label pieces of information associated with
events that correspond to particular semantic roles. In this work, we focus on various
roles that support a detailed analysis of business process execution from a behavioral
perspective, i.e., we target semantic roles that are commonly observed in event logs
and that are relevant for an order-based analysis of event data. Therefore, we consider
information related to four main categories: business objects, actions, as well as active

Extracting Semantic Process Information from Event Logs 3

and passive resources involved in a process’ execution. For each category, we define
multiple semantic roles, which we jointly capture in a setR:
Business objects. In line with convention [19], we use the term business object to
broadly refer to the main object(s) relevant to an event. Particularly, we define (1) obj
as the type of business object to which an event relates, e.g., a purchase order, an ap-
plicant, or a request and (2) objstatus as an object’s status, e.g., open or completed.
Actions. We define two roles to capture information on the actions that are applied to
business objects : (1) action, as the kind of action, e.g., create, analyze, or send, and
(2) actionstatus, as further information on its status, e.g., started or paused.
Actors. Information regarding the active resource in the event is captured in the follow-
ing two roles: (1) actor as the type of active resource in the event, e.g., a “supervisor”
or a “system”, and (2) actorinstance for information indicating the specific actor in-
stance, e.g., an employee identifier.
Passive resources. Aside from the actor, events may also store information on passive
resources involved in an event, primarily in the form of recipients. For this, we again
define two roles: (1) passive as the type of passive resource related to the event, e.g.,
the role of an employee receiving a document or a system on which a file is stored or
transferred through, and (2) passiveinstance for information indicating the specific
resource, e.g., an employee or system identifier.

The considered semantic roles enable a broad range of fine-granular insights into
the execution of a process. For example, the business object and action categories al-
low one to obtain detailed insights into the business objects moving through a pro-
cess, their inter-relations, and their life-cycles. Furthermore, by also considering the
resource-related roles, one can, for instance, gain detailed insights into the resource
behavior associated with a particular business object, e.g., how resources jointly collab-
orate on the processing of a specific document. While the covered roles, thus, support
a wide range of analyses and are purposefully selected based on their relevance in real-
life event logs, our approach is by no means limited to these specific roles. Given that
we employ state-of-the-art NLP technology that generalizes well, the availability of
appropriate event data allows our approach to be easily extended to cover additional
semantic roles, both within and outside the informational categories considered here.

2.2 The Semantic Role Labeling Task

To ensure that all relevant information is extracted from an event log, our work consid-
ers two aspects of the semantic role labeling task, concerned with two kinds of event
attributes: attribute-level classification for attributes dedicated to a single semantic role
and instance-level labeling for textual attributes covering various roles:
Attribute-level classification. Attribute-level classification sets out to determine the
role of attributes that correspond to the same, dedicated semantic role throughout an
event log, e.g., a doctype attribute indicating a business object. Although the XES
standard [4] specifies several standard event attributes, such as org:resource and
org:role, these only cover a subset of the semantic roles we aim to identify. They
omit roles related to business objects, actions, and passive resources. These other se-
mantic roles may, thus, be captured in attributes with diverse names, e.g., the objstatus

4 A. Rebmann, H. van der Aa

role corresponds to event attributes such as isClosed or isCancelled in the Hos-
pital log1. Furthermore, even for roles covered by standard attributes, there is no guar-
antee that event logs adhere to the conventions, e.g., rather than using org:group, the
BPI14 log captures information on actors in an Assignment_Group attribute.
Instance-level labeling. Instance-level labeling, instead, sets out to derive semantic
information from attributes with unstructured, textual values that encompass various
semantic roles, differing per event instance. This task is most relevant for so-called
event labels, often stored in a concept:name attribute. These labels contain highly
valuable semantic information, yet also present considerable challenges to their proper
handling, as illustrated through the real-life event labels in Table 1. The examples high-
light the diversity of textual labels, in terms of their structure and the semantic roles that
they cover. It is worth mentioning that such differences may even exist for labels within
the same event log, e.g., labels l5 and l6 differ considerably in their textual structure
and the information they cover, yet they both stem from the BPI19 log. Another char-
acteristic to point out is the possibility of recurring roles within a label, such as seen for
label l1, which contains two action components: draft and send. Hence, an approach
for instance-level labeling needs to be able to deal with textual attribute values that are
highly variable in terms of the information they convey, as well as their structure.

Log ID Event label Contained semantic roles

WABO l1 draft and send request for advice action (×2), obj
BPI15 l2 send design decision to stakeholders action, obj, passive
BPI15 l3 send letter in progress action, obj, actionstatus

RTFM l4 insert date appeal to prefecture action, obj, passive
BPI19 l5 Vendor creates invoice actor, action, obj
BPI19 l6 SRM: In Transfer to Execution Syst. action, passive
BPI20 l7 Declaration final_approved by supervisor obj, actionstatus, action, actor

Table 1: Exemplary event labels from real-life event logs.

3 Semantic Event Log Parsing

This section presents our approach for the semantic labeling of event data. Its input and
main steps are as follows:
Approach input. Our approach takes as input an event log L that consists of events
recorded by an information system. We denote the universe of all events as E , where
each event e ∈ E carries information in its payload. This payload is defined by a set
of (data) attributes D = {D1, . . . , Dp} with dom(Di) as the domain of attribute Di,
1 ≤ i ≤ p and name(Di), its name. We write e.D for the value of D for an event e.

Note that we do not impose any assumptions on the attributes contained in an event
log L, meaning that we do not assume that attributes such as concept:name and
org:role are included in D.

1 We kindly refer to Section 4.1 for further information on the event logs referenced here.

Extracting Semantic Process Information from Event Logs 5

Event log L 1. Data type
categorization

2. Instance-level
labeling

3. Attribute-level
classification

Augmented
event log L’

labeled textual values

attribute
classes

Fig. 1: Overview of the approach.

Approach steps. The goal of our approach is to label the values of event attributes
with their semantic roles. To achieve this, our approach consists of three main steps,
as visualized in Fig. 1. Given a log L and its set of event attributes D, Step 1 first
identifies sets of textual attributes DT ⊆ D and of miscellaneous attributes DM ⊆ D.
Afterwards, Step 2 labels the values of textual attributes in DT to extract the parts that
correspond to semantic roles, e.g., recognizing that a “document received” event label
contains the business object “document” and the action “received”. Step 3 focuses on
the attribute-level classification of miscellaneous attributes in DM , as well as some
textual attributes DT

n ⊆ DT that were deemed unsuitable for instance-level labeling
during the previous step. This classification step aims to determine the semantic role
that corresponds to all values of a certain attribute in DM ∪ DT

n , e.g., recognizing that
all values of a doctype attribute correspond to the obj role.

In the remainder, Sections 3.1 through 3.3 describe the steps of our approach in
detail, whereas Section 3.4 discusses how their outcomes are combined in order to
obtain an event log L′ augmented with the extracted semantic information.

3.1 Step 1: Data Type Categorization

In this step, our approach sets out to identify the sets of textual attributesDT and miscel-
laneous attributesDM . As a preprocessing step, we first identify string, timestamp,
and numeric attributes using standard libraries, e.g., Pandas in Python2.
Identifying textual attributes. To identify the set of textual attributes DT , we need to
differentiate between string attributes with true natural language values, e.g., “docu-
ment received” or “Create_PurchaseOrder”, and other kinds of alphanumeric attributes,
with values such as “A”, “USER_123”, and “R_45_2A”. Only the former kind of at-
tributes will be assigned toDT and, thus, analyzed on an instance-level in the remainder
of the approach. We identify such true textual attributes as follows:
1. Given a string attribute, we first apply a tokenization function tok, which splits

an attribute value into lowercase tokens (based on whitespace, camel-case, under-
scores, etc.) and omits any numeric ones. E.g., given s1 = “Create_PurchaseOrder”,
s2 =“USER_123”, and s3 = “08_AWB45_005”, we obtain: tok(s1) = [create, pur-
chase, order], tok(s2) = [user] and tok(s3) = [awb].

2. We apply a part-of-speech tagger, provided by standard NLP tools (e.g., Spacy [14]),
to assign a token from the Universal Part of Speech tag set3 to each token. In
this manner, we obtain [(create,VERB) (purchase, NOUN), (order, NOUN)] for
s1, [(user, NOUN)] for s2, and [(awb, PROPN)] for s3.

2 https://pandas.pydata.org
3 https://universaldependencies.org/docs/u/pos/

6 A. Rebmann, H. van der Aa

3. Finally, we exclude any attribute fromDT that only has values with the same token
in tok(s) or do not contain any NOUN, VERB, ADV, or ADJ tokens. In this way, we
omit attributes with values such as s2 = “USER_123" and s3 = “08_AWB45_005”,
which are identifiers, rather than textual attributes. The other attributes, which have
diverse, textual values, e.g., s1 =“Create_PurchaseOrder”, are assigned to DT .

Selecting miscellaneous attributes. We also identify a set of non-textual attributes that
are candidates for semantic labeling, referred to as the set of miscellaneous attributes,
DM ⊆ D \DT . This set contains attributes that are not included in DT , yet have a data
type that may still correspond to a semantic role inR.

To achieve this, we discard those attributes in D \ DT categorized as timestamp
attributes, as well as numeric attributes that include real or negative values. We
exclude these because they are not used to capture semantic information. By con-
trast, the remaining attributes have data types that may correspond to roles in R, such
as boolean attributes that can be used to indicate specific states, e.g., isClosed,
whereas non-negative integers are commonly used as identifiers. Together with the
string attributes not selected for DT , the retained attributes are assigned to DM .

3.2 Step 2: Instance-level Labeling of Textual Attributes

In this step, our approach sets out to label the values of textual attributes in order to ex-
tract the parts that correspond to certain semantic roles, e.g., recognizing that a “create
purchase order” event label contains “purchase order” as the obj and “create” as the
action. As discussed in Section 2.2, this comes with considerable challenges, given
the high diversity of textual attribute values in terms of their linguistic structure and
informational content. To be able to deal with these challenges, we therefore build on
state-of-the-art developments in the area of natural language processing.
Tagging task. We approach the labeling of textual attribute values with semantic roles
as a text tagging task. Therefore, we instantiate a function that assigns a semantic role
to chunks (i.e., groups) of consecutive tokens from a tokenized textual attribute value.
Formally, given the tokenization of an attribute value, tok(e.D) = 〈t1, . . . , tn〉, for
an attribute D ∈ DT , we define a function tag(〈t1, . . . , tn〉) → 〈c1\r1, . . . , cm\rm〉,
where ci for 1 ≤ i ≤ m is a chunk consisting of one or more consecutive tokens
from 〈t1, . . . , tn〉, with ri ∈ R ∪ {other} its associated semantic role. For instance,
tag(〈create, purchase, order〉) yields: 〈create\action, purchase order\obj〉.
BERT. To instantiate the tag function, we employ BERT [8], a language model that is
capable of dealing with highly diverse textual input and achieves state-of-the-art results
on a wide range of NLP tasks. BERT has been pre-trained on huge text corpora in order
to develop a general understanding of a language. This model can then be fine-tuned by
training it on an additional, smaller training data collection to target a particular task.
In this manner, the trained model combines its general language understanding with
aspects that are specific to the task at hand. In our case, we thus fine-tune BERT in
order to tag chunks of textual attribute values that correspond to semantic roles.
Fine-tuning. For the fine-tuning procedure, we manually labeled a collection of 13,231
unique textual values stemming from existing collections of process models [15], tex-
tual process descriptions [16], and event logs (see Section 4.1). As expected, the col-

Extracting Semantic Process Information from Event Logs 7

lected samples do not capture information on resource instances, and rather contain
information on the type level (i.e., actor and passive). For those semantic roles
that are included in the samples, we observe a considerable imbalance in their com-
monality, as depicted in Table 2. In particular, while roles such as obj (14,629 times),
action (12,573), and even passive (1,191) are relatively common, we only found
few occurrences of actor (135), objstatus (92), and actionstatus (30) roles.

Table 2: Training data used to fine-tune the language model, with s = status

Source Count obj objs action actions actor passive other

Process models 11,658 13,543 50 11,445 3 58 1,058 4,966
Textual desc. 498 503 11 498 0 8 114 206
Event logs 625 583 31 630 27 69 19 291
Augmentation 450 350 100 350 150 200 0 150

Total 13,231 14,979 192 12,923 180 335 1,191 5,613

To counter this imbalance, we created additional training samples with objstatus,
actionstatus, and actor roles through established data augmentation strategies. In
particular, we created samples by complementing randomly selected textual values with
(1) known actor descriptions, e.g., “purchase order created" is extended to “purchase
order created by supervisor", and (2) common life-cycle transitions from [1, p.131] to
create samples containing objstatus and actionstatus roles, e.g., “check invoice” is
extended to “check invoice completed”. However, as shown in Table 2, we limited the
number of extra samples to avoid overemphasizing the importance of these roles.

Given this training data, we operationalize the tag function using the BERT base
uncased pre-trained language model4 with 12 transformer layers, a hidden state size of
768 and 12 self-attention heads. As suggested by its developers [8], we trained 2 epochs
using a batch size of 16 and a learning rate of 5e-5.
Reassigning noun-only attributes. After applying the tag function to the values of
an attribute D ∈ DT , we check whether the tagging is likely to have been successful.
In particular, we recognize that it is hard for an automated technique to distinguish
among the obj, actor, and passive roles, when there is no contextual information,
since their values all correspond to nouns. For instance, a “user” may be tagged as obj
rather than actor, given that business objects are much more common in the training
data and there is no context that indicates the correct role. Therefore, we establish a set
DT

n ⊆ DT that contains all such noun-only attributes, i.e. attributes of which all values
correspond solely to the obj role. This set is then forwarded to Step 3, whereas the
tagged values of the other attributes directly become part of our approach’s output.

3.3 Step 3: Attribute-level classification

In this step, the approach determines the semantic role of miscellaneous attributes, DM

identified in Step 1, and the noun-only textual attributes, DT
n , identified in Step 2. We

4 https://github.com/google-research/bert

https://github.com/google-research/bert

8 A. Rebmann, H. van der Aa

target this at the attribute level, i.e., we determine a single semantic role for each D ∈
DM ∪DT

n and assign that role to each occurrence ofD in the event log. For attributes in
DM , the approach determines the appropriate role (if any) based on an attribute’s name,
whereas for attributes in DT

n , it considers the name as well as its values. Note that we
initially assign each attribute a role r ∈ R′, where R′ excludes the instance resource
roles, i.e. actorinstance and passiveinstance, and later distinguish between type-
level and instance-level based on the attribute’s domain.

Classifying miscellaneous attributes. To determine the role of miscellaneous attributes,
we recognize that their values, typically alphanumeric identifiers, integers or Booleans,
are mostly uninformative. Therefore, we determine the role of an attribute D ∈ DM

based on its name. In particular, we build a classifier that compares a name(D) to a set
of manually labeled attributes DL, derived from real-life event logs L (with L /∈ L).

Using DL, we built a multi-class text classifier function classify(D) that, given an
attribute D, returns rD ∈ R′ ∪ {other} as the semantic role closest to name(D),
with conf(rD) ∈ [0, 1] as the confidence. To this end, we encode the names from DL

using the GloVe [20] vector representation for words. Subsequently, we train a logistic
regression classifier on the obtained vectors, which can then be used to classify unseen
attribute names. Since GloVe provides a state-of-the-art representation to detect seman-
tic similarity between words, the classifier can recognize that, e.g., an item attribute is
more similar to obj attributes like product than to actor attributes in DL.

Classifying noun-only attributes. Given an attribute in D ∈ DT
n , we first apply the

same classifier as used for miscellaneous attributes. If classify(D) provides a classifi-
cation with a high confidence value, i.e., conf(rD) ≥ τ for a threshold τ , our approach
uses rD as the role for D. In this way, we directly recognize cases where name(D) is
equal or highly similar to some of the known attributes inDL. However, if the classifier
does not yield a confident result, we instead analyze the textual values in dom(D).

Since noun-only attributes were previously re-assigned due to their lack of context,
we here analyze them by artificially placing each attribute value into contexts that corre-
spond to different semantic roles. In particular, as shown in Fig. 2, we insert a candidate
value (e.g., “vendor”) into different positions of a set T of highly expressive textual
attribute values (i.e., ones with at least 3 semantic roles). The resulting texts are then
fed into the language model employed in Step 2, allowing our approach to recognize
which context and, therefore, which semantic role, best suits the candidate value (i.e.,
passive in Fig. 2). Finally, we assign rD ∈ R′ ∪ {other} as the role that received
the most votes across the different texts in T and values in dom(D).

confirm to customer that paperwork is ok
vendor to customer that paperwork is ok

confirm to vendor that paperwork is ok

Original sentence
Replacing “confirm”

Replacing “customer” prob(passive) = 0.90
prob(action) = 0.03

Fig. 2: Exemplary insertion of a value from an attribute in DT
n into an existing context.

Recognizing instance-level attributes. Since we only focused on the type-level roles
R′ in the above, we lastly check for every resource-related attribute D ∈ DM , with
rD ∈ {actor,passive}, if it actually corresponds to an instance-level role instead.

Extracting Semantic Process Information from Event Logs 9

Particularly, we change rD to the corresponding instance-level role if dom(D) has val-
ues that contain a numeric part or only consist of named-entities (e.g., “Pete”). For
instance, an attribute D1 with values like user_019 and batch_06, contains numeric
parts and is, thus reassigned to actorinstance, while an attribute D2 with dom(D2)=
{staff member, system} will retain its actor role.

3.4 Output

Given an event e, our approach returns a collection of tuples (r, v) with r ∈ R a se-
mantic role and v a value, where v either corresponds to an entire attribute value e.D
(for attribute-level classification applied to attributes in DM ∪ DT

n) or to a part thereof
(stemming from the instance-level labeling applied to DT \ DT

n).
To enable the subsequent application of process mining techniques, the approach

returns an XES event log L′ that contains these labels as additional event attributes, i.e.,
it does not override the names or values of existing ones. Note that we support differ-
ent ways to handle cases where an event has multiple tuples with the same semantic
role, e.g., the “draft” and “send” actions stemming from a “draft and send request”
label: the values are either collected into one attribute, i.e., action= [draft, send], or
into multiple, uniquely-labeled attributes, i.e., action:0 = draft, action:1 = send.
Furthermore, if multiple objstatus (or actionstatus) attributes exist that each have
Boolean values, e.g., isCancelled and isClosed for the Hospital log, these are
consolidated into a single attribute, for which events are assigned a value based on their
original Boolean attributes, e.g., {⊥, isCancelled, isClosed}.

4 Evaluation

We implemented our approach as a Python prototype5, using the PM4Py library [5] for
event log handling. Based on this prototype, we evaluated the accuracy of our approach
and individual steps on a collection of 14 real-life event logs.

4.1 Evaluation Data

To conduct our evaluation, we selected all real-life event logs publicly available in the
common 4TU repository6, except from those capturing data on software interactions or
sensor readings, given their lack of natural language content. For collections that in-
cluded multiple event logs with highly similar attributes, i.e., BPI13, BPI14, BPI15 and
BPI20, we only selected one log per collection, to maintain objectivity of the obtained
results. Table 3 depicts the details on the resulting collection of 14 event logs. They
cover processes of different domains, for instance financial services, public administra-
tion and healthcare. Moreover, they vary significantly in their number of event classes,
textual attributes, and miscellaneous attributes.

5 https://gitlab.uni-mannheim.de/processanalytics/extracting-semantic-process-information
6 https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22

https://gitlab.uni-mannheim.de/processanalytics/extracting-semantic-process-information
https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22

10 A. Rebmann, H. van der Aa

Table 3: Characteristics of the considered event logs, with C as the set of event classes

ID Log name |C| |D| |DT| ID Log name |C| |D| |DT|

L1 BPI12 24 4 2 L8 BPI20 51 5 4
L2 BPI13 4 11 4 L9 CCC19 29 11 4
L3 BPI14 39 5 2 L10 Credit Req. 8 4 3
L4 BPI15 289 13 3 L11 Hospital 18 22 2
L5 BPI17 26 13 4 L12 RTFM 11 15 2
L6 BPI18 41 13 5 L13 Sepsis 16 31 1
L7 BPI19 42 4 2 L14 WABO 27 6 2

4.2 Setup

As a basis for our evaluation, we jointly established a gold standard in which we man-
ually annotated all unique textual values (for instance-level labeling) and attributes (for
attribute-level classification) with their proper semantic roles7. Since our approach re-
quires training for the language model used in the instance-level labeling (Section 3.2)
and for the attribute-name classifier (Section 3.3), we perform our evaluation experi-
ments using leave-one-out cross-validation, in which we repeatedly train our approach
on 13 event logs and evaluate it on the 14th. This procedure is repeated such that each
log in the collection is considered as the test log once.

To assess the performance of our approach, we compare the annotations obtained
using our approach against the manually created ones from the gold standard. Specif-
ically, we report on the standard precision, recall, and the F1-score. Note that for
instance-level labeling, we evaluate correctness per chunk, e.g., if a chunk (purchase
order, obj) is included in the gold standard, both “purchase” and “order” need to be
associated with the obj role in the result, otherwise, neither is considered correct.

4.3 Results

Table 4 provides an overview of the main results of our evaluation experiments. In the
following, we first consider the performance of the instance-level labeling and attribute-
level classification steps separately, before discussing the overall performance.

Instance-level labeling results. The table reveals that our instance-level labeling ap-
proach is able to detect semantic roles in textual attributes with high accuracy, achiev-
ing an overall F1-score of 0.91. The comparable precision and recall scores, e.g. 0.94
and 0.95 for action or 0.89 and 0.88 for obj, each suggest that the approach can
accurately label roles while avoiding false positives. This is particularly relevant, given
that nearly half of the textual attribute values also contain information beyond the scope
of the semantic roles considered here (see also Table 2). An in-depth look reveals that
the approach even performs well on complex values, such as “t13 adjust document x re-
quest unlicensed”. It correctly recognized the business objects (document and request),
the action (adjust) and status (unlicensed), omitting the superfluous content (t13 and x).

7 For reproducibility, the gold standard is published alongside the implementation.

Extracting Semantic Process Information from Event Logs 11

Table 4: Results of the evaluation experiments
Instance-level Attribute-level Overall

Semantic role Count Prec. Rec. F1 Count Prec. Rec. F1 Count Prec. Rec. F1

obj 583 0.89 0.88 0.88 2 0.50 0.50 0.50 585 0.89 0.88 0.88
objstatus 31 0.85 0.77 0.78 6 0.50 0.33 0.40 37 0.79 0.70 0.72
action 630 0.94 0.95 0.94 0 - - - 630 0.94 0.95 0.94
actionstatus 27 0.85 0.81 0.82 6 1.00 1.00 1.00 33 0.88 0.84 0.85
actor 69 0.93 0.84 0.88 0 - - - 69 0.93 0.84 0.88
actorinstance 0 - - - 16 1.00 0.94 0.97 16 1.00 0.94 0.97
passive 19 0.84 1.00 0.91 0 - - - 19 0.84 1.00 0.91

Overall 1,359 0.91 0.91 0.91 30 0.87 0.79 0.83 1,389 0.91 0.90 0.90

Challenges. We observe that the primary challenge for our approach relates to the dif-
ferentiation between relatively similar semantic roles, namely between the two kinds of
statuses, objstatus and actionstatus, as well as the two kinds of resources, actor
and passive. Making this distinction is particularly difficult in cases that lack suf-
ficient contextual information or proper grammar. For example, an attribute value like
“denied” can refer to either type of status, whereas it is even hard for a human to deter-
mine whether the “create suspension competent authority” label describes competent
authority as a primary actor or a passive resource.

Baseline comparison. To put the performance of our approach into context, we also
compared its instance-level labeling step to a baseline: a state-of-the-art technique for
the parsing of process model activity labels by Leopold et al. [15]. For a fair compar-
ison, we retrained our approach on the same training data as used to train the base-
line (corresponding to the collection of process models in Table 2) and only assess the
performance with respect to the recognition of business objects and actions, since the
baseline only targets these. Table 5 presents the results obtained in this manner for the
event labels from all 14 considered event logs.

The table shows that our approach greatly outperforms the baseline, achieving an
overall F1-score of 0.75 versus the baseline’s 0.47. Post-hoc analysis reveals that this
improved performance primarily stems from event labels that are more complex (e.g.,
multiple actions, various semantic roles or compound nouns spanning multiple words)
or lack a proper grammatical structure. This is in line with expectations, given that the
baseline approach has been developed to recognize several established labeling styles,
whereas we observe that event data often does not follow such expectations. Finally, it
is worth observing that the performance of our approach in this scenario is considerably
lower than when trained on the full data collection (e.g., an F1 of 0.66 versus 0.88 for
the obj role), which highlights the benefits of our data augmentation strategies.

Attribute-level classification results. As shown in Table 4, our also approach achieves
good results on the attribute-level classification of attributes, with an overall precision
of 0.87, recall of 0.79, and an F1 of 0.83. We remark that the outstanding performance
of our approach with respect to the actionstatus and actorinstance roles is partially
due to the usage of standardized XES names for some of these attributes, enabling easy

12 A. Rebmann, H. van der Aa

Table 5: Comparison of our instance-level labeling approach against a state-of-the-art
label parser; both trained on process model activity labels and evaluated on event labels.

Our approach Baseline [15]
Semantic role Count Prec. Rec. F1 Prec. Rec. F1

obj 562 0.65 0.68 0.66 0.40 0.40 0.40
action 618 0.86 0.81 0.83 0.59 0.48 0.53

Overall 1,180 0.76 0.75 0.75 0.50 0.44 0.47

recognition. Yet this is not always the case. For instance, 7 out of 16 actorinstance

attributes handled by this step use alternatives to the XES standard, such as User or
Assingment_Group. Our approach maintains a high accuracy for these cases, cor-
rectly recognizing 6 out of 7 of such attributes. Notably, the overall precision of our
attribute-classification technique reveals that it is able to avoid false positives well,
even though a substantial amount of event attributes are beyond the scope of our se-
mantic roles, such as monetary amounts or timestamps. This achievement can largely
be attributed to the domain analysis employed in our approach’s first step.

Nevertheless, it is important to consider that these results were obtained for a rel-
atively small set of 30 non-textual attributes. Therefore, the lower results for certain
uncommon semantic roles (e.g., obj), as well as the overall high accuracy for this step
should be considered with care. This caveat also highlights the need additional training
data, in order to expand the generalization of this part of our approach.
Overall results. The overall performance of the approach can be considered as the
average over the instance-level and attribute-level results, weighted against the number
of entities that were annotated (cf., count in Table 4), i.e., a unique textual attribute
value (instance-level) or an entire attribute (attribute-level).

We observe that the approach achieves highly accurate overall results, with a micro-
average precision of 0.91, and a recall and F1-score of 0.90. Still, when considering the
results per semantic role, we observe that there exist considerable differences. These
differences are largely due to the lower scores obtained for the underrepresented roles
in the data set, since it is clear that our approach is highly accurate on more common
roles, such as the F1 score of 0.94 for the recognition of actions.

5 Case Study

This section demonstrates some of the benefits to be obtained by using the semantic
information extracted by our proposed approach. To this end, we applied our approach
to the Permit Log published as part of the BPI20 collection [10], which contains 7,065
cases and 86,581 events, divided over 51 event classes (according to the event label,
i.e., the concept:name attribute). By applying our approach on the log, we identify
information on five semantic roles. Most prominently, our approach is able to extract
information about the action, actionstatus, obj, and actor roles from the log’s
unstructured, textual event labels. The availability of these semantic roles as attributes
in the augmented event log, created by our approach, enables novel analyses, such as:

Extracting Semantic Process Information from Event Logs 13

Event class refinement. The event log contains event labels that are polluted with
superfluous information, e.g., by including resource information such as ‘by budget
owner’, resulting in a total of 51 event classes. Any process model derived on the basis
of these classes, therefore, automatically exceeds the recommended maximum of 50
nodes in a process model [18], which impedes its understandability. To alleviate this,
we can use the output of our approach to refine the event classes by grouping together
events that involve the same action and obj. For instance, we group events with
labels like “declaration approved by budget owner” and “declaration approved by ad-
ministration”, while deferring the actor information to a dedicated actor attribute. In
this manner, we reduce the number of event classes from 51 to 21, which yields smaller
and hence more understandable process models through process discovery techniques.

Object-centric analysis. The extracted semantic information also enables us to in-
vestigate the behavior associated with specific business objects. Through the analy-
sis of event labels, our approach recognizes that the log contains six of these: permit,
trip, request for payment, payment, reminder, and declaration. In Fig. 3 we show the
directly-follows graph computed for the latter, obtained by selecting all events with
e.obj = ‘declaration′, and using the identified actions to establish the event class.
The figure clearly reveals how declarations are handled the process. Mostly, declara-
tions are submitted, approved, and then final approved. Interestingly, though, we also
see 112 cases in which a declaration was definitely approved, yet rejected afterwards.

submitted
7,574

approved
7,281

saved
65

rejected
3,495

final approved
5,858

5,408

5,169

21

4
11

2

1,560

52

5,516

166

1,657

1,851

5,556

140

Fig. 3: Example for object-centric analysis. The directly-follows graph shows the ac-
tions applied to the object declaration in the log (includes 100% activities, 50% paths).

It is important to stress that both the event class refinement and object-centric anal-
ysis are based on information extracted from the unstructured, textual labels of the
concept:name attribute in the original log. Therefore, the presented insights cannot
be obtained by manually categorizing the attributes of the event log, but rather require
the thorough, instance-level event analysis provided by our approach.

6 Related Work

Our work primarily relates to streams of research focused on the analysis of event and
process model activity labels, as well as to the semantic role labeling task in NLP.

14 A. Rebmann, H. van der Aa

Various approaches strive to either disambiguate or consolidate labels in event logs.
Lu et al. [17] propose an approach to detect duplicate event labels, i.e., labels that are
associated with events that occur in different contexts. By refining such duplicates, the
quality of subsequently applied process discovery algorithms can be improved. Work by
Sadeghianasl et al. [22] aim to detect the opposite case, i.e., situations in which different
labels are used to refer to behaviorally equivalent events. Other approaches strive for the
semantic analysis of labels, such as work by Deokar and Tao [7], which group together
event classes with semantically similar labels, as well as the label parsing approach
by Leopold et al. [15] against which we compared our work in the evaluation. Finally,
complementary to our approach, work by Tsoury et al. [23] strives to augment logs with
additional information derived from database records and transaction logs.

Beyond the scope of process mining, our work also relates to semantic annotation
applied in various other contexts. Most prominently, semantic role labeling is a widely
recognized task in NLP [6,12], which labels spans of words in sentences that correspond
to semantic roles. The tasks’ goal is to answer questions like Who is doing what, where
and to whom? While early work in this area mostly applied feature engineering methods
[21], recently deep learning-based techniques have been successfully applied, e.g., [13,
24]. In the context of web mining, semantic annotation focuses on assigning semantic
concepts to columns of web tables [25], while in the medical domain it is e.g. used to
extract the symptoms and their status from clinical conversations [11].

7 Conclusion

In this paper, we proposed an approach to extract semantic information from events
recorded in event logs. Namely, it extracts up to eight semantic roles per event, cov-
ering business objects, actions, actors, and other resources, without imposing any as-
sumptions on the structure of an event log’s attributes. We demonstrated our approach’s
efficacy through evaluation experiments using a wide range of real-life event logs. The
results show that our approach accurately extracts the targeted semantic roles from tex-
tual attributes, while considerably outperforming a state-of-the-art activity label parser
in terms of both scope and accuracy, whereas our attribute classification techniques were
also shown to yield satisfactory results when dealing with the information contained in
non-textual attributes. Finally, we highlighted the potential of our work by illustrating
some of its benefits in an application scenario based on real-life data. Particularly, we
showed how our approach can be used to refine and consolidate event classes in the
presence of polluted labels, as well as to obtain object-centric insights about a process.

In the future, we aim to expand our work in various directions. To improve its accu-
racy, we aim to include data from external resources such as common sense knowledge
graphs or dictionaries of domain-specific vocabulary into the approach. Furthermore,
we intend to broaden its scope by introducing additional kinds of semantic roles, such as
roles that disambiguate between human actors and systems. However, most importantly,
through its identification of semantic information, our work provides a foundation for
the development of wholly novel, semantics-aware process mining techniques.
Reproducibility: The implementation, dataset, and gold standard employed in our work
are all available through the repository linked in Section 4.

Extracting Semantic Process Information from Event Logs 15

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer (2016)
2. van der Aalst, W.M.P.: Object-Centric Process Mining: Dealing with Divergence and Con-

vergence in Event Data. In: SEFM. pp. 3–25. Springer (2019)
3. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs.

Computer Supported Cooperative Work (CSCW) 14(6), 549–593 (2005)
4. Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W., Günther, C., Verbeek, E.: IEEE

1849tm: The XES standard. IEEE Computational Intelligence Magazine pp. 4–8 (2017)
5. Berti, A., van Zelst, S.J., van der Aalst, W.: Process mining for python (PM4Py): Bridging

the gap between process-and data science. In: ICPM Demo Track 2019. pp. 13–16 (2019)
6. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 shared task: Semantic role la-

beling. In: CoNLL 2005. pp. 152–164 (2005)
7. Deokar, A.V., Tao, J.: Semantics-based event log aggregation for process mining and analyt-

ics. Information Systems Frontiers 17(6), 1209–1226 (2015)
8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional

transformers for language understanding. In: NAACL. pp. 4171–4186. ACL (2019)
9. van Dongen, B.F.: BPI challenge (2014). https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-

bd82-af5268819c35
10. van Dongen, B.F.: BPI challenge (2020). https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-

9d04-3604d4613b51
11. Du, N., Chen, K., Kannan, A., Tran, L., Chen, Y., Shafran, I.: Extracting symptoms and their

status from clinical conversations. In: ACL. pp. 915–925 (2019)
12. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational linguistics

28(3), 245–288 (2002)
13. He, L., Lee, K., Lewis, M., Zettlemoyer, L.: Deep semantic role labeling: What works and

what’s next. In: ACL. pp. 473–483 (2017)
14. Honnibal, M., Montani, I.: spacy 2: Natural language understanding with bloom embeddings,

convolutional neural networks and incremental parsing. To appear 7(1) (2017)
15. Leopold, H., van der Aa, H., Offenberg, J., Reijers, H.A.: Using Hidden Markov Models for

the accurate linguistic analysis of process model activity labels. Inf. Syst. 83, 30–39 (2019)
16. Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process

automation in textual process descriptions. In: BPMDS, pp. 67–81. Springer (2018)
17. Lu, X., Fahland, D., van den Biggelaar, F.J., van der Aalst, W.M.: Handling duplicated tasks

in process discovery by refining event labels. In: BPM. pp. 329–347 (2016)
18. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines

(7PMG). Information and Software Technology 52(2), 127–136 (2010)
19. Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Empirical

insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)
20. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global vectors for word representation.

In: EMNLP. pp. 1532–1543 (2014)
21. Pradhan, S., Ward, W., Hacioglu, K., Martin, J.H., Jurafsky, D.: Semantic role labeling using

different syntactic views. In: ACL. pp. 581–588 (2005)
22. Sadeghianasl, S., ter Hofstede, A., Suriadi, S., Turkay, S.: Collaborative and Interactive De-

tection and Repair of Activity Labels in Process Event Logs. In: ICPM. pp. 41–48 (2020)
23. Tsoury, A., Soffer, P., Reinhartz-Berger, I.: A conceptual framework for supporting deep

exploration of business process behavior. In: ER. pp. 58–71. Springer (2018)
24. Zhang, Z., Wu, Y., Zhao, H., Li, Z., Zhang, S., Zhou, X., Zhou, X.: Semantics-aware BERT

for language understanding. In: AAAI. vol. 34, No. 05, pp. 9628–9635 (2020)
25. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+. Semantic

Web 8(6), 921–957 (2017)

https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

	 Extracting Semantic Process Information from the Natural Language in Event Logs

