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Abstract

Anomaly detection in process mining aims to recognize outlying or unexpected behavior in event logs for

purposes such as the removal of noise and identification of conformance violations. Existing techniques

for this task are primarily frequency-based, arguing that behavior is anomalous because it is uncommon.

However, such techniques ignore the semantics of recorded events and, therefore, do not take the meaning

of potential anomalies into consideration. In this work, we overcome this caveat and focus on the detection

of anomalies from a semantic perspective, arguing that anomalies can be recognized when process behavior

does not make sense. To achieve this, we propose an approach that exploits the natural language associated

with events. Our key idea is to detect anomalous process behavior by identifying semantically inconsistent

execution patterns. To detect such patterns, we first automatically extract business objects and actions

from the textual labels of events. We then compare these against a process-independent knowledge base.

By populating this knowledge base with patterns from various kinds of resources, our approach can be

used in a range of contexts and domains. We demonstrate the capability of our approach to successfully

detect semantic execution anomalies through an evaluation based on a set of real-world and synthetic event

logs and show the complementary nature of semantics-based anomaly detection to existing frequency-based

techniques.
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1. Introduction

In many domains it is important that the execution of business processes adheres to certain rules and

regulations. In a hospital, for instance, the treatment of patients with drugs such as opioids is subject to

a number of strict conditions and checks. Similarly, a bank clerk must not provide a loan to a customer
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without conducting a number of solvency checks. Violating such rules and regulations may have severe

implications ranging from productivity loss [1] to financial penalties imposed by authorities [2].

To efficiently detect such undesirable behavior, conformance checking techniques have been introduced [3,

4]. They compare the actual behavior of employees, as recorded by information systems, to the desired

behavior that is specified in a normative process model. In this way, non-conforming behavior can be auto-

matically detected and respective measures for their prevention can be introduced. While these techniques

have been found to be valuable in many settings, they are only applicable if a process model capturing the

normative process behavior is available.

Recognizing that this is often not the case in practice, several authors have developed so-called anomaly

detection techniques. Early work in this area applies traditional conformance checking algorithms against a

process model that was automatically discovered from the considered event log [5]. More recent contributions

leverage unsupervised machine learning techniques to detect anomalies in event logs without having any

prior knowledge [6, 7]. A key assumption of all these techniques, however, is that anomalous behavior is

significantly less frequent than desired behavior.

In this paper, we argue that this frequency-based perspective is limited, since it ignores the semantics of

the recorded events and, therefore, does not take the meaning of potentially anomalous patterns into account.

To bridge this gap, we put forward the idea of exploiting a, so far, disregarded dimension of event logs for

anomaly detection: the natural language from event labels. More specifically, we build on the linguistic

branch of semantics, which is concerned with the meaning of words. Our key idea is that anomalous process

behavior can be identified based on the detection of semantically inconsistent execution patterns. As an

example, consider a process instance in which an order is both accepted and rejected. From a semantic point

of view, this is an undesirable constellation since accepted and rejected are opposites (so-called antonyms).

Therefore, we can conclude that the execution of this particular process instance is semantically inconsistent

and, thus, anomalous.

To detect semantic anomalies, we propose an approach for the natural language-driven detection of

semantic execution anomalies. First, building on state-of-the-art natural language processing (NLP) tech-

niques, our approach extracts semantic information, in terms of the business objects and actions, from the

textual labels of events in a log. We then compare the extracted action and business object patterns against

a process-independent knowledge base, which contains semantic assertions about the manner in which pro-

cesses are expected to be executed. We populate this knowledge base with patterns stemming from linguistic,

as well as from process-oriented resources. Since these patterns are intended to be generic, our semantic

execution anomaly detection approach can be used in various contexts and domains. To demonstrate the ca-

pability of our approach to successfully detect semantic execution anomalies, we present an evaluation based

on a set of real-world and synthetic event logs and compare our results against frequency-based techniques.

In the remainder, Section 2 illustrates the potential of detecting semantic anomalies based on natural
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Trace 1

A Create order

C Approve order

B Check order

E Create delivery

F Complete delivery

Trace 2

A Create order

B Check order

C Approve order

D Reject order

F Complete delivery

Figure 1: Anomalous traces in an order handling process

language labels of events and Section 3 provides key definitions. Section 4 presents our approach for natural

language-driven semantic anomaly detection. Section 5 discusses the evaluation of our approach. Section 6

reflects on related work before Section 7 concludes the paper.

2. Motivation

To illustrate the potential of natural language-driven anomaly detection, consider a simplified order

handling process. Regular execution of this process starts by creating an order (event A). Orders are

subsequently checked (B) before either being approved (C) or rejected (D). The latter case ends the process

instance. For approved orders, a delivery is created (E) and afterwards completed (F ).

Now consider the two recorded execution traces depicted in Figure 1. Even without being aware of the

expected execution of this process, several execution anomalies can be detected by considering the labels of

the recorded events:

• Out-of-order execution: In Trace 1, an order was approved (C) before it has actually been checked

(B), clearly revealing an anomalous execution order.

• Superfluous event : In Trace 2, we observe that an order was both approved (C) and rejected (D).

Naturally, the co-occurrence of these events indicates an anomaly since they are expected to exclude

each other.

• Missing event : Finally, we observe that in Trace 2 a delivery was completed (F ) that has never been

created (E). Since Trace 1 shows that this creation event does exist in the log, one would expect that

it occurs for every delivery, revealing a missed event.

These examples clearly illustrate the potential of leveraging event labels for the detection of semantic execu-

tion anomalies. While the detection of these particular cases is straightforward for humans, the complexity

and size of real-world event logs call for automated support. However, this requires an approach that has

an understanding about the order in which events should occur, when events should be exclusive, and when

they should co-occur. In the next section, we tackle this challenge through an approach that combines the

semantic parsing of event labels with the establishment of a knowledge base that captures assertions about
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the semantics of appropriate process executions.

3. Preliminaries

Events and event logs. We define E to denote the universe of all events. The events recorded for a single

execution (i.e., an instance) of a process is called a trace, which is modeled as a sequence of events, i.e., we

denote a trace with n events as σ = 〈e1, . . . , en〉, where each event e ∈ σ is part of E . Given the focus of

our work on the detection of semantic anomaly detection, we explicitly denote an event label as a natural

language attribute describing the activity that an event corresponds to, defined as e.l.

Process models and model collections. We adopt a simple, generic definition of process models and

collections. UsingM to denote a process model collection, each process model M ∈ M is defined as a set

of execution sequences, M ⊆ T ∗M over the set of tasks in the model TM . Note that we here use the term

task to refer to any labeled step in a process, which may be an activity or event in a BPMN model, or a

transition in a Petri net.

Given a sequence (whether consisting of events or tasks) σ = 〈t1, . . . , tn〉, we will use ti < tj as a

short-hand to denote that ti occurs before tj in the sequence, i.e., that i < j.

4. Semantic Anomaly Detection

We propose an approach for the label-based detection of semantic execution anomalies that consists of

three main components, as depicted in Figure 2.

1. The event label parsing component extracts semantic information from the labels associated with

events in a log. In particular, label parsing aims to extract the action and the business object from

event labels, such as illustrated for a “reject order ” event in the figure.

2. The knowledge base population component collects assertions about the interrelations that should hold

among actions applied to business objects, e.g., business objects cannot be archived without first being

created. Note that a knowledge base is intended to be process-independent, meaning that users do not

have to populate their own knowledge base but can employ an existing knowledge base, such as the

one used to conduct our evaluation.

3. Finally, the anomaly detection component compares the semantic information resulting from label

parsing to the assertions contained in the established knowledge base in order to detect semantically

anomalous behavior. In particular, our approach currently detects anomalies in terms of (1) out-of-

order executions, (2) superfluous events, and (3) missing events.

In the remainder, Sections 4.1 to 4.3 shall describe the three components in detail.
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Figure 2: Overview of the proposed anomaly detection approach

4.1. Event Label Parsing

Our approach detects anomalous behavior in terms of undesired patterns of actions that occur for a

particular business object. In line with established work on semantic process analysis [8], we use the term

business object to broadly refer to the entity to which an event corresponds, such as a purchase order, an

applicant, or a request. The action, then, captures the state change that is applied to this business object,

e.g, rejecting (action) a purchase order (business object). Since information on these components is hardly

ever explicitly represented in event logs, e.g., as dedicated event attributes, the first step of our approach

sets out to extract these components from the natural language labels associated with events.

Challenges. This extraction step comes with considerable challenges due to the large heterogeneity observed

in event labels, as illustrated through the real-world examples depicted in Table 1. Labels l1 and l2 represent

rather standard cases in which a label consists of a single action and a business object. However, even for

such standard cases, we observe a difference in order (e.g., action followed by business object versus the

reverse). Furthermore, l2 highlights that business objects can correspond to compound nouns like “quality

indicator ”. Although l3 also follows a common structure, it is important to recognize that, especially, business

objects, are not always denoted using proper natural language, such as “gfm17 ” in this case. Furthermore,

it is interesting to note here that the label’s action, “correction”, is a noun rather than a verb in this case.

Finally, examples l4 through l6 depict cases that go beyond the typical combination of a business object

and corresponding action. Labels l4 and l5 represent cases that, respectively, lack a business object and an

action, whereas l6 illustrates a case where multiple actions are described by a single event label.
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ID Source Event label Action(s) Business object

l1 [9] close case close case

l2 [10] quality indicator fixed fix quality indicator

l3 [11] correction gfm17 correct gfm17

l4 [12] a_approved approve –

l5 [9] VVGB positive – VVGB

l6 [13] draft and send request for advice draft, send request

Table 1: Exemplary event labels from real-world event logs

Tagging technique. To deal with these challenges, we adapt a tagging technique from our earlier work [14],

which we specifically designed to extract semantic information from real-world event data. The tagging

technique builds on BERT [15], a state-of-the-art language model developed to be applicable to a wide

range of NLP tasks. The BERT model is pre-trained on huge text corpora in order to develop a general

understanding of a language. This model can then be fine-tuned by training it on an additional, smaller

training data collection to target a particular task. In this manner, the trained model combines its general

language understanding with aspects that are specific to task at hand.

To fine-tune BERT for this tagging task, we manually annotated a collection of labels stemming from

process models and event logs with semantic information. As opposed to our original technique [14], we have

adapted the tagging and training mechanisms to only consider the tags that are relevant to our anomaly

detection approach. Namely, we use the ACT and BO tags to, respectively, denote words that correspond to

an action or business object (or part thereof). Any other word in a label receives an X tag.

Algorithm 1 Event label parsing
1: input event e

2: output a set of actions and associated business objects

3: W ← tokenize(e.l) . Split the label into a sequence of words

4: π\T ← tag(W) . Turn the tokens into a tagged sequence of chunks

5: result ← ∅

6: for chunk, tag ∈ π\T do . Iterate over all chunks

7: if tag = ACT then

8: action ← chunk

9: object ← getAssociatedBO(chunk) . Get the associated BO chunk, if any

10: res.add(action, object)

11: return result
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Parsing algorithm. We employ the tagger as part of a function that extracts combinations of actions and

business objects from an event’s label, as denoted by Algorithm 1. Formally, we define this function as:

parse : E → A×O, where E , A, and O respectively denote the universes of all events, actions, and business

objects.

The algorithm starts by tokenizing an event label (line 3), which splits the label into individual words

(i.e., tokens). Since our approach needs to deal with information extracted from information systems,

rather than with regular natural language text, this tokenization step needs to deal with peculiarities like

camel-case notation or other notation styles, such as seen for label l4, a_approved. After tokenization, we

employ the BERT-based tagger to turn the word sequence W into a sequence of tagged chunks π\T , with

π = 〈ϕ1, . . . , ϕn〉 and T = 〈t1, . . . , tn〉. Each chunk ϕi for i ∈ [1, n] consists of one or more words from W

with ti as its corresponding tag, e.g.,:

π\T = 〈draft\ACT, and\X, send\ACT, request\BO, for advice\X 〉

Afterwards, the algorithm iterates over the chunks (line 6) and tries to associate each ACT chunk with a BO

chunk (line 9). For this procedure of function getAssociatedBO, we employ the following heuristic. We first

infer the direction in which actions appear in relation to the associated business objects in the label. If the

first non-X tag of T is ACT, we assume that actions appear before their business objects, e.g., 〈close\ACT,

case\BO〉, whereas if the first tag is BO, we assume the reverse order, e.g., 〈case\BO, closed\ACT〉. Then,

the function determines the associated business object of an activity as the chunk with a BO tag that appears

closest (given the identified direction) to the ACT chunk. This procedure can result in cases where multiple

actions are associated with the same business object, e.g., for label l6 both actions, draft and send, will be

associated with the business object request. Furthermore, if there is no closest BO chunk, no business object

will be associated with an action, e.g., for l4, the action approve will have an empty business object ⊥.

Output. The function parse(e) returns a set of action-business object pairs obtained from the label of

event e, where each pair is given as a tuple (act, bo) with act ∈ A and bo ∈ O ∪ {⊥}. Although this set

may contain multiple pairs, e.g., as seen for label l6, the remainder of this section shall consider the case in

which the parsing of an event label results in a single action, denoted by act(e) ∈ A and a single (possibly

empty) business object obj(e) ∈ O ∪ {⊥}. This simplification serves to greatly improve the readability and

intuitiveness of the definitions that we provide in the following sections, while it does not lead to a loss of

generality since our conceptual contributions can be straightforwardly lifted to the situation with multiple

actions and business objects per event.

4.2. Knowledge Base Population

Our approach detects semantic anomalies based on a knowledge base that captures assertions about

the interrelations that should hold among actions in a process. These assertions are stored in the form of
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knowledge records, where each record specifies a relation that should hold between two actions. Formally,

we define this as follows:

Definition 1 (Knowledge base, knowledge record). A knowledge base K comprises a set of knowl-

edge records, where each r ∈ K is a tuple, r = (a1, rel, a2, supp), with a1, a2 ∈ A as its actions, rel ∈ {#,≺

,⇒} its behavioral relation, and supp ∈ N its support value.

Behavioral relations. The relation rel of a knowledge record can be used to represent any kind of

behavioral relation that should hold between two actions. In this work, we capture three types of behavioral

relations, i.e., #, ≺, and ⇒:

• (a1,≺, a2): denotes an (indirect) order relation, i.e., a2 should not occur before a1;

• (a1,#, a2): denotes an exclusion relation, i.e., a1 and a2 should not co-occur;

• (a1,⇒, a2): denotes a co-occurrence relation, i.e., if a1 occurs a2 should occur as well.

With these types, we cover the main kinds of behavioral assertions that one can make between pairs of

actions, i.e., whether actions should occur in a particular order, should exclude each other, or should occur

together. As such, these three types suffice to allow us to discover anomalies in terms of out-of-order

execution, superfluous events, and missing events in a manner that makes sense from a semantic perspective.

However, we stress that our contributions are independent of these particular types and that our work can

be extended with additional relation types and associated anomalies if desired.

Support. The support value supp reflects the level of confidence that is placed in a particular knowledge

record, where a higher supp indicates that there is stronger support for the captured assertion.

Resources for population. Since our goal is to detect semantic anomalies in processes, we consider two

main types of resources for the population of a knowledge base K: (1) linguistic resources that provide asser-

tions based on the semantics of natural language and (2) process-oriented resources that provide assertions

based on recurring behavioral patterns.

4.2.1. Linguistic-based Knowledge Records

We first propose to exploit semantic relations that are specified by linguistic resources to populate a

knowledge base. These resources capture relations between words, which we propose can be lifted to a

process context for anomaly detection.

A broad spectrum of resources exist that specify semantic relations between words and entities. Well-

known linguistic resources include the lexical databasesWordNet [16] and VerbNet [17]. Similarly, knowledge

graphs (or ontologies) such as DBpedia [18], which encode structured information of entities and their inter-

relations [19] may also be used for such purposes. For brevity and clarity, though, we here focus on a single

linguistic resource that is particularly well-suited for the purposes of semantic anomaly detection in business

processes: VerbOcean.
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VerbOcean [20] is a broad-coverage resource that captures various semantic relations over a total of

29,165 pairs of verbs. A resource specifically targeting verbs is particularly useful for our purposes, since

verbs are the primary vehicle to describe events and actions [17, 21]. In this regard, VerbOcean is especially

promising because it defines several relations that are closely related to our purposes: happens-before,

enablement, and antonymy.

Happens-before. The happens-before relation indicates that two verbs refer to two temporally disjoint

intervals or instances, such as marry happens before divorce. Naturally, this relation closely corresponds to

ordering relations that are expected to hold among actions in a business process, meaning that the linguistic

relation can be employed to detect order anomalies in event logs. Therefore, we turn all 4,205 verb-pairs

in a happens-before relation in VerbOcean into knowledge records capturing order relations (≺) in our

knowledge base K. In this manner, we are able to identify process-related assertions such as:

• (consider, ≺, decide), i.e., consider occurs before decide;

• (schedule, ≺, reschedule), i.e., schedule occurs before reschedule;

• (bill, ≺, reimburse), i.e., bill occurs before reimburse.

Enablement. The enablement relation captures a type of causal relation according to the specification

by Barker and Szpakowicz [22]. VerbOcean contains a total of 393 verb pairs in this relation, which can be

highly useful to detect omissions of mandatory event executions in business processes. Therefore, we turn

these 393 pairs into knowledge records capturing co-occurrence relations (⇒) in our knowledge base. These

records include:

• (make, ⇒, sell), i.e.,make can result in sell ;

• (compare, ⇒, describe), i.e.,compare can result in describe;

• (bill, ⇒, reimburse), i.e.,bill can result in reimburse.

We recognize that there is an inherent overlap between the happens-before and enablement relations,

since enabling something often also implies that there exists a certain order. For instance, as shown above,

the verbs bill and reimburse are subject to both types of relations. Such overlaps are also transferred to

our knowledge base, which allows the knowledge base to capture both an order and a co-occurrence relation

between the two actions. However, not all enablement relations necessarily indicate an order. For instance,

VerbOcean contains bidirectional enablement relations for the verbsmake and sell, which reflects that making

something can result in a sale (make-to-stock), whereas a sale can also lead to making (make-to-order).

Antonymy. The antonymy relation captures semantic opposition between verbs. Words can be opposites of

each other in various manners, which means that the antonymy relation actually covers several subtypes [23].

Crucial for our purposes is the distinction between antonyms that indicate opposition in terms of alternatives,

e.g., accept versus reject, and antonyms following from a so-called restitutive opposition [24], e.g., damage

versus repair.
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In a process context, the former subtype clearly corresponds to the exclusion relation we want to capture

in a knowledge base, e.g., we want to include a record r = (accept,#, reject) to capture that a business object

cannot be both accepted and rejected. However, antonyms of the latter subtype, i.e., which are in restitutive

opposition, should not lead to exclusion relations in a knowledge base: actions with the opposite effect can

naturally co-occur in a process instance, e.g., when something is started it can subsequently be finished and

something that was opened can later be closed. As recognized [20], these cases can be distinguished by also

considering the other relations that hold for a verb pair. In particular, verbs in restitutive opposition are

both in antonymy as well as in a happens-before relation. Since our goal is to include the other kinds

of antonyms, we establish (bidirectional) knowledge records in our knowledge base for each verb pair that

is in an antonymy but not in a happens-before relation. This procedure results in the creation of 1,587

knowledge records (out of the 1,973 antonymy relations in VerbOcean), including:

• (accept, #, reject), i.e., accept excludes reject ;

• (acquire, ≺, lose), i.e., acquire excludes lose;

• (penalize, ≺, reward), i.e., penalize excludes reward.

Overall, population using VerbOcean relation thus yields a total of 6,185 records, capturing 4,205 order,

393 co-occurrence, and 1,587 exclusion relations. Given the trustworthiness of these records, we propose to

assign these records a comparably high support value, e.g., 100.

4.2.2. Process-oriented Resources

Second, we propose to employ process-oriented resources alongside linguistic ones for semantic anomaly

detection since they allow for the identification of recurring action patterns in business processes. In par-

ticular, we propose to populate a knowledge base on the basis of a large repositories of process models, i.e.,

process model collections. These collections, such as the publicly available Academic Initiative [25] and the

SAP Reference Model collection, capture information on how large numbers of processes, possibly covering

various domains, are expected to be executed. In combination with the formal execution logic they cap-

ture, this makes these repositories prime candidates for the identification of recurring action patterns in

processes [26].

Population procedure. To extract knowledge records from a process model collection M, we aim to

identify pairs of actions that commonly co-occur, exclude each other, or appear in a particular order. The

procedure for this is described by Algorithm 2 and consists of two main parts:

The first part of the algorithm (lines 3–11) iterates over the models in a process model collectionM. For

each model M ∈ M, the algorithm aims to identify pairs of actions that are in one of the three behavioral

relations we consider. To do this, the algorithm first determines if a pair of tasks correspond to the same

business object (line 5), since we are only interested in actions that adhere to this requirement. Note that

we here employ the same label parsing technique and notation as we use when dealing with event labels (see
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Section 4.1). For actions that relate to the same business object, the algorithm then determines if the task

pair adheres to a specific behavioral relation and, thus, can be used as support for a knowledge record. In

particular, the algorithm checks if:

1. t1 and t2 never co-occur (line 6), supporting an exclusion relation t1#t2,

2. t1 occurs before t2, but t2 never before t1 (line 8), supporting an order relation t1 ≺ t2, or

3. if t1 never occurs without t2 (line 10), supporting a co-occurrence relation t1 ⇒ t2.

Note that when determining these behavioral relations, we only consider execution traces that do not contain

repeated activities, i.e., we exclude loops from consideration. Then, when support for a given relation type rel

is found, the algorithm extracts the actions of t1 and t2 and adds the respective relation (act(t1), rel, act(t2))

to the relations multi-set.

Algorithm 2 Knowledge record extraction from a process model collection
1: input A process model collectionM, minimal support parameter k

2: relations← ∅ . Defines a bag (i.e., a multi-set) of action relations

3: for M ∈M do

4: for t1, t2 ∈ TM do

5: if t1 6= t2 ∧ obj(t1) = obj(t2) then . Check for equal business objects

6: if @ σ ∈M : t1 ∈ σ ∧ t2 ∈ σ then . t1 and t2 do not co-occur

7: relations.add( (act(t1),#, act(t2)) )

8: if ∃ σ ∈M : t1 ∈ σ ∧ t2 ∈ σ ∧ t1 < t2∧ . t1 can occur before t2

@ σ′ ∈M : t1 ∈ σ′ ∧ t2 ∈ σ′ ∧ t2 < t1 then . t2 never occurs before t1

9: relations.add( (act(t1),≺, act(t2)) )

10: if ∀σ ∈M : t1 ∈ σ ∧ t2 ∈ σ ∨ t1 /∈ σ then . t1 only occurs with t2

11: relations.add( (act(t1),⇒, act(t2)) )

12: records← ∅ . Create result set

13: for (a1, rel, a2) ∈ relations do

14: c← count(a1, rel, a2, relations) . Get relation’s multiplicity

15: if c ≥ k then . Check if relation is frequent enough

16: records.add( (a1, rel, a2, c) )

17: return records . Returns the records to be added to a knowledge base

In its second part (lines 12–17), the algorithm turns the combinations of actions in a particular behavioral

relation that have been observed a sufficient number of times into knowledge records. Note that in line 14

we use count(a1, rel, a2, relations) to denote the cardinality of the tuple (a1, rel, a2) in the relations multi-

set. Here, we employ parameter k to capture the minimum number of times that a pattern must have

been observed in order for the corresponding record to be included in the knowledge base, i.e., the minimal

support value of knowledge records.
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4.2.3. Conflict resolution

When knowledge records are extracted from different resources, this may lead to conflicting statements

about expected process behavior contained in the knowledge base. For instance, certain process models may

specify that a business object can be either opened or closed, indicating a relation open#close, whereas

other models (as well as VerbOcean), reveal that these actions also often occur in a sequential manner (i.e.,

a case is first opened and afterwards closed). In this final step of knowledge base population, we filter out

such conflicting records in order to improve the quality of the anomalies we can detect. For this, we employ

two heuristics:

Filtering order relations. As described above, it may be the case that certain models indicate a particular

order act1 ≺ act2 between two actions, whereas other sources indicate that the opposite order should hold,

resulting in a situation where some record r1 = (act1,≺, act2, supp1) indicates one order and another record

indicates the reverse, r2 = (act2,≺, act1, supp1). Since including both records in a knowledge base could lead

to conflicts, we filter out the knowledge record with the lowest support. E.g., if supp1 < supp2, we remove

r1 and retain r2. Should the support for both be equal, we omit both records, given that this indicates that

there is no particular order in which a1 and a2 should occur. Note that this notion of equal support could

be replaced with a threshold, where both records would be removed if their support values are comparable,

e.g., given a threshold τ ∈ [0, 1], we would omit both r1 and r2 if (1− τ) ∗ supp1 ≤ supp2 ≤ (1 + τ) ∗ supp1.

Filtering exclusion relations. We also omit exclusion records when there are more commonly occurring

order or co-occurrence records included in the knowledge base that involve the same actions. Here, the

intuition is that, when it is commonly observed that actions act1 and act2 should occur in a particular order

(or co-occur), it is highly unlikely that these actions are supposed to exclude each other. As such, given

r1 = (act1,#, act2, supp1) and r2 = (act1,≺, act2, supp2), we omit r1 if supp1 < supp2.

After applying this filtering step to resolve conflicts, the knowledge base can be used for anomaly detec-

tion, as described next.

4.3. Semantic Anomaly Detection

Our approach uses the populated knowledge base to detect three kinds of anomalies: 1) order violations,

i.e., out-of-order executions, 2) exclusion violations, i.e., superfluous events, and 3) co-occurrence violations,

i.e., missing events.

Using the actions and business objects resulting from the extraction functions act and obj (cf. Section 4.1),

we detect anomalies by first matching the parsed events in a trace to knowledge records and subsequently

verifying their adherence to them.
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4.3.1. Knowledge Record Matching

To determine whether a knowledge record is relevant to recorded events, we consider two events, ei and

ej , which correspond to the same business object, i.e., obj(ei) = obj(ej). We recognize that a knowledge

record r ∈ K is relevant to these events when their actions, act(ei) and act(ej) correspond to the actions of r.

To determine this correspondence, we consider cases where actions are fully equal, but also when they have

a similar meaning. For this, we define a predicate equiv : A×A → [true, false], which returns true when

two actions are considered to be equivalent to each other. We instantiate this predicate in three manners:

1. Equality: This instantiation only considers actions to be equivalent when they have the same lemma,

i.e., equiveq(a1, a2) := lemma(a1) = lemma(a2). Here, the function lemma returns the canonical form

of an action, e.g., lemma(rejected) = reject and lemma(ran) = run. Lemmas can be straightforwardly

computed using general-purpose NLP tools.

2. Synonymous: This instantiation considers two actions to be equivalent when their lemmas are syn-

onyms of each other, i.e., equivsyn(a1, a2) := lemma(a1) ∈ syn(a2) ∧ lemma(a2) ∈ syn(a1). Here, we

use syn(a) to denote the set of synonyms of an action a, as, for instance, determined through the use

of WordNet [16]. This predicate instantiation considerably increases the applicability of knowledge

records to events since it adds a degree of generalization to them. For instance, given the record

r = (accept,#, reject), synonymous equivalence recognizes that this also means that approve order

and refuse order events should be exclusive as well.

3. Semantic similarity: Finally, we also consider equivalence based on semantic similarity measures.

These measures quantify the similarity between words according to their meaning. While various

measures exist, they can be largely grouped into two categories [27]: WordNet-based or taxonomy-

based measures, cf. [28], consider similarity from the perspective of semantic relations, e.g., synonyms

and hypernyms, which hold among terms. Measures based on distributional similarity, cf. [29, 30],

instead, are based on the statistical analysis of co-occurrences of words in larger text corpora.

Using simsemantic(a1, a2) ∈ [0, 1] to refer to a quantification of semantic similarity, we formalize

equivalence based on it as equivsim(a1, a2) := simsemantic(a1, a2) ≥ τsim. The difference between

equivalence based on semantic similarity and the aforementioned synonymous equivalence is that the

former is more flexible. Whereas two terms either are synonymous or not (according to a certain

resource), semantic similarity reflects a scale in the range [0, 1]. As such, we can adjust threshold τsim

in the definition of equivsim to adjust the degree of similarity that is required for two actions to be

considered equivalent.

Given any instantiation of equiv we then formally denote the applicability of a knowledge record to a pair

of events as: match(e1, e2, r) := equiv(act(e1), r.a1) ∧ equiv(act(e2), r.a2). Based on this match predicate,

we then detect semantic violations as discussed next.
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4.3.2. Detecting Violations

We detect semantic anomalies by determining if recorded process behavior violates the assertions cap-

tured in a knowledge base’s records. As such, we recognize order, exclusion, and co-occurrence violations as

follows:

Order violations. We observe an order violation if there exists a knowledge record r ∈ K that states

two events should occur in the opposite order as they have been observed. Formally, we introduce the

order_violation predicate for two events ei, ej ∈ σ:

order_violation(ei, ej ,KB) :=

i < j ∧ obj(ei) = obj(ej) ∧ ∃r ∈ KB : match(ej , ei, r) ∧ r.rel =≺
(1)

An example for an order violation could occur for “Send offer ” and “Create offer ” events. Obviously, no

business object can be sent before it is created, thus leading to an order violation.

Exclusion violations. Given a trace σ, we observe an exclusion violation if there exists a knowledge

record r ∈ K that defines an exclusion relation between two events in the trace, i.e., ei, ej ∈ σ. Formalized

as follows:

exclusion_violation(ei, ej ,KB) :=

obj(ei) = obj(ej) ∧ ∃r ∈ KB : match(ei, ej , r) ∧ r.rel = #
(2)

An example of an exclusion violation follows from “Accept offer ” and “Reject offer ” events, since an offer is

unlikely to be accepted and rejected in the same process instance.

Co-occurrence violations. The detection of co-occurrence violations is more complex than the others,

given that these are based on the absence rather than the presence of certain event pairs. To illustrate their

detection, consider a record r = (create,⇒, archive, suppr), which states that archived business objects must

also be created. If a trace σ contains an event e with the label archive case, such that act(e) = archive, then

according to the record r, trace σ must also contain an event e′ with the label create case. However, it is

well-imaginable that an event log does not contain any events with a create event label, for instance, because

cases are received rather than created in this particular process. Therefore, since the assertion imposed by

record r shall never be satisfied for such an event log, we do not detect an anomaly in these cases. In other

words, even if a record specifies that an order should also be created when it is archived, we do not consider

a trace that omits the create action an anomaly if this behavior simply never occurs in a log. To capture

this consideration, we formally define the co-occ_violation predicate as follows:

co-occ_violation(L, σ, ei,KB) := ∃r ∈ KB :

∃σ′ ∈ L :
(
∃e′i, e′j ∈ σ′ : e′i.l = ei.l ∧ obj(e′i) = obj(e′j) ∧ match(e′i, e′j , r)

)
∧

@ej ∈ σ : obj(ei) = obj(ej) ∧ match(ei, ej , r)

(3)
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In Equation 3, the first part captures that the specific co-occurrence relation r is satisfied by at least one

trace σ′ ∈ L, whereas there is no event ej ∈ σ that satisfies this knowledge record for the trace at hand (σ).

4.3.3. Loop Handling

When detecting anomalous behavior, the impact of loops, i.e., recurring behavior within a process in-

stance, needs to be carefully considered. To illustrate this importance, consider the trace1 depicted in

Figure 3. In this trace, we observe that an order is both rejected and accepted, two actions that jointly lead

to an exclusion violation. However, when we look at the other events in the trace, we also see that there is

some repetitive behavior surrounding these events. In particular, after rejecting an order, it is updated and

subsequently checked once more (a repeated event). Only after this recurring behavior, i.e., after the loop

that seems to have corrected the initial reason to reject the order, is an order then accepted. As such, by

considering the meaning of the entire trace, it is arguable that this behavior is not necessarily anomalous,

despite the violation of the (reject,#, accept) assertion from a knowledge base.

<receive, check, reject, update, check, accept, deliver>
Exclusion violation

<receive, check, reject, update>  <check, accept, deliver>
sub-trace0 sub-trace1

Full trace:

Split trace:

Figure 3: Impact and handling of loops in traces

We propose to prevent the detection of such false positives by only checking for anomalous behavior

within the same cycle of an instance’s execution, i.e., by avoiding the comparison of behavior occurring

within a loop through the process. Although loops may be detected based on a (discovered) process model,

this dependency on a model may be unfavorable for anomaly detection, given that this task inherently

assumes that no accurate model is available. Therefore, we turn to the recognition of loops at a trace level.

In particular, as depicted in the lower part of Figure 3, we split traces into sub-traces, where each sub-trace

is established so that it does not have any recurring behavior. We achieve these splits by creating a new

sub-trace at each occurrence of an event with a label that is also included in the current sub-trace, e.g.,

since an event with label check is already included in sub-trace0, the sub-trace ends after 4 events and we

create sub-trace1 that starts at the previously seen event and continues until the last event in the trace.

Using split(σ) to refer to the list of sub-traces obtained by splitting trace σ, we then propose to treat

each sub-trace in split(σ) as an individual trace for the purposes of anomaly detection.

1For brevity, the business object order is omitted from all event labels

15



4.3.4. Approach outcome

The result of our approach is a collection of detected violations V . We represent each violation v ∈ V as

a tuple v = (Ei, Ej , r, n, Lv), where Ei and Ej are event classes that caused the specific violation (typically

corresponding to activity labels e.l), r the relevant knowledge record, n is the number of occurrences, and

Lv ⊆ L represents the traces of the log L for which the violation was detected. As shown in the exemplary

Table 2, a single record can be associated with multiple detected violations, involving different event-class

pairs (rows 1 and 4). Furthermore, due to semantic similarity considerations, there are violations where the

actions in the knowledge record are not necessarily equal to the ones in the event classes (row 2). Naturally,

the results in V can be filtered and ranked in different manners. For instance, one may choose to omit all

violations that only occur once or that are otherwise rare.

Table 2: Exemplary results of the approach (traces Lv omitted)

Type Event class 1 Event class 2 Knowledge record Count

co-occ Send application Application received (send, ⇒, receive, 100) 30

exclusion Approve order Refuse order (accept, #, decline, 100) 15

order Evaluate application Application received (receive, ≺, evaluate, 20) 5

co-occ Send invoice Invoice received (send, ⇒, receive, 100) 2

5. Evaluation

This section presents our evaluation experiments. We assess the anomalies detected by our approach for

both synthetic and real-world data and compare our approach against existing, frequency-based anomaly

detection techniques. Our implementation, the employed data collections, and raw results are all available

via a public repository.2

5.1. Data Collections

Our evaluation experiments are conducted using two data collections: The BPMAI log collection consists

of event logs generated on the basis of real-world process models, whereas the real-world log collection consists

of various widely-employed real-world event logs.

BPMAI log collection. To be able to assess the precision with which anomalies are detected, we generate

a set of event logs from process models from the BPM Academic Initiative (BPMAI) repository [25]. This

collection consists of thousands of process models created by users of modeling tools, covering various

2https://gitlab.uni-mannheim.de/processanalytics/semanticanomalydetection
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modeling notations as well as different (natural) languages. As such, this part of the evaluation shall be

conducted using synthetic logs generated from real-world models with real, user-defined activity labels.

From the BPMAI repository, we select all models that are (1) in the BPMN notation, (2) can be turned

into a sound workflow net, (3) are in English, and (4) contain at least two activities that have the same,

possibly empty, business object (as identified by the parser described in Section 4.1). The former two

requirements ensure that we are able to generate proper event logs from the models, whereas the latter two

ensure that each included model at least has a theoretical possibility of containing the kind of semantic

anomalies our approach focuses on. After applying these filtering steps, we end up with a collection of 2,832

process models.

We transform each of these models into a workflow net, to be able to automatically generate event logs

from them using PM4Py’s [31] playout functionality. Subsequently, we generate a noisy counterpart for each

of these event logs by first expanding the event log so that it contains 1,000 traces (if not already) and then

inserting noise into the expanded log based on an established mechanism, which randomly adds, removes or

swaps events in selected traces.

The characteristics of the BPMAI log collection obtained in this manner are described in Table 3. As

shown, the logs greatly vary in terms of their complexity. For instance, the logs have on average of 8 event

classes, but the maximal number of event classes observed is 64. Similarly, the average number of unique

BOs (business objects) is 6.9, but the maximum is 52. The differences between the original and noisy logs

manifest themselves clearly when considering the variants. While the original logs contain an average of 68.0

different variants, they increase to 336.7 for the noisy event logs. We also observe that the length of these

variants increases due to the inserted noise, from 4.0 to 6.3 on average and an increase in the maximum

length from 10 to 24 events.

Table 3: Characteristics of the BPMAI log collection (with macro-averages per log where applicable)

Collection Count Event classes Unique BOs Variants Variant length

avg. max. avg. max. avg. max. avg. max.

Original logs 2832 8.0 64 6.9 52 68.0 129 038 4.0 10

Noisy logs 2832 8.0 64 6.9 52 336.7 127 987 6.3 24

Real-world log collection. We complement the evaluation on the synthetic BPMAI logs with a quali-

tative evaluation of three real-world event logs from the Business Process Intelligence (BPI) challenges. In

particular, we consider the following three logs:

• BPI12 [12]: This event log captures data from a process in which customers apply for a personal loan

or overdraft with a financial institution. The log contains 262,200 events across 13,087 cases and has

24 unique event classes.
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• BPI15 [9]: This event logs captures data from a permit process of a Dutch municipality. We specifically

use the first log of the data set, which contains 52,217 events across 1,199 cases and has 398 unique

event classes.

• BPI18 [11]: This event log captures data about the handling of applications for EU direct payments for

German farmers from the European Agricultural Guarantee Fund. The log contains 2,514,266 events

across 43,809 cases and has 41 unique event classes.

5.2. Setup

This section describes the implementation, parameters, baselines, setting, and metrics used to conduct

our evaluation experiments.

Implementation. We implemented our anomaly detection approach and evaluation pipeline in Python.

The publicly available implementation employs PM4Py [31] to handle the import and generation of event

logs, and as a foundation for the employed baselines. The implementation, furthermore, uses BERT [15]

for the tagging of natural language labels, as described in Section 4.1, and GloVe [32] for the efficient

computation of semantic similarity between words.

Parameters. While conducting our experiments, we asses the impact of the following components and

parameters on the obtained results:

• Matching approach (equiv and τsim): We vary the instantiation of the equiv predicate which

determines when two actions are considered to be equivalent (Section 4.3.1), using: equality (EQ),

synonomous (SYN), and semantic similarity (SEM). For the latter, we use employ different similarity

thresholds, with τsim ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

• Restricted similarity matching (one_sim): When using the SYN or SEM matching approaches,

if one_sim is employed, our approach only matches a record to a pair of events if at least one of the

event’s actions is equal to the corresponding action in the record, i.e., only the other action may be a

synonym or semantically-related term.

• Knowledge record conflict resolution (fix_confl): We assess the impact of the conflict-resolution

strategies described in Section 4.2.3, which filter out contradicting records from a knowledge base.

• Loop handling (split_loops): We assess the impact of the loop-handling method described in

Section 4.3.3 by testing configurations with and without it.

Baselines. We compare our approach against three frequency-based anomaly detection approaches. In

particular, we consider two established statistical baselines and one based on neural networks:

1. BLfreq: This baseline, introduced by Bezerra et al. [5], simply considers any trace variant (i.e., an

activity sequence) that comprises less than x% of the total traces in the event log as anomalous.

Following the baseline’s default settings, we use x% = 5%.
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2. BLsample: This baseline, identified as the best performing one by Bezerra et al. [5], consists of two

stages. First, the approach takes a sample of s% traces from a log L and discovers a process model

Ms based on this sample. Subsequently, any variant that comprises less than x% of the total traces

in the event log and is not a proper execution sequence of Ms is considered as anomalous. Following

the default settings, we use s% = 70% and x% = 5%.

3. BLbinet: This baseline corresponds to the BINet approach proposed by Nolle et al. [33]. BINet

is a deep learning approach that uses a neural network architecture for multi-perspective anomaly

detection and classification. When employing the baseline, we use the settings that were reported as

best performing in the baseline’s original evaluation.

Cross-validation setting. Since the models from the BPMAI collection are used to both populate the

knowledge base and for the generation of event logs in which we detect anomalies, we conduct our experiments

using 10-fold cross-validation. As such, we randomly split the collection, consisting of 2,832 models, into

10 chunks. Subsequently, we use the models in 9 chunks (i.e., the training set) to populate the knowledge

base, whereas the anomaly detection approach is then applied on the noisy event logs corresponding to the

models in the 10th chunk, i.e., the test chunk. We conduct these experiments so that each of the 10 chunks

serves as the test chunk once.

Evaluation metrics. For the experiments involving the BPMAI collection, we argue that the process

models established by users indicate behavior that is explicitly allowed in a process. Any behavior that is

not allowed in the model can then be considered to be anomalous. As such, given an original log L and its

noisy counterpart L′, we apply our anomaly detection approach on L′, which yields a collection of detected

anomalies (or violations) VL′ (see Section 4.3.4). For each detected anomaly v ∈ VL′ , we subsequently check

if the detected behavior indeed violates the behavior from the original model, resulting in a true positive

(tp) or false positive assessment (fp). Based on this, we quantify the number of true anomalies that our

approach detects, as well as its precision, given as tp
tp+fp . Since we acknowledge that not all anomalous

behavior is detectable by considering its meaning captured in event labels, we do not strive for a complete

coverage in terms of recall.

To allow for an appropriate comparison between our approach and the baselines, we employ the same

procedure but instead focus on the variant level, since the baseline approaches detect anomalies per trace

(BLfreq and BLsample) or at a different level of granularity (BLbinet) than our approach. Therefore, we

assess if variants in which an anomaly has been detected according to our approach (or recognized as

anomalous by a baseline) are permissible according to the original process model.

5.3. Results BPMAI Collection

Table 4 depicts the evaluation results obtained for the noisy logs generated from the models in the

BPMAI collection, using 19 configurations of our approach. Overall, we observe that the performance varies

19



considerably across the configurations. The true positives range from 2,617 (configuration EQ4) up to

6,494 (SEM 5), whereas the precision ranges between 0.57 (also SEM 5) and 0.76 (various configurations).

Generally, as expected, configurations that identify more anomalies also have a lower precision. However,

certain configuration options lead to a smaller decrease in precision in comparison to the additional anomalies

they detect, making them favorable.

Table 4: Evaluation results for various configurations

Configuration Overall Exclusion Order Co-occ.

ID Extra options TP Prec. TP Prec. TP Prec. TP Prec.

EQ1 — 4348 0.62 2566 0.63 1293 0.86 489 0.34

EQ2 split_loops 4305 0.62 2539 0.62 1280 0.86 486 0.34

EQ3 fix_confl 2609 0.76 1593 0.74 893 0.87 123 0.53

EQ4 fix_confl, split_loops 2617 0.76 1625 0.74 878 0.87 114 0.51

SYN 1 — 5493 0.60 2793 0.58 2033 0.82 667 0.34

SYN 2 split_loops 5410 0.60 2765 0.58 2015 0.83 630 0.33

SYN 3 fix_confl 3589 0.71 1846 0.66 1549 0.84 194 0.47

SYN 4 one_sim 5341 0.60 2771 0.59 1942 0.84 628 0.33

SYN 5 fix_confl, one_sim 3463 0.73 1828 0.68 1445 0.87 190 0.48

SEM 1 τsim = 0.7 4749 0.61 2652 0.62 1580 0.85 517 0.32

SEM 2 τsim = 0.7, split_loops 4688 0.61 2624 0.62 1539 0.84 525 0.33

SEM 3 τsim = 0.7, fix_confl 2950 0.76 1676 0.72 1151 0.88 123 0.45

SEM 4 τsim = 0.7, fix_confl, one_sim 2970 0.76 1711 0.73 1126 0.89 133 0.48

SEM 5 τsim = 0.5 6494 0.57 2996 0.55 2643 0.78 855 0.33

SEM 6 τsim = 0.5, fix_confl 4491 0.66 1998 0.60 2120 0.80 373 0.44

SEM 7 τsim = 0.5, fix_confl, one_sim 3860 0.69 1917 0.63 1673 0.84 270 0.49

SEM 8 τsim = 0.6, 5393 0.59 2790 0.58 1987 0.82 616 0.32

SEM 9 τsim = 0.8, 4469 0.62 2605 0.63 1346 0.84 518 0.35

SEM 10 τsim = 0.9, 4403 0.62 2596 0.63 1312 0.85 495 0.34

When considering the three kinds of anomalies, we observe consistent trends across the configurations.

Particularly, our approach consistently detects the most exclusion violations (2,222 on average) with a

respectable level of precision (0.65 avg.). While it detects fewer order violations (1,507 avg.), the precision

for these is high (0.85 avg.). Finally, the detection of co-occurrence violations trails in both aspects, with

an average of 382 detected anomalies and a precision of 0.41. For the latter anomalies, the variance is also

the greatest across the configurations, with the number of true positives ranging from 114 to 855 and the

precision from 0.32 to 0.53. In the following, we investigate the impact of the various configuration options
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in detail.

Record matching approaches (EQ vs. SYN vs. SEM). The results obtained using equivalence,

synonym, and semantic similarity-based matching reveal various interesting observations. In general, we find

that the usage of the similarity-based approaches (SYN and SEM ) is favorable over the strictest, equivalence-

based approach. When comparing otherwise equal configurations, the similarity-based approaches recognize

more anomalies, with a minimal impact on precision. For instance, EQ1 detects 4,348 true anomalies with a

precision of 0.62, whereas a corresponding configuration based on semantic similarity (SEM 1), detects 464

additional anomalies with a near-identical precision of 0.61, while the corresponding SYN 1 configuration

detects 1,121 additional anomalies with a minimal reduction in precision (0.60), when compared to EQ1.

Since these trends are consistent across the other configuration options, we can conclude that the synonym

and semantic-similarity configurations are favorable over the ones using strict matching. When comparing

these latter two matching approaches, there is no obvious winner. For certain options, the synonym-based

configurations perform better, e.g., for SYN 1 vs SEM 1 and SYN 2 vs SEM 2 we observe that the synonym-

based approach detects considerably more anomalies with a minimal reduction in precision. However, the

semantic similarity-based option can be more favorable when incorporating other configuration options. For

example, the highest precision achieved by SYN approaches is 0.73 (SYN 5), whereas the SEM ones achieve

a maximal precision of 0.76, for several configurations.

Restricted similarity matching. For the similarity-based SYN and SEM approaches, we also tested

the one_sim option, which requires that one of the actions in a record is equivalent to observed behavior,

whereas the other action can be a synonym (SYN) or semantically-similar to the recorded action (SEM).

In general, introducing one_sim results in a clear trade-off between increased precision and the number of

detected anomalies, e.g., between SEM 6 and SEM 7, the true positives are reduced from 4,491 to 3,760,

while precision increases from 0.66 to 0.69.

Impact of KB conflict resolution. The results demonstrate that incorporating the conflict resolution

option (fix_confl) greatly improves the precision of the anomaly detection approach, yet also considerably

reduces the number of detected anomalies. For instance, for the otherwise equal configurations SYN 1 and

SYN 3, the fix_confl option reduces the true positives from 5,493 to 3,589 (-35%) but increases the precision

from 0.60 to 0.71. When considering the impact per anomaly type, we observe that this general trend also

applies to exclusion violations, whereas it is amplified for co-occurrence violations. For instance, between

SYN 1 and SYN 3, the option reduces the true positives from 667 to 194 (-71%) while increasing the precision

from 0.34 to 0.47. For order violations, the conflict resolution strategy generally has a limited impact on

the precision, while decreasing the number of true positives. For example, between SYN 1 and SYN 3, the

precision is increased minimally (0.82 to 0.84), while the detected anomalies are reduced from 2,033 to 1,549.

As such, though results vary, a general guideline would be to not apply fix_confl for order anomalies,
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whereas for the other anomaly types its application depends on the desired degree of precision versus detected

anomalies.

Loop handling. The explicit handling of loops, in which anomalies are only detected in sub-traces without

repeating parts, generally has a minimal impact on the results for this data set. Nevertheless, on a case

by case basis, e.g., when a process is known to have repetitive behavior, the inclusion of this option can be

favorable, given that it also does not appear to have a negative impact in other situations.

Support threshold for semantic similarity. As expected, changing the semantic similarity threshold

τsim provides a clear trade-off between precision and true positives when lowering the parameter from 0.7

to 0.6 and 0.5, where a lower value leads to a considerable increase in true positives, (e.g., 6,494 for SEM 5

versus 4,749 for SEM 1) yet also to a some decrease in precision (0.57 to 0.61). However, it is interesting

to observe that this pattern does not necessarily apply for stricter similarity thresholds. Increasing τsim to

0.8 or 0.9 yields equal precision values, while reducing the number of true positives. As such, a τsim ≤ 0.7

appears to be favorable, whereas the exact value depends on the desired precision and true positives.

Optimal settings. Overall, we observe that the various configuration options allow one to trade-off preci-

sion versus the number of detected anomalies as desired. For high precision, SEM 4, which uses restricted,

semantic similarity matching and conflict resolution, is favorable. From the various configurations that

achieve a precision of 0.76, this one detects the most true anomalies. By contrast, when aiming to detect

more true anomalies, SEM 5 can be recommended. It detects the highest number of anomalies by a distance

(6,494 versus at most 5,493 for others), while the precision of 0.57 is not that much lower than the 0.60

precision of those other configurations. In the remainder of the evaluation, we therefore continue employing

these two configurations, i.e., SEM 4 and SEM 5.

5.4. Comparison to Frequency-Based Approaches

Table 5 presents the main results when comparing the two best configurations of our approach against

the three baselines described in Section 5.2. In order to allow for a comparison between them and our

approach, the results are presented on the trace variant-level, i.e., we assess which trace variants (unique

execution sequences) each approach identified as anomalous and how many of those were indeed not part of

the original process model.

Results comparison. When comparing the baselines among each other, it is interesting to note that

the simpler BLfreq and BLsample baselines outperform the learning-based BLbinet approach for the data

collection at hand. When comparing our approach to the baselines, the results show that the baselines

identify more anomalous variants than our approach. This is, naturally, to be expected, given that the

baselines identify anomalies in a frequency-based manner, which is directly in line with the noise insertion

approach we used to introduce anomalies in the first place. Nevertheless, it is clear that our approaches
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Table 5: Comparison of results to baseline at the trace variant-level

Approach TP FP Prec. (macro) Prec. (micro)

BLfreq 860 385 110 990 0.886 0.988

BLsample 674 861 28 826 0.959 0.991

BLbinet 789 727 94 817 0.981 0.893

SEM 4 110 711 1503 0.987 0.998

SEM 5 257 376 11 260 0.958 0.993

are in the same order of magnitude as the baselines in terms of true positives. On top of that, even

though our approaches do not build on frequency analysis, their precision is still higher than the precision

of the baselines, e.g., even achieving a micro precision of 0.998 for SEM 4. As such, this shows that the

consideration of semantic anomalies yields a considerably lower number of false positives than the frequency-

based approaches, e.g., just 1,503 for SEM 4 versus up to 110,990 anomalies for the most naive baseline.

Hybrid configurations. Overall, the main takeaway from this comparison is that our approach should

be regarded as inherently different to the existing works, given that we aim to identify a different kind

of anomalies. As such, the consideration of frequency and meaning should be regarded as complementary

when detecting anomalies. To demonstrate this, we also combined our approach with the same frequency-

based consideration of BLfreq. The resulting hybrid configuration considers behavior anomalous when our

approach recognizes a semantic violation and the behavior occurs in less than 5% of the traces in the log.

As shown in Table 6, the results obtained in this manner greatly outperform any configuration without

frequency-based considerations. For example, the SEM 5 + BLfreq configuration achieves a much higher

precision than any approach from Table 4, while detecting more anomalies than any configuration (aside

from SEM 5 itself). While the benefits are noticeable for all types of anomalies, it is particularly interesting

to observe the impact on the detection of co-occurrence anomalies. Here, the detected anomalies are reduced

from 855 to 775 (-9%), yet the precision increases from 0.33 to 0.93 (+181%).

Table 6: Results when combining semantic and frequency-based anomaly detection

Overall Exclusion Order Co-occ.

Configuration TP Prec. TP Prec. TP Prec. TP Prec.

SEM 4 2970 0.76 1711 0.73 1126 0.89 133 0.48

SEM 4 + BLfreq 2406 0.91 1470 0.86 815 0.99 121 0.97

SEM 5 6494 0.57 2996 0.55 2643 0.78 855 0.33

SEM 5 + BLfreq 5504 0.85 2629 0.76 2100 0.98 775 0.93
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5.5. Results Real-World Log Collection

We also applied our approach on several real-world event logs, described in Section 5.1. Although there

is no gold standard available for these processes in terms of which behavior is considered to be anomalous

or not, these logs still allow us to investigate anomalies detected by our approach for real-world situations

in a qualitative manner. For this, we employed a configuration similar to SEM 5, yet with explicit handling

of loops in a process (split_loops).

Table 7: Selection of anomalies detected in real-world logs

Anomaly type Event log Anomaly Frequency

Order violation BPI12 A case was cancelled and then accepted 706

BPI12 A case was cancelled and then approved 708

BPI15 An updated plan was received before it was requested 2

BPI18 Finish preparations before Begin preparations 2430

BPI18 Remove payment block before it was set 16

Exclusion violation BPI18 An application was both refused and withdrawn 46

BPI18 An application was both withdrawn and approved 5

BPI18 An application was both withdrawn and approved 5

Co-occ. violation BPI15 A procedure confirmation was created but not sent 517

BPI15 A procedure confirmation was sent but not created 609

BPI18 An application was saved but never created 12 814

BPI18 A payment has begun but not finished 6

Table 7 presents a number of anomalies detected in the real-world logs, selected based on their semantic

clarity. We observe interesting cases for all three anomaly types. In terms of order violations, our ap-

proach detected various occurrences that should definitely not happen during proper process execution. For

instance, our approach detected various instances that were canceled, yet still accepted or approved after-

wards in BPI12. For BPI15, we identified that occasionally a business object was received before it was even

requested (or requested after it had already been received). In terms of exclusion violations, we observed

interesting cases for the BPI18 log, in which applications were both withdrawn and approved or refused,

clearly indicating the occurrence of redundant activities. Finally, in terms of co-occurrence violations, we

observed various interesting anomalies, such as confirmations that were created but never sent in BPI15, or

ones that were sent but had never been created in the first place. Similarly, for BPI18, we found that many

applications were saved, even though they had never been created.

Aside from the interestingness of these specific anomalies, the evaluation on the real-world logs also leads

to several other observations:
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• First, although our loop handling method (split_loops) had little impact when applied to the syn-

thetic log collection, its benefits are clear for these real-world logs, which have longer traces with quite

some repetitions. As such, by explicitly handling loops, our approach was able to avoid the detection

of certain clear false positives.

• Second, although our approach still did not detect many co-occurrence violations in the real-world

logs, it is clear from the examples in Table 7 that our approach is nonetheless able to detect some

highly interesting anomalies of this type, thus clearly demonstrating the value of these considerations.

• Finally, it is important to note that our approach detected very infrequent anomalies, occurring only

a handful of times, as well as anomalies that occurred thousands of times. While we do not claim that

all detected anomalies are problematic from a business perspective, the listed cases are nevertheless

clearly remarkable. For instance, it does not seem desirable that applications can exist in the system

without having been created, even if this happens often.

Overall, these findings thus clearly demonstrate the benefits of our approach in real-world settings and,

due to their ability to detect both common and uncommon (potential) anomalies, we again demonstrated

the complementary nature of our semantic-based approach to existing frequency-based techniques.

6. Related Work

Anomaly detection is a well-studied problem that has been researched in diverse areas and application

domains. In the context of discrete sequences, Chandola et al. [34] differentiate between three main types of

anomaly detection techniques: sequence-based, contiguous subsequence-based, and pattern-based. Sequence-

based techniques use supervised as well as unsupervised methods to assign an anomaly score to an entire

sequence. One important class of sequence-based technique are window-based techniques [35]. They extract

fixed-length overlapping windows from a sequence and assign each window an anomaly score. The anomaly

scores of all windows are then aggregated to an anomaly score for the entire sequence. The main rationale

is that analyzing windows allows to detect anomalies that, otherwise, would not be distinguishable from

the variation that exists across sequences. Contiguous subsequence-based techniques aim to detect short

contiguous subsequences in a sequence that are anomalous with respect to rest of the sequence. One popular

strategy to achieve this are window scoring techniques [36]. They count how many times a window of a

particular size occurs. The lower the frequency of a window, the higher its anomaly score. Pattern-based

techniques require the user to provide a query pattern [37]. If the frequency of this pattern is then found

to deviate from what is estimated based on a set of training sequences, the pattern is considered to be

anomalous.

Anomaly detection techniques in the area of process mining build on these considerations to address var-

ious use cases. It is an inherent part of most process discovery algorithms, which aim to filter out anomalies
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(often corresponding to noise) in order to preserve the most common process behavior [38, 39]. Other works

present stand-alone approaches for this task, which detect anomalies based on a comparison to discovered

process models [5] and using unsupervised machine learning [7]. Whereas most existing approaches detect

anomalies based on control-flow information, other works also consider the data perspective, e.g., in the

context of process discovery [40] and the repair of event log imperfections [41]. One of the most recent con-

tributions is BINet, a deep learning approach that uses a neural network architecture for multi-perspective

anomaly detection and classification [33]. As the authors demonstrate, BINet outperforms other available

methods and, therefore, must be considered state-of-the-art in the area of business process anomaly detec-

tion. The work presented in this paper is complimentary to such existing works, where a combination would

enable anomaly detection based on control-flow, data, and semantic aspects. Our evaluation experiments

showed that such an hybrid approach is indeed promising and can greatly improve precision.

Our work also relates to various works that analyze the contents of textual labels associated with process

models and events, such as our earlier parsing [21] and extraction techniques [14], which have been applied for

purposes such as process model matching [42] and the identification of service and automation candidates [43,

44]. Finally, in a broader context, the detection of semantic anomalies relates to works that consider the

notions of common sense in other scenarios. For example, various resources capture common sense relations,

such as the linguistic resources discussed in Section 4.2.1 or common sense knowledge graphs [45, 46]. Close

to our application context, such common sense consideration are, among others, employed to improve the

quality of actions and state changes extracted from natural language texts [47, 48].

Still, our approach stands out as the first work that lifts the consideration of meaning associated with

events to the detection of anomalies in a process analysis or process mining context.

7. Conclusion

In this paper, we presented a completely novel way of detecting anomalies in process mining by taking

the meaning of observed process behavior into account. To achieve this, our approach exploits the natural

language labels associated with events. The semantic components extracted from these labels are compared

against a process-independent knowledge base, populated based on both linguistic and process-oriented

resources. We demonstrated the capability of our approach to successfully detect anomalies in both synthetic

and real-world logs and showed its compatibility with existing, frequency-based detection techniques. As

such, our evaluation clearly highlights the potential of using natural language analysis for anomaly detection.

As the first of its kind, there are various manners in which we aim to expand and improve our approach

in the future. This will include the coverage of other kinds of anomalies, such as anomalies involving the re-

lations among different business objects. The population of a knowledge base will be extended by employing

additional kinds of resources, e.g., involving knowledge graphs and state-of-the-art natural language process-
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ing techniques. Furthermore, we recognize that the detection of semantic execution anomalies can be lifted

to various new application scenarios, e.g., to support the introduction of noise for event log privatization [49],

to resolve event data uncertainty [50], or to consider the severity of conformance violations [51].

Reproducibility: A link pointing towards the publicly available implementation and employed data collections

is given in Section 5.
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