
Pre
pri
nt

EIRES: Efficient Integration of Remote Data
in Event Stream Processing

Bo Zhao1, Han van der Aa2, Thanh Tam Nguyen 3, Quoc Viet Hung Nguyen4, Matthias Weidlich1
1Humboldt-Universität zu Berlin 2Universität Mannheim 3Leibniz Universität Hannover 4Griffith University
bo.zhao@hu-berlin.de; han@informatik.uni-mannheim.de; tamnguyen@l3s.de; quocviethung.nguyen@griffith.edu.au; weidlima@hu-berlin

ABSTRACT
To support reactive and predictive applications, complex event
processing (CEP) systems detect patterns in event streams based on
predefined queries. To determine the events that constitute a query
match, their payload data may need to be assessed together with
data from remote sources. Such dependencies are problematic, since
waiting for remote data to be fetched interrupts the processing of
the stream. Yet, without event selection based on remote data, the
query state to maintain may grow exponentially. In either case, the
performance of the CEP system degrades drastically.

To tackle these issues, we present EIRES, a framework for ef-
ficient integration of static data from remote sources in CEP. It
employs a cost-model to determine when to fetch certain remote
data elements and how long to keep them in a cache for future use.
EIRES combines strategies for (i) prefetching that queries remote
data based on anticipated use and (ii) lazy evaluation that postpones
the event selection based on remote data without interrupting the
stream processing. Our experiments indicate that the combination
of these strategies improves the latency of query evaluation by up
to 3,752× for synthetic data and 47× for real-world data.
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1 INTRODUCTION
Complex event processing (CEP) systems evaluate queries over con-
tinuous streams of events to detect patterns [1]. They provide the
ability to identify a situation of interest with low latency, thereby
supporting reactive and predictive applications [2]. A CEP query
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describes an event pattern as the joint occurrence of events of par-
ticular types, potentially in a specific ordering, correlated through
predicates over their data payload and a time window. By evaluat-
ing such a query in an online manner, an event pattern is detected
in near-real-time, as soon as it materializes.

The evaluation of CEP queries is computationally challenging. A
CEP system needs to maintain a set of partial matches per query [3–
5], which may grow exponentially in the number of processed
events. Hence, common evaluation algorithms show an exponential
(worst-case) time complexity [6]. Recognising this, optimization
techniques based on state sharing [6, 7], query rewriting [8, 9], or
load shedding [10, 11] have been proposed. These optimizations
assume that the occurrence of a pattern is fully characterised by the
events and their payload data. Yet, many applications require the
combination of the events’ payload with data from remote sources
to determine whether a partial match shall be processed further.

Consider the detection of fraud in credit card usage [12]. Here,
events denote financial transactions or indicate status changes, such
as an increase in spending limit. To block malicious transactions,
CEP queries aim to identify patterns of suspicious use. Such patterns
must be detected under tight latency bounds since, e.g., a credit card
transaction needs to be cleared within 25ms [13]. Yet the detection
of suspicious patterns often depends on contextual information,
such as a user’s spending history, transactional volume at a specific
location, or the behaviour of other users. Since this information
must be retrieved from remote data sources, incorporating it while
still meeting the latency bounds becomes highly challenging.

A naive integration of remote data reduces the performance of
a CEP system drastically. Fetching data only once it is needed for
query evaluation, see Figure 1 (top), interrupts the processing of the
stream. As we later demonstrate in our experiments, such an inter-
ruption temporarily increases the latency by orders of magnitude.
Even a small latency of dozens of milliseconds to look up remote
data is problematic, given that CEP systems achieve microsecond
latencies and many applications enforce tight latency bounds. Al-
though the assessment of remote data is mandatory to maintain
result correctness, only incorporating it in a post-processing step,
while ignoring it as part of event selection during query evaluation,
is also not a viable option: The resulting non-determinism in query
evaluation would add further to the exponential growth of partial
matches, thereby increasing the processing latency.

In this paper, we present EIRES, a framework to address use cases
such as the above one through an efficient integration of remote
data in event stream processing. As shown in Figure 1, our idea
is to decouple (i) the fetching of remote data from (ii) its use in
query evaluation. While under a naive model, data is fetched once
it is needed and then used immediately, EIRES employs a cache to
decouple both operations.
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Figure 1: Strategies to integrate remote data in event stream
processing: Naive integration; prefetching based on antici-
pated use; lazy evaluation once data is available.

Fetching may happen before the need for remote data material-
izes (i.e., prefetching) and the evaluation of partial matches based
on it may be postponed until after the remote data is available (i.e.,
lazy evaluation). While both strategies hide the data transmission
latency, they also come with side effects. Prefetching may fill the
cache with superfluous data, while lazy evaluation may suffer from
the mentioned growth of the number of partial matches. To mitigate
these issues, we carefully balance the strategies’ application based
on their expected benefits and costs in a given situation.

Our contributions are summarized as follows:
◦ We introduce the EIRES framework. It shows how the use
of a cache facilitates prefetching and lazy evaluation when
integrating remote data in event stream processing.
◦ To instantiate the framework, we present a cost model to
assess the utility of remote data elements. We show how the
model may be approximated to evaluate it efficiently.
◦ Using the cost model, we propose mechanisms to decide
when and which data elements to prefetch, and when to
postpone the evaluation if remote data is not yet available.
◦ We elaborate on strategies for cache management, based on
simple policies and based on the proposed cost model.

We evaluated our approach using both synthetic and real-world
datasets. Compared to the best baseline approach to integrate re-
mote data, EIRES improves the latency of query evaluation by up
to 3,752× for synthetic data and 47× for real-world data. We fur-
ther present a sensitivity analysis to shed light on the influence of
various parameters of the problem setting on the obtained results.

In the remainder, §2 presents a formal problem statement. The
EIRES framework is introduced in §3, before instantiating its main
components (§4-§6). We give evaluation results in §7 and discuss
related work in §8, before concluding the paper in §9.

2 PROBLEM FORMULATION
This section first introduces a formal model for CEP with remote
data (§2.1), beforewe introduce the problem of latencyminimization
for this setting (§2.2), which is addressed in the remainder.

2.1 A Model for CEP with Remote Data

Event streams. We adopt a common, relational model of event
streams. An event is an occurrence of interest at a specific point
in time, which is instantaneous, unique, and atomic. Its structure
is defined by a schema, as was first proposed in traditional data
stream processing [14]. An event schema is given by a sequence
of attributes A = ⟨A1, . . . ,An⟩, where each attribute is assigned a
primitive data type. Then, an event e = ⟨a1, . . . ,an⟩ is an instance of
this schema, where ai is the value of attribute Ai . Moreover, events
carry timestamps from a discrete, totally-ordered domain, defined
byN. The timestamp of an event e is referred to by e .t . Without loss
of generality, we assume all events to have the same schema. Note
that different types of events, as used later in our running example,
are incorporated by predicates over a distinguished attribute.

An event stream is an infinite sequence of events, S = ⟨e1, e2, . . .⟩,
that respects the order of event timestamps: For two events ei and ej ,
it holds that i < j implies ei .t ≤ ej .t . We further define the notion
of a finite stream prefix, up to index k , as S (..k ) = ⟨e1, . . . , ek ⟩.

Remote data. The evaluation of a CEP query may require data
from remote sources. Here, we focus on what data elements are
fetched from such sources, rather than how they are retrieved. That
is, we abstract from the specific look-up queries executed at remote
sources and use data elements as the basis for our model. A data
element may be thought of as a key-value pair or a relational tuple.
Formally, we use a set D = {d1, . . . ,dn } to capture the remote data
elements. Moreover, we write |d | ∈ N for the size of a data element.

Notably, datamodels are hierarchical inmany applications, which
means that there exists a containment relation between data ele-
ments. Therefore, we also consider a partial function ρ : D ↛ D
that maps an element to another one if the former is contained in
the latter. The size of the containing element is then given as the
sum of the contained elements, i.e., |d | =

∑
d ′∈D,ρ (d ′)=d |d

′ |.
Since fetching data elements from different sources can result

in different transmission latencies, we here assume that latency is
monitored per data element, and denoted as ℓremote (d ).

CEP queries. Common query languages describe event patterns
through operators (e.g., sequence), conditions based on data of the
events’ payload or from remote sources, and a time window [1, 15].

For the use case of financial fraud detection, an example query is
shown in Listing 1, using a syntax similar to the SASE language [3].
It abstracts from the specific queries sent to remote databases, but
highlights which predicates involve remote data and which payload
data of events is used for the respective lookup. In this scenario,
remote data captures the known locations of credit card usage per
client, the card limits, and the set of pre-authorized clients for an
organization. The latter is organized hierarchically, i.e., it can be
fetched per credit card, per user, or for the whole organization.

The query is triggered by a transaction event t1 (of type T) of
high volume (>10k). A suspicious pattern may emerge in two ways
based on other events recorded for the same credit card (SAME[cc]):

First, the event may be followed by a denied transaction d (type D)
and another high-volume transaction t2 that occurred at a location
that both differs (t1.loc <> t2.loc) and is not in the set of known
locations for the user, which is fetched from a remote database
(REMOTE[t1.user]).
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SEQ(T t1, (SEQ(D d, T t2) OR SEQ(L l, T t3))
WHERE SAME[cc] AND t1.vol > 10k AND t2.vol > 10k
AND t1.loc <> t2.loc AND (t2.loc NOT IN REMOTE[t1.user])
AND l.limit > REMOTE[t1.org]
AND t3.vol > 50k AND (t3.ben NOT IN REMOTE[t3.org])
WITHIN 5min

Listing 1: Query to detect fraudulent transactions.

q1

q3

σ1

¬ σ1 

Predicates:

σ0: x.time<q1.time+5min∧ x.cc=q1.cc

σ1: x.type=T∧x.vol > 10k

σ2: σ0∧x.type=D

σ3: σ0∧σ1∧x.loc ∉ r[q1.user]

σ4: σ0∧x.type=L∧x.limit>r[q1.org]

σ5: σ0∧x.type=T∧x.vol > 50k

          ∧x.ben ∉ r[x.org]

q4

q5

q6

q2

σ2

σ3

¬ σ2∧¬ σ4

¬ σ3

σ4 σ5

¬ σ5

Figure 2: Evaluation model for the query of Listing 1.

Second, the initial event may be followed by a change in the
spending limit (event l of type L), where the new limit is larger than
the maximum limit of all credit cards within the same organiza-
tion (queried from a remote database, REMOTE[t1.org]). Afterwards,
another transaction is observed with a very high volume (>50k), for
which the beneficiary (t3.ben) is not in the set of pre-authorized
clients, as stored at a remote data source (REMOTE[t3.org]).

To evaluate such CEP queries, various formalisms have been
proposed, many of them being based on automata [3, 16, 17]. Fig-
ure 2 exemplifies an evaluation model for the query of Listing 1. It
defines states and state transitions to describe how a CEP system
constructs matches of the query when processing a stream event
by event. To this end, it maintains a set of partial matches (i.e.,
partial runs of the automaton). However, due to non-determinism
in the automaton, the number of partial matches is potentially ex-
ponential in the number of processed events. Given the current
set of partial matches, a CEP system checks how a new event of
the stream changes the partial matches, i.e., whether it leads to a
partial match being discarded, extended, or split up.

The evolution of partial matches is influenced by the time win-
dow, the predicates, and event processing policies of the query.
Transitions in an automata are guarded and link the current input
event (denoted by x), events of partial matches (denoted by state
identifiers, such as q1), and data from remote sources (denoted by a
parametrised variable, such as r [q1.user ]). For example, predicate
σ3 in Figure 2 checks the time window, x .time < q1.time+5min (i.e.,
σ0), a condition over the event’s payload data, x .type = T ∧x .vol >
10k (i.e., σ1), and a condition using remote data, x .loc < r [q1.user ].

Event processing policies fine-tune the consumption and selec-
tion of events [18]. Specifically, we consider a greedy policy, under
which a partial match that, based on the transition guards in the
automaton, can be extended with an input event from the stream
is always split up into at least two partial matches, one extended
with the event and one left unchanged. The latter models the case
that an input event may be skipped, to derive matches constructed
from any set of events that satisfy the predicates. This semantics is
known as unconstraint [19] or skip-till-any-match [3].

We also consider a non-greedy policy, also known as continuous or
skip-till-next-match. Here, the partial matchwould only be extended,
i.e., only events that do not satisfy the predicates are skipped to
always select the next event that satisfies them.

Table 1: Notations.

Notation Explanation

e = ⟨a1, . . . , an ⟩ Event
e .t Event timestamp
S = ⟨e1, e2, . . .⟩ Event stream
S (..k ) Event stream prefix at up to the k -th input event
D = {d1, . . . , dn } Remote data elements
ρ : D ↛ D Part-of relation for data elements
P (k ) Partial matches up to the k -th input event
D (p, k ), D (k ) Remote data needed by partial match p , or all partial

matches, to process the k -th input event
C (k ) Complete matches up to the k -th input event
R Output stream of complete matches
ℓ (k ) Query evaluation latency after the k -th input event
ℓremote (d ) Transmission latency for remote data element d

Formal evaluation model.We formalise the above model for the
evaluation of CEP queries as follows. Let Q be a query and τQ
its time window. Then, the result of evaluating Q over a stream
S = ⟨e1, e2, . . .⟩ are matches. A match is a finite sequence of events
⟨e ′1, . . . , e

′
m⟩ of the stream that is order-preserving, i.e., for e ′i = ek

and e ′j = el it holds that i < j implies k < l , and respects the time
window of the query, i.e., e ′m .t − e ′1.t ≤ τQ .

The set of partial matches that is maintained by the CEP system
for query Q , after processing a stream prefix S (..k ), is denoted
as P (k ) = {⟨e1, . . . , en⟩, . . . , ⟨e ′1, . . . , e

′
m⟩}. The next event in the

stream is S (k+1). Processing it potentially requires remote data. We
model the set of data elements needed by a partial match p ∈ P (k )
when processing event S (k + 1) by a set D (p,k + 1) ⊆ D. All such
elements are given byD (k+1) =

⋃
p∈P (k ) D (p,k+1). Based thereon,

the functionality of a CEP system can be described as a function
that takes the event S (k + 1), the current partial matches P (k ), and
the required remote data D (k + 1) as input and returns sets of new
partial matches P (k + 1) and (complete) matches C (k + 1):

fQ (S (k + 1), P (k ),D (k + 1)) 7→ P (k + 1),C (k + 1). (1)

Applying this function repeatedly for a stream constructs a stream
of sets of matches, R = ⟨C (1),C (2), . . .⟩. To achieve compositional-
ity of the model, one may order the matches per set and construct
a single event per match. This way, R is transformed into an event
stream again. Table 1 summarises our notations.

2.2 Problem Statement
Query evaluation incurs latency—the time between the arrival of
the last event of a match at the CEP system and the actual detection
of the match. In our model, this corresponds to the time needed to
evaluate function fQ . We denote the latency observed for a match
c by ℓ(c ). For a particular point in time, i.e., when all matches
C (k ) have been generated, the latency is derived through some
aggregation function α (e.g., median) from all these matches, ℓ(k ) =
α {ℓ(c ) | c ∈ C (k )}. In practice, it is common to incorporate some
smoothing in the latency assessment (e.g., using a sliding window).
We assume such smoothing to be part of the definition of ℓ(k ).

Based thereon, we formulate the problem of efficiently evaluating
a CEP query as the minimization of the respective latency.

Problem 1 (Efficient Query Evaluation). Let Q be a CEP query
and let S (..k ) be a stream prefix. The problem of efficient query
evaluation is to compute all matches R = ⟨C (1), . . . ,C (k )⟩ of Q ,
while minimizing the latency ℓ(k ), with k → ∞.
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3 THE EIRES FRAMEWORK
To address Problem 1, we propose the EIRES framework. Below, we
summarize its intuition, before outlining its components.
Intuition.We first reflect on the factors that constitute the latency
ℓ(c ) of match c , and hence, the aggregated latency ℓ(k ). A first
aspect is the latency that is inherent to the evaluation of partial
matches when processing all events from the first to the last event
of match c , denoted by ℓmatch (c ). In addition, there is the latency
of fetching remote data that was required to process these events,
denoted by ℓfetch (c ). It is the sum of the latencies of all fetch op-
erations required for c , each defined by two timestamps (tn , ta ),
i.e., the time tn ∈ N at which the need for remote data is detected
during query evaluation and the time ta ∈ N at which the data is
available and processing can continue. With F (c ) ⊆ N × N as the
set of the fetch operations during the construction of match c , we
have:

ℓ(c ) = ℓmatch (c ) + ℓfetch (c ) = ℓmatch (c ) +
∑

(tn,ta )∈F (c )

ta − tn (2)

Existing optimizations for CEP, such as those based on state shar-
ing [6, 7], rewriting [8, 9], or load shedding [10, 11], will ultimately
improve the inherent latency of query evaluation, i.e., ℓmatch (c ).

Time

tnta Prefetching

tnta
Lazy 
Evaluation

Figure 3: Intuition of the proposed strategies.

By contrast, we focus on the latency induced by fetching of re-
mote data, ℓfetch (c ). As this latency corresponds to the time interval
between the need (tn ) and availability of remote data (ta ), Figure 3
illustrates that it may be reduced from either end. Here, we assume
that the latency of the actual transmission of a data element d , i.e.,
ℓremote (d ), as induced by the requests and responses sent over the
network, is monitored. The latency ℓremote (d ) may be hidden by
either moving ta closer to tn , i.e., by fetching the data earlier than it
is actually needed, or by moving tn closer to ta , by postponing the
evaluation of the predicates that are based on the remote data. We
realize both ideas with a strategy for prefetching, coined PFetch,
and a strategy for lazy evaluation, referred to as LzEval.

PFetch fetches remote data before it is actually needed, thereby
hiding the data transmission latency. Data is then kept in a local
cache at the CEP engine, from which it may be retrieved with
negligible latency. PFetch needs to realize two main operations:
(P1) Decide when prefetching a data element may be beneficial.
(P2) At a specific time, select which data elements to prefetch.
Here, the goal is to prefetch data elements such that they arrive right
before they are needed, since this maximizes the fetching accuracy
and efficient cache usage, while still hiding the transmission latency.

LzEval postpones the evaluation of predicates based on remote
data until the data is available in the cache. While fetching is trig-
gered once the data is needed, query evaluation continues in parallel
to this fetching operation. The respective predicates are evaluated
only at later stages, so that fetching of remote data is no longer a
blocking operation. For this, LzEval realizes two main operations:

(L1) Decide on the partial matches for which lazy evaluation is ap-
plied, i.e., for which the evaluation of predicates is postponed.

(L2) Adapt the evaluation procedure for the partial matches with
lazy evaluation. Verify the predicates based on remote data
once the remote data is available in the cache.

Here, the challenge is that although postponing the evaluation
of predicates can hide the transmission latency of remote data,
ℓremote (d ), it may simultaneously increase the inherent evaluation
latency, ℓmatch (c ), since postponement makes event selection less
strict and thus results in the creation of additional partial matches.
Therefore, LzEval shall only be applied as long as its benefits out-
weigh the associated increase in the evaluation latency.

Both strategies have in common that they require cache man-
agement, which corresponds to the following operation:
(C1) Maintain a set of data elements in the cache based on its

current content and newly fetched elements.
Cache management calls for a mechanism to use the available
storage optimally, which again requires to assess the impact that
data elements have on the performance of query evaluation.
EIRES components. To realize the above ideas, the EIRES frame-
work comprises three main components. As shown in Figure 4,
these components extend the functionality of a CEP engine.

Remote 
DB

Input Event Stream

Cache

Partial Matches

Utility Modelling
Remote Data 
Fetching

Cache
Management

Output Event Stream
CEP Engine

Figure 4: Components of the EIRES framework.

Utility modelling (§4) provides a cost model to assess the (ex-
pected) utility of remote data elements for query evaluation. As
such, it provides the basis to select data elements for prefetch-
ing (P2); to decide on the partial matches for which lazy evaluation
is applied (L1); and to govern the cache management (C1).

Remote data fetching (§5) realizes the PFetch and LzEval strate-
gies and manages the trade-offs induced by operations (P1) and
(P2), and by (L1) and (L2), respectively, using the cost model. The
trade-offs are managed in an online manner, i.e., based on the infor-
mation available at a specific point in time. The reason being that an
optimal plan to combine PFetch and LzEval for some future states
would require the utility of data elements to be stable. Yet, since
the utility is based on the maintained partial matches, it may differ
at the time a (pre)fetching decision is taken and at the time the data
arrives at the CEP engine. Hence, the operations for prefetching
and lazy evaluation are decoupled from the cache management.

Cache management (§6) realizes operation (C1), i.e., it retains the
data elements in the cache that are most beneficial according to the
cost model. Following the above argument on the infeasibility of
optimal plans, cache management is also conducted online, using
the information currently available.
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Algorithm 1: EIRES workflow.
Input: Input event S(k + 1); query Q with time window τQ ; partial matches

P (k), . . . , P (k − τQ ); CEP engine fQ ; cache C.
Output:Matches C (k + 1); partial matches P (k + 1).

1 U, #P (k) ← utilityEstimation (Q, P (k), . . . , P (k − τQ )); // Alg. 2

2 T, O ← prefetchTiming(); // P1 in PFetch, Alg. 3

3 P′, C′ ← fQ (S(k + 1), P (k), D(k + 1) ∩ C);

4 D′ ← ∅;
// Determine data elements for prefetching by lookahead timing

5 foreach p ∈ P ′ \ P (k ) do // For each new partial match

// For each d for which p is in its prefetch class

6 ∀ d ∈ D (p, k + 1) : if p is in class T (d ) then D′ ← D′ ∪ {d };

// Determine data elements for prefetching by estimated arrival timing

7 foreach p ∈
⋃
k−τQ ≤i≤k P (i ) do // For each partial match

// For each d for which the time offset to fetch has passed for p
8 ∀ d ∈ D (p, k + 1) : if p is older than O (d ) then D′ ← D′ ∪ {d };

// P2 in PFetch: Prefetch elements not in cache that have high utility

9 foreach d ∈ D′ \ C do
10 if U (d, k, k + τQ ) > mind′∈C U (d′, k, k + τQ ) then Prefetch d;

11 P′′, C′′ ← LzEval(S(k + 1), P′, D(k + 1), C, fQ, #P (k)); // Alg. 4

12 C (k + 1) ← C ′ ∪C ′′;
13 P (k + 1) ← P ′ ∪ P ′′;
14 return P (k + 1), C (K + 1);

EIRES workflow. As shown in Algorithm 1, when processing an
input event, EIRES first estimates utility of remote data (line 1),
which is further detailed in Alg. 2. It then computes remote data
prefetching time (P1 in PFetch, line 2), based on Alg. 3. After retriev-
ing and evaluating required data elements that are cached locally
(line 3), EIRES performs operation P2 in PFetch, prefetching remote
data according to the computed prefetch timing (line 5-10). It pre-
pares remote data to process current and future input events. If
required data elements are not available from the cache, EIRES per-
forms lazy evaluation (line 11), which is further explained in Alg. 4.
Finally, new matches and partial matches are derived (line 12-13).

4 UTILITY MODELLING
We first present measures to assess the utility of remote data ele-
ments (§4.1). Since utility is in part determined by future system
states, we also present a method for its efficient estimation (§4.2).

4.1 Utility Definition
During query evaluation, the role of a remote data element is to en-
able the evaluation of some query predicate to determine whether
a partial match shall be discarded, extended, or split up. Therefore,
the utility of a data element is primarily based on the number of par-
tial matches for which the element is required in their evaluation.
Since a fetched data element is cached, it may be used to evaluate
predicates for upcoming partial matches as well. Hence, our util-
ity assessment considers both, the current partial matches, which
induce the urgent utility, and future partial matches potentially
derived from them, which induce the future utility.

Consider a point in time when a stream prefix S (..k ) has been
processed, so that P (k ) is the set of current partial matches. The
CEP engine needs to handle event S (k + 1). Recall from §2.1 that,
for a partial match p ∈ P (k ), D (p,k + 1) is the set of data elements
required as input for processing. For a data element d ∈ D, at this

point in time, the urgent utility is defined as the number of partial
matches that require d or one of its constituents (with ρ∗ as the
reflexive transitive closure of the part-of-relation ρ), weighted by
its transmission latency ℓremote (d ):

UU (d, k ) = ℓremote (d ) · ��{p ∈ P (k ) | ∃ d ′ ∈ D (p, k + 1) : d ∈ ρ∗ (d ′) }�� . (3)

In the same vein, the number of partial matches that require d , or
its constituents, can be considered for some future state of query
evaluation. Given perfect information about the future stream up to
a stream index k ′ > k , the future utility of d is given by the urgent
utilities of future partial matches in k < i ≤ k ′:

FU (d,k,k ′) =
∑

k<i≤k ′
UU (d, i ) (4)

However, since information about future states is inherently uncer-
tain, we actually need to compute an estimate for the future utility
up to a time point k ′, which we denote as ˆFU (d,k,k ′). As such, in
the remainder we rely on an overall utility that is defined as the
weighted sum of the above measures, defined, with ω ∈ [0, 1], as:

U (d,k,k ′) = ω ·UU (d,k ) + (1 − ω) · ˆFU (d,k,k ′) (5)

Here, the rational is that the weighting enables tuning of the respec-
tive importance of the known utilityUU and the estimated utility
ˆFU . Moreover, different weighting schemes are applied when incor-
porating the utility assessment for the realization of PFetch, LzEval,
and cache management. Specifically, the strategies for fetching re-
mote data, PFetch and LzEval, assign higher weights to the urgent
utility compared to the cache management. The latter is more ef-
fective when catering for the requirements of partial matches in
terms of remote data over a longer time span.

Note that the greediness of event selection (§2.1) is implicitly
incorporated in the above utility model, because its semantics is re-
flected in the number of partial matches, which is directly captured
by the urgent utility. While the estimation of future utility does not
directly capture greediness, it is indirectly taken into account: The
estimation implicitly incorporates dependencies between counts of
partial matches at different states, at least on an aggregated level
(aggregation from stream index k to k ′ in Eq. 4).

Furthermore, our utility model is able to cope with multiple
queries in a straightforward manner: The utility of a data element
is assessed based on its related current and future partial matches,
regardless of the query for which these partial matches have been
created. Sharing of data elements among queries is thereby captured
directly in our cost model. If queries are assigned priorities, these
need to be used as weights in the utility definition in Eq. 3.

4.2 Utility Estimation
To estimate the future utility ˆFU of a data element, we determine
the expected number of partial matches for which the element is
relevant to its evaluation. Since the utility of data elements needs
to be materialized in an online manner, this estimation should not
incur significant overhead. Therefore, we estimate the number of
relevant partial matches by considering two aspects: (i) how many
partial matches of a particular class are expected at a time point and
(ii) to what fraction of these partial matches an element is relevant.
Algorithm 2 demonstrates the estimation procedure. It should be
noted that urgent utility UU is directly monitored (line 2 and 6).
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Number of partial matches. We partition partial matches into
classes, where the partitioning is determined by the adopted com-
putational model. That is, in an automata-based model, each state
of the automaton denotes a class. Intuitively, the class of a partial
match, through a set of query predicates, induces a class of data
elements that may be needed for the evaluation of its predicates.
E.g., in Figure 2, all partial matches of state q3 of the automaton
require the evaluation of predicate σ3 when processing an event.
The evaluation of σ3 refers to the remote data element r [q1.user ],
i.e., the set of known locations associated with a particular user.
Therefore, a data element d that refers to such a set of locations is
potentially relevant to any such partial match.

Let {1, . . . ,n} be the identifiers of the classes of partial matches
(i.e., automaton states), then we denote the expected number of
matches of a class j at time point k as #P j (k ). To efficiently estimate
#P j (k ), we compute it as the average number of partial matches of
class j over a time window of fixed size , as shown in line 9, Alg. 2.

Partialmatch relevance.However, a specific element is only truly
relevant to a subset of partial matches of a particular class, which
is determined based on the payload of a partial match’s events. E.g.,
continuing on the above example, a data element d , capturing the
locations associated with a particular user, is only relevant to those
partial matches of which the first event relates to that same user.

To estimate the fraction of partial matches of a class for which a
particular data element is relevant, we employ a stochastic model.
Given a class of partial matches j and a data element d ∈ D, we use
Pr (j,d,k ) to capture, at time point k , the probability that element
d is required to evaluate the predicates of partial matches of class j
when processing an input event. We assume that such a probability
is relatively stable in the short term. The probability distribution
may be derived from the value distribution of the events’ attributes
that serve as a reference for the selection of data elements. Here, the
value distribution and, hence, the probability distribution, again, is
computed adopting a sliding window. In Alg. 2, line 3,4 and 8 show
how to monitor and maintain it online.

Future utility. Based on the above, we estimate the future utility
at the time the stream prefix S (..k ) has been processed, up to some
future stream index k ′ > k for a data element d ∈ D, as follows:

ˆFU (d,k,k ′) = (k ′ − k )
∑

1≤j≤n
d ′∈D,d ∈ρ∗ (d ′)

#P j (k ) · Pr (j,d ′,k ) (6)

Both, the average number of partial matches per class and the
distribution of attribute values (as the basis for the probability dis-
tribution of the data access per class), are based on simple counts,
which is why they can be maintained incrementally and relatively
efficiently for a sliding window (line 3-4 and 8-10 in Alg. 2). Never-
theless, since their computation still introduces overhead, instead of
recomputing all utility values every time a single event is processed,
a lower frequency may be employed to trade off precision of the
utility model versus the incurred computational overhead.

5 REMOTE DATA FETCHING
The EIRES framework defines PFetch and LzEval as two strategies to
fetch remote data, which we describe in §5.1 and §5.2, respectively.
As illustrated in line 5-10, Alg. 1, EIRES always performs prefetching.

Algorithm 2: Utility estimation.
Input: Query Q with time window τQ ; partial matches P (k), . . . , P (k − τQ ),

partitioned in classes 1 ≤ j ≤ n, i.e., P1 (k), P2 (k), . . . , Pn (k − τQ ).
System configuration parameter : Weighting factor ω ;

State: Maintained transition counts per remote reference key tranKey and per
class of partial matches tranClass.

Output: Utility function U ; estimated number of partial matches #P (k)
partitioned in classes #P i (k), 1 ≤ i ≤ n.

1 foreach d ∈ D required by a partial match p ∈ P (k) \ P (k − 1) of class j do
// Increase urgent utility because of new partial match

2 UU (d, k) ← UU (d, k) + 1 ;

// Update auxiliary counts for future utility estimation

3 tranKey (d, j, k) ← tranKey (d, j, k) + 1;
4 tranClass(j, k) ← tranClass(j, k) + 1 ;

5 foreach d ∈ D required by a partial match p ∈ P (k − 1) \ P (k) do
// Decrease urgent utility due to timed out partial matches

6 UU (d, k) ← UU (d, k) − 1 ;

7 foreach d ∈ D required by partial matches of class j do
// Estimate future utility

8 Pr (j, d, k) ←
∑k

i=k−τQ
tranKey (d, j, i) /

∑k
i=k−τQ

tranClass(j, i) ;

9 #P j (k) ← AVG
(���P j (k − τQ ) |, |P j (k − τQ + 1) |, . . . , |P j (k)���

)
;

10 ˆFU (d, k, k + τQ ) ←
∑

1≤i≤n
d′∈D,d∈ρ∗ (d′)

#P i (k) · Pr (i, d′, k);

// Compute overall utility

11 U (d, k, k + τQ ) ← ω · UU (d, k) + (1 − ω ) · ˆFU (d, k, k + τQ );

12 return U , #P (k);

If prefetching did not prepare required remote data on time, EIRES
performs lazy evaluation (line 11).

5.1 Prefetching
As explained in §3, two operations need to be instantiated for PFetch:
deciding when prefetching is beneficial for a data element (P1) and
selecting the elements to prefetch (P2).
(P1): Prefetch timing. The best time to prefetch a data elementd is
such that it arrives right before it is needed, i.e., ideally, prefetching
is triggered at tp = tn − ℓremote (d ). Prefetching too early should be
avoided, since this will be based on a less accurate estimation of the
future utility of d , given that it is generally more complex to make
predictions further in advance. Hence, earlier prefetching increases
the chance that d is prefetched, consumes space in the cache, but is
never used in query evaluation. On the contrary, late prefetching
(ti < tp ) generally benefits from a more accurate utility estimation,
but hides the transmission latency only partially. To estimate the
appropriate time to prefetch in light of this trade-off, we propose
complementary techniques: lookahead timing and estimated-arrival
timing, with workflow shown in Alg. 3.
Lookahead timing.We strive to identify partial match classes that
provide useful indicators of when to prefetch a data element related
to another match class, i.e., a lookahead class. To do this, we exploit
the partial order of the classes of partial matches, derived from the
query predicates. This partial order corresponds to the order of
an automaton’s states, which captures that partial matches of one
class may become those of another class during query evaluation.

Let {1, . . . ,n} be the identifiers of classes of partial matches with
m being a class of matches that require a data element d (line 2 in
Alg. 3). Then, we determine a lookahead class j that is a predecessor
ofm in the partial order of classes, denoted j ≺ m, meaning that
partial matches of class j potentially develop into those of classm.
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Algorithm 3: Prefetch timing (P1 in PFetch)
State: Monitored event input rates λ[n]; latest prefetch cache hit history H .
Output: Prefetch timing function T ; offset timing function O.

1 T ← ∅; O ← ∅;
2 foreach d ∈ D required by partial matches of classm do
3 j ← m’s directly preceding class;
4 while j ≺ m do

// Check if lookahead timing can be applied

5 if partial matches of class j require d ∧ j > 1 then
6 if H (m, j, d ) = true then // Prior cache hit successful

7 O(d) ← 0, T (d) ← j ; // Set time offset to be 0

8 break;

9 else j ← j’s directly preceding class ; // Try next class

10 else // Use estimated-arrival timing

11 O(d) ← 1/λ[j] − ℓremote(d) , T (d) ← j ; // Set time offset

12 break;

13 return T , O;

From the set of all preceding classes {1 ≤ j ≤ n | j ≺m}, we choose
j such that 1) its partial matches contain events of which the payload
serves as a reference to identify d , and 2) it is closest tom in the
partial order while still allowing for timely and accurate prefetching.
This process is detailed in line 3-9 in Alg. 3. Here, without loss of
generality, we illustrate the situation that classm has one directly
preceding class, though in practice it may havemultiple such classes.
If multiple classes contain references to the same data elements,
multiple prefetches could be merged into a single fetch through
semantic query rewriting. If they contain references to different
data elements, a traverse order could be enforced over all these
directly preceding classes, i.e. , ordered by monitored transmission
latencies. EIRES incorporates both of these approaches.

We determine the lookahead class j in a dynamic manner, based
on the recent cache hit history from cache management (inputH
in Alg. 3). Particularly, for a given data element d , H maintains
cache hit/miss information, whereH (i, i ′,d ) returns false if d was
prefetched upon the construction of a partial match of class i , but
was not available when required during the evaluation of a partial
match of class i ′. Such a cache miss can have two causes: First, it
may hold that ti→i′ < ℓremote (d ), i.e., prefetching happens too late
because the time for a partial match to develop from class i to i ′ is
shorter than the transmission latency. Second, when constructing
a partial match of class i , the utility estimation may have been
inaccurate, so that the wrong data elements have been fetched.
Either way, such a recent cache miss indicates that the respective
class is not suited to trigger prefetching.

In sum, for a partial match of classm that requires a data element
d , we select the preceding class j closest tom for whichH (d, j,m) =
true (line 6). Then, the point in time to prefetch data element d for
partial matches of classm is defined as the moment that a partial
match for class j is constructed. For example, if H (d, j1,m) and
H (d, j2,m) are both true, and j1 ≺ j2, we select j2 as the lookahead
class form, avoiding the unnecessarily early fetching that using j1
would yield. If partial matches of multiple classesm reference d ,
the smallest index j, in terms of the partial order ≺, is chosen.

We deal with event stream fluctuations by internally maintaining
counts of cache misses in H , so that a threshold can determine
what to interpret as sufficient negative evidence. Also, values are
reset to zero after a fixed time period after their last increment.

Note that there may be partial match classes for which looka-
head timing is unsuitable, i.e., cache misses occur since there is
no lookahead class enabling timely and accurate prefetching. This
occurs, e.g., when the reference required to identify d is part of the
payload of the input event that lead to the creation of the partial
match of classm. An example for that is the class q4 in Figure 2,
which requires the evaluation of a predicate using remote data on
pre-authorized clients (r[q3.org]) that can only be fetched based on
the event that lead to the respective match. For those cases, we
determine the time to prefetch based on estimated-arrival timing.

Estimated-arrival timing.When lookahead timing is not appli-
cable for a partial match classm, we instead determine the time
to prefetch by incorporating the inter-arrival time of events that
satisfy the predicates to check for partial matches of classm but
are not based on remote data (line 10-12 in Alg. 3). Consider again
class q4 in Figure 2. The respective partial matches are extended
when an event with x.type=T, x.vol>50k, and x.ben < r[q4.org] is re-
ceived. Since lookahead timing is not applicable for the remote data,
we estimate the expected time until an event satisfying x.type=T

and x.vol>50k is received. This way, we obtain an estimate for the
time between the creation of a partial match of class q4 and the
time the data element r[q4.org] is actually needed. To derive this
inter-arrival time, various stochastic processes for event arrival
may serve as a foundation. Selecting one of them, their parameters
shall be learned from historic data or through monitoring.

Here, we illustrate the general procedure when event arrival
follows a Poisson process [20], as observed in many domains where
events correspond to requests triggered by people. Then, events are
independent and occur with a constant mean arrival rate λ, which
is the only parameter that needs to be monitored. This is similar
to Akdere et al.’s work [21], but differs in granularity: Akdere
et al. [21] works on the level of processing states, whereas our
model estimates the arrival of events that have a certain payload.

Inter-arrival times are exponentially distributed with their expec-
tation being E = 1/λ . Based thereon, at time t , we estimate the time
the remote data d is needed as t + 1/λ , so that the time for prefetch-
ing becomes tp = t + 1/λ − ℓremote (d ) (line 11 in Alg. 3). Taking up
the previous example, events with x.type=T x.vol>50k may be rare,
such that the expected inter-arrival time is E = 300ms . Then, with a
data transmission latency of ℓremote = 50ms , we trigger prefetching
only 250ms after the creation of the respective partial match (i.e.,
when processing the next input event after this time period).

(P2): Prefetch selection. Using the above techniques, we deter-
mine the point in time at which prefetching is beneficial for a
particular data element. However, at a specific moment while pro-
cessing the event stream, we still need to select those data elements
for which prefetching shall actually be invoked. This decision is
taken using our utility model: We only prefetch data elements, for
which prefetching is beneficial at that point in time and for which
the utility is higher than the minimum utility value of an element
currently in the cache (line 9-10 in Alg. 1). At time (stream index) k ,
let C(k ) ⊆ D be the content of the cache and D (k ) the set of data
elements for which prefetching at time k would be beneficial. Then,
we select D ′(k ) for prefetching, defined as

D ′(k ) = {d ∈ D (k ) | U (d ) > min
d ′∈C(k )

U (d ′)}. (7)
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Algorithm 4: Lazy evaluation (LzEval)
Input: Input event S(k + 1); partial matches P (k); remote data D (k + 1); cache

C; CEP engine fQ ; estimated number of partial matches #P (k)
partitioned in classes #P i (k), 1 ≤ i ≤ n.

State: Monitored event input rates λ[n].
Output:Matches C (k + 1); partial matches P (k + 1).

1 C (k + 1) ← ∅; P (k + 1) ← ∅; ˆsucc ← ∅;
2 foreach d ∈ D(k + 1) \ C required by partial matches of class j do
3 λ ← λ[j]; ℓ ← ℓremote (d );
4 foreach class m, j ≺ m do

// if not yet known, estimate if postponing is beneficial

5 if ⟨m, ℓ⟩ is not checked against ˆsucc(j, ℓ) then
6 λ ← λ + λ[m]; E(j, m) ← 1/λ;
7 ∆−ℓremote ← min(E(j, m), ℓ);
8 ∆+ℓmatch ← ℓpm

∏
1≤i≤m

(
#P i (k) · λ[i + 1] · E(j, m)

)
;

9 if ∆−ℓremote > ∆+ℓmatch then
10 ˆsucc(j, ℓ) ← ˆsucc(j, ℓ) ∪ {m};

11 else ˆsucc(j, ℓ) ← ˆsucc(j, ℓ) \ {m} ;

// benefit expected, postpone evaluation of d’s predicates

12 if ⟨m, ℓ⟩ ∈ ˆsucc(j, ℓ) then
13 Fetch d ;
14 P′ ← fQ (S(k + 1), P (k)) ; // ignore d’s predicates

15 else Fetch d, block stream processing until after d arrives at C ;

16 P′′, C′′ ← fQ (S(k + 1), P (k) ∪ P′, D(k + 1) ∩ C);
17 P (k + 1) ← P (k + 1) ∪ P′′;
18 C (k + 1) ← C (k + 1) ∪ C′′;

19 return C (k + 1), P (k + 1);

5.2 Lazy Evaluation
For LzEval, in turn, two operations need to be instantiated: selecting
the partial matches for which the strategy is applied (L1) and adapt-
ing the evaluation procedure for those matches (L2). The workflow
of LzEval is sketched in Alg. 4.
(L1): Selection of partial matches. LzEval triggers a fetch opera-
tion for remote data d when it is required, but postpones the actual
evaluation of the respective predicates. While this hides the trans-
mission latency ℓremote (d ), it also makes event selection less strict,
possibly resulting in an exponential growth of the number of partial
matches. As such, the inherent evaluation latency ℓmatch (c ) may in-
crease, which may thwart the benefit of the reduction of ℓremote (d ).
Recognizing this trade-off, we therefore only apply LzEval to those
partial match classes where an actual benefit is expected.

To determine these classes, we estimate the time gained by hiding
the transmission latency, denoted as ∆−ℓremote , and the overhead
incurred by the additional partial matches, ∆+ℓmatch. The latency
gain, ∆−ℓremote , depends on the difference between the time tn at
which a data element is needed (and fetching is triggered), and
when the predicate is actually evaluated te . Ideally, evaluation hap-
pens after the data is available (i.e., ta < te ), so that the entire
transmission latency is hidden, i.e., ∆−ℓremote = ℓremote (d ). The
overhead ∆+ℓmatch depends on the number of additional partial
matches caused by lazy evaluation during te − tn and the additional
latency incurred per partial match. While the latter is assumed to be
a known constant, ℓpm, the other parameters need to be estimated.

To estimate the number of additional partial matches, we follow
an approach similar to the estimated-arrival timing (§5.1). Assume
that the evaluation of a predicate of class j requires remote data,
yet that this evaluation may be postponed until the creation of
a partial match of a later class m, j ≺ m. Then, we estimate the
average time tj→m for a partial match of class j to develop into one

of classm, when ignoring all predicates that are based on remote
data. As before, we assume that, for each possible extension of a
partial match, the respective event arrivals follow a separate Poisson
process of a monitored rate. Then, we derive an estimate for tj→m
based on a compound Poisson process induced by the sequence of
intermediate classes {r1, . . . , rs } of partial matches, j ≺ r1 ≺ . . . ≺
rs ≺ m. With λi as the rate of the process describing the arrivals
that construct partial matches of class i , the expectation of the
compound Poisson process is E (j,m) = 1/∑

i∈{r1, . . .,rs ,m} λi
(line 6 in

Alg. 4). Although the estimate assumes all Poisson processes to be
independent, i.e., it ignores sequential dependencies between the
classes, it suffices as an upper bound for our purposes.

Using E (j,m) as an estimate for tj→m , we derive the remaining
parameters. The hidden part of the transmission latency is given as
∆−ℓremote (j,m) = min(E (j,m), ℓremote (d )) (line 7 in Alg. 4). The es-
timation of ∆+ℓmatch (j,m) is time-varying and incorporates #P i (k ),
i.e., the expected number of partial matches of class i , as estimated at
time point (or stream index) k , see §4.2. For each class i , this number
is multiplied with the arrivals of events that may extend the match
by satisfying all the predicates not based on remote data (λi+1)
and the estimate for tj→m (E (j,m)) (line 8 in Alg. 4). While this
estimates the number of additional partial matches during te − tn ,
multiplying it with the constant additional evaluation latency per
partial match (ℓpm) yields the estimate for accumulated increase in
evaluation latency (to simplify notation, we define rs+1 =m):

∆+ℓmatch (j,k ) (k ) = ℓpm
∏

1≤i≤s

(
#Pri (k ) · λri+1 · E (j,m)

)
(8)

For each class j that requires remote data during query evaluation,
we determine the set of succeeding classes for which lazy evaluation
is beneficial. This set is defined as ˆsucc (j ) = {m ∈ {1, . . . ,n} | j ≺
m∧∆−ℓremote > ∆+ℓmatch}, i.e., the hidden part of the transmission
latency is larger than the overhead by the increased evaluation
latency. Then, all partial matches of a class j, for which ˆsucc (j ) is
non-empty, are selected for lazy evaluation (line 9-11 in Alg. 4).
Conceptually, ˆsucc (j ) must be computed for every different trans-
mission latency, ℓremote (d ) (line 5 in Alg. 4). In practice, to improve
efficiency and to reuse results, transmission latency may be lifted
to coarser granularities, e.g. to a millisecond level.
(L2): Adapted evaluation procedure. Consider partial matches
of a class j and ˆsucc (j ) as the succeeding classes for which lazy
evaluation is beneficial. Also, let S (..k ) be the time the stream
prefix was processed and C(k ) ⊆ D as the cache content. Then,
query evaluation to process event S (k + 1) is adapted for the partial
matches of class j, as follows. For each predicate that requires a
remote data element d , the availability in the cache is checked. If
d ∈ C(k ), the predicate is directly evaluated (line 16 in Alg. 4). If
not, a fetch request for d is triggered and the predicate is marked as
postponed (line 12-14 in Alg. 4). The same procedure is followed as
long as the partial match of class j develops into one of a classm ∈
ˆsucc (j ). Upon construction of a respective partial match, the cache

is checked and, upon data availability, the predicate is evaluated.
Once a partial match of class j develops into a classm′ < ˆsucc (j )

for which lazy evaluation is not beneficial, a different strategy is
implemented. Postponing the predicate evaluation further would
increase the overall latency. Hence, query evaluation continues
only once the data element d becomes available (line 15 in Alg. 4).



Pre
pri
nt

6 CACHE MANAGEMENT
Cache management in EIRES shall retain the data elements that
are most beneficial in the cache, thereby realizing operation (C1) as
introduced in §3. Although the benefit of a data element strongly re-
lates to its expected utility (see §4), certain query semantics suggest
to base cache management on a relatively simple policy. Recall the
greediness of CEP queries in event selection (§2.1). Either semantics
motivates a different policy for the cache management.

LRU policy. Under a greedy query semantics, a large number of
partial matches that require the same data elements can be expected
to materialize. This, in turn, will induce a large number of access
requests to the cache for the respective data. In terms of our utility
model, the urgent utility then becomes a good estimator for the
future utility. We can exploit this effect, even without using any
computed utility value, by adopting the widely-established least-
recently-used (LRU) policy for cache management. Data elements
in the cache are ranked by the time of last access to them, evicting
those that have not been accessed for the longest time.

Cost-based policy. With non-greedy query semantics, individual
data elements are expected to be accessed less often and in a dimin-
ishing manner. Hence, the current access frequency, i.e., the urgent
utility, no longer provides a good estimator for the future utility. In
that case, cache management shall exploit the computed utility.

In our cost-based policy, we separate the handling of data el-
ements based on the fetching strategy that led to their retrieval.
The reason being that, while any element requested through LzE-
val will certainly be required by some partial match, this is not
necessarily the case for data elements requested through, possi-
bly inaccurate, predictions of PFetch. Against this background, we
adopt two, purely conceptual, cache tiers, T1 and T2, to separate
elements that will certainly be used (T1) from those for which us-
age is uncertain (T2). Then, elements in T1 will be retained over all
elements of T2, but are moved to T2 after a first access.

Once the cache capacity is reached, data elements (fromT2 before
T1) are evicted based on their utility. Let C ⊆ D denote the current
content of the cache and b ∈ N its capacity. Then, incorporating
the size of data elements, the selection of the data elements R ⊆ C
to retain can be formulated as a knapsack problem:

select R ⊆ C that maximizes
∑
d∈R

U (d ) subject to
∑
d∈R

|d | ≤ b

The above is a standard, NP-hard, knapsack problem [22]. Yet, it
may be approximated [23], e.g., by selecting data elements in the
order of their utility and size ratios, until the capacity is reached.

7 EXPERIMENTAL EVALUATION
We evaluated the EIRES framework on various scenarios. §7.1 first
outlines the setup. For controlled experiments, §7.2 reports on
the overall efficiency and effectiveness, while §7.3 explores the
sensitivity. Finally, §7.4 discusses two real-world scenarios. Note
that an extended version of this paper including query specifications
and additional experiments as well as the employed implementation
and datasets are publicly available.1

1https://github.com/zbjob/EIRES

7.1 Experimental Setup
Dataset and queries. For controlled experiments, we generated
synthetic data with a Type (U ({A,B,C,D})), an ID (U (1, 100)), and
two numeric attributes V1 (U (1, 100000)), and V2 (U (1, 100000)).
This dataset enables us to evaluate common queries that test for
sequences of events of different types, which are correlated by an
ID. Further correlation predicates and references to remote data
may be defined for attributes v1 and v2.

For the synthetic dataset, we evaluate the queries Q1 and Q2 of
Listing 2. They differ in their structure (pure sequence vs. disjunc-
tion of sequences) and the integration of remote data in predicates.

Q1:
SEQ(A a, B b, C c, D d, B e, C f, A g, D h)
WHERE SAME[ID] AND a.v1=REMOTE[d.v1] AND a.v2=h.v2
AND b.v1=REMOTE[h.v1]
WITHIN 8min
Q2:
SEQ(A a, (SEQ(B b, C d, D f) OR SEQ(C c, B e))
WHERE a.v1=b.v1 AND a.v2=e.v1
AND d.v1=REMOTE[a.v1] AND c.v2=REMOTE[a.v2]
WITHIN 50K

Listing 2: Queries for the synthetic dataset.

Baselines.We compare our approaches for data fetching, PFetch,
LzEval, and their combination (Hybrid) against three baselines. BL1
denotes the naive integration of data fetching. It interrupts query
evaluation when remote data is needed and continues once it has
been fetched. BL2 employs a cache of remote data to improve the
efficiency of query evaluation. For this cache, we consider both
policies discussed in §6, i.e., LRU and the cost-based policy. Finally,
BL3 first ignores all predicates based on remote data. Upon reaching
a final state of the evaluation model, it fetches the remote data and
conducts the respective event selection.
Measures. Our focus is the latency of query evaluation, i.e., the
time between the ingestion of the last event needed to construct
a match and its actual detection. Depending on the experimental
setting, our latency measurements are based on 100k to 5 million
matches. Specifically, we report the 5th, 25th, 50th, 75th, and 95th per-
centiles of the latency values. Moreover, we report the throughput,
i.e., the number of events processed per second.
Implementation and environment. For the evaluation, we used
an automata-based CEP engine, written in C++. All reported results
are averaged over 20 runs on a NUMA node with 4 Intel Xeon
E7-4880 CPUs (60 cores) and 1TB RAM, running openSUSE 15.0.

7.2 Overall Effectiveness and Efficiency
Figures 5 and 6, respectively, depict the overall performance ob-
tained for Q1 and Q2 on the synthetic dataset. We compare the
PFetch, LzEval, and Hybrid strategy against the three baselines
under both greedy and non-greedy selection for two cache eviction
policies. Here, the cache capacity is set to 10% of a remote key’s
value range, i.e., 10,000 items, while the transmission latency of
remote data is uniformly distributed between 10µs and 100µs.

As shown in the figures, the Hybrid strategy consistently outper-
forms all other approaches. Furthermore, both PFetch and LzEval
also always outperform all three baselines considerably, though it
depends on the context which of these achieves better results.

https://github.com/zbjob/EIRES
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(c) Cost cache greedy.
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(d) LRU cache greedy.
Figure 5: Overall effectiveness and efficiency for Q1.

0.0×10
0

3.0×10
2

6.0×10
2

9.0×10
2

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a
te

n
c
y
 (

µ
s
)

(a) Cost cache non-greedy.

0.0×10
0

3.0×10
2

6.0×10
2

9.0×10
2

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a
te

n
c
y
 (

µ
s
)

(b) LRU cache non-greedy.

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a
te

n
c
y
 (

µ
s
)

4.0×10
5

1.4×10
6

2.4×10
6

3.4×10
6 

(c) Cost cache greedy.

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

BL1
BL2

BL3
PFetch

LzEval

Hybrid

L
a
te

n
c
y
 (

µ
s
)

4.0×10
5

1.4×10
6

2.4×10
6

3.4×10
6 

(d) LRU cache greedy.
Figure 6: Overall effectiveness and efficiency for Q2.
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Figure 7: Throughput for Q1 under non-greedy selection.

Selection strategies. For non-greedy selection in Q1, the median
latencies of Hybrid are 10µs (cost-based cache) and 16µs (LRU).
Since the median latencies for the baselines range between 264µs
(BL3) and 314µs (BL1), Hybrid reduces the median latency by at
least 26×. For the 95th percentiles, the reduction is at least 4× (cost-
based cache) and 2.5× (LRU). For Q2, we observe smaller gains in
median latencies, yet bigger gains for the 95th percentile. Among
the baselines, BL3 outperforms both BL1 and BL2 for Q1, but this
is the opposite for Q2. This is because Q1 has two states requiring
different remote data in the CEP engine, whereas Q2 has one at each
branch of disjunction sequences. Since BL3 fetches different data
items at once, its aggregated transmission latency is the maximal
latency of all required remote data, instead of their sum (as for BL1
and BL2). For Q1, this benefit outweighs the overhead caused by
extra partial matches under non-greedy selection.

The results show greater variety for greedy selection policies.
For Q1, Hybrid reduces the median latency by 111× (cost-based
cache) and 63× (LRU) when compared to BL1. Furthermore, the
reductions for BL3 are 283× (cost-based cache) and 160× (LRU),

yet the reductions are only 6× (cost-based cache) and 2.8× (LRU)
when compared to BL2. The reductions for the 95th latencies are
62× (BL1, cost-based), 44× (BL1, LRU), 6× (BL2, cost-based), 2.8×
(BL2, LRU), 558× (BL3, cost-based) and 392× (BL3, LRU). For Q2,
gains are even more extreme, i.e., Hybrid reduces median latencies
by up to 2,726× and the 95th percentiles latency by up to 3,752×.

Caching policies. The impact of a local cache differs considerably
per scenario. Since the reusability of data elements is low for non-
greedy selection, a cache contributes little here, as illustrated by the
comparable performance of BL1, BL2, and BL3 in Figure 5a-5b and
Figure 6a-6b. For greedy selection, in turn, adding a cache reduces
latencies by at least two orders of magnitude, see BL1, BL2, and BL3
in Figure 5c-5d and Figure 6c-6d. In such settings, LRU outperforms
a cost cache for BL2 due to its small computation overhead.

By contrast, when combining a cache with PFetch or LzEval, the
cost-based policy achieves better performance. For instance, LzEval
with a cost-based cache (Figure 5a) outperforms its counterpart
with LRU (Figure 5b), especially for the median latency. While both
employ the same LzEval procedure, the LRU policy ignores utilities,
so that promising data elements may be fetched, but not kept in
cache for sufficient time. This same trend is observed for PFetch.

Benefits of Hybrid. The Hybrid strategy always outperforms the
individual PFetch and LzEval strategies, as their combination helps
to overcome their individual weaknesses. For instance, the per-
formance of PFetch is closely related to the quality of the made
prefetching predictions. When PFetch fails to prefetch a data ele-
ment, query evaluation is interrupted, resulting in high tail latencies
(95th percentile), see Figure 5d. LzEval generally has lower median
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and 75th percentile latencies (Figure 5a-5b), because its fetching de-
cision is always accurate. Yet, additional partial matches affect the
latency under greedy selection, see Figure 5c-5d and Figure 6c-6d.

Hybrid combines alleviates the aforementioned issues. If inac-
curate prediction lead to non-effective prefetching, Hybrid still
(generally) performs lazy evaluation, thereby avoiding the interrup-
tion of stream processing. However, the overhead is smaller than
using LzEval alone, since, due to prefetching, many matches are
already handled by prefetching.
Throughput. We also investigate the throughput performance.
Due to limited space, Figure 7 focuses on the throughput for Q1
under non-greedy selection with either policy for cache manage-
ment. Throughput performance is largely in line with the observed
latencies, with a few deviations. For instance, while LzEval with a
cost-based cache has a lower median latency compared to LzEval
with LRU, the observed throughput is virtually equivalent.

7.3 Sensitivity Analysis
We assess the sensitivity of the proposed strategies with respect
to: the utility estimation quality, the cache size, the remote data
transmission latency, and the weighing factor ω which tunes the
share of urgent utility and future utility in Eq. 5. All results were
obtained for query Q1, with a cost-based cache and greedy selection.
Utility estimation quality. The quality of the utility model affects
the efficacy of all strategies. We assess the impact of the estimation
quality by injecting noise into the employed estimations, where a
noisy estimation means that an expected partial match will not actu-
ally materialize. We compare the corresponding latency variations
by injecting noise into 10% to 90% of the estimations.

PFetch is sensitive to such noise, see Figure 8a, since its median
latency grows for higher noise levels. The reason is twofold: PFetch
prefetches the wrong data elements, while poor utility estimation
also negatively impacts the elements that are evicted from the cache.
Above a 50% noise ratio, its median latency already exceeds LzEval’s
75th percentile and Hybrid’s 95th percentile.

LzEval is less sensitive to noise, even obtaining stable latencies
across noise levels for the 5th and 25th percentile, as well as the
median. This is because LzEval’s initial decision about what to fetch
is not affected by utility, unlike for PFetch. Still, low quality utility
estimations can lead to poor decision on which partial match eval-
uations to postpone and, thus, to additional partial match growth
and associated overhead. Again, the cache management also deteri-
orates for higher noise levels. As a result, especially LzEval’s 95th
percentile latency grows along with an increasing noise ratio.

Since Hybrid combines the advantages of both PFetch and LzEval,
it generally outperforms the individual strategies. However, an
exception is observed at the 90% noise ratio, where Hybrid’s 75th
percentile latency is higher than LzEval’s. Given such inaccurate
utility estimations, the downsides of PFetch outweigh its benefits,
resulting in a better latency for LzEval than for Hybrid.
Cache size. The size of the employed cache naturally affects all
strategies, where a larger cache size is beneficial, see Figure 8b. In
these results, we also observe that PFetch is more sensitive than
the other strategies. This is because a larger cache allows for more
tolerance in terms of incorrectly prefetched data elements, whereas
a smaller cache size will be clogged by them.

Remote data transmission latency.We consider that for higher
transmission latencies, failing to fetch a data element leads to longer
delays. We tested this aspect by evaluating the performance for dif-
ferent transmission delays. As shown in Figure 8c, the latency of all
strategies increases along with the transmission latency. However,
PFetch is again most sensitive here. This is because prefetching
needs to occur earlier for increased transmission latencies, which
results in less accurate prefetch decisions.
Weighting factor in utility definition. Lastly, we consider the
impact of ω, which balances the urgent and future utility in our
model (§4.1, Eq. 5). We consider the impact of ω in the utility to
guide the fetching of remote data (§5.1) and to manage the cache
(§6). We refer to these, respectively, as ωfetch and ωcache .

Figure 9a shows the results obtained when varying ωfetch, while
fixingωcache at 0.5. Here, increasing the weight reduces the 75th and
95th percentile latencies. This is expected, as a low weight results
in the current demand for remote data (urgent utility) being largely
ignored. Yet, beyond ωfetch = 0.7, performance starts to deteriorate.
For such high weights, decisions are strongly based on the current
demand for remote data, but ignore the future demand. As such, we
observe optimal results for ωfetch = 0.7. However, the utility model
turns out to be robust: For any factor that emphasizes the urgent
demand, but does not ignore the future usage of remote data, i.e. ,
ωfetch ∈ [0.5, 0.9], the performance is close to the optimal, with
especially stable median latencies.

With ωfetch set to 0.7, varying ωcache shows a similar trend, as
shown in Figure 9b. Here, the optimal value turns out to be 0.5,
which indicates that cache management considers the current de-
mand and the future usage of remote data equally. Values in the
range [0.3, 0.7] achieve comparable performance, though, which
again points to a certain robustness of our utility model.

7.4 Case Studies
Finally, we applied our approach in two real-world scenarios, using
a cost-based cache under greedy selection.
Bushfire detection. This case uses a real-world dataset of a bush-
fire detection system. The system’s geostationary operational en-
vironmental satellite, GOES-16 [24], is capable of detecting heat
signatures produced by fires [25]. While it tracks these in real-time,
the obtained information is combined with data from a ground-
based sensor network for fine-grained validation. For this dataset,
we employ a query that detects bushfires during daytime [25]. In
essence, the query identifies the repeated occurrence of a specific
radiation pattern for a geographical area in the satellite data. How-
ever, to evaluate this query, the receiver handling the satellite data
needs to fetch remote data from temperature and humidity sensors.

As shown in Figure 10a, the results obtained for this case follow
the trend observed for the synthetic dataset, with all our approaches
outperforming the baselines and Hybrid performing best. Hybrid
reduces median latencies for BL1, BL2 and BL3 by 206×, 21× and
200×, respectively. For the 95th percentile latencies, the improve-
ments are 18×, 13× and 14×. We also observe that PFetch has similar
performance as Hybrid, except for the 95th percentile latency, which
shows that PFetch accurately anticipates the need for remote data.
Cluster monitoring. This case uses data from Google Cluster
Traces [26]. It contains events that indicate the lifecycle of tasks
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Figure 8: Sensitivity analysis for utility estimation, cache size and remote data transmission latency.
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Figure 9: Sensitivity analysis for utility weighting factor.
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Figure 10: Case studies.

running in a large-scale cluster. For this dataset, we employ a query
that detects the following pattern: A task is submitted, scheduled,
and evicted on one machine; later, in a different region, it is resched-
uled and evicted again; finally it is rescheduled on a third machine,
in another region, but fails execution. Here, information on the
regions needs to be fetched from a remote database. We adopted a
data transmission latency drawn uniformly from 1ms to 10ms.

The results in Figure 10 highlight that Hybrid outperforms all
other approaches. It reduces the median latencies by 73×, 47×
and 11,879× for BL1, BL2 and BL3. For the 95th percentile latencies,
Hybrid improves 13×, 7× and 1,336×.
Discussion.We observe more than an order of magnitude differ-
ence in performance benefits achieved for synthetic and real-world
datasets. This is because the queries for the real-world datasets
contain many compute-intensive predicates (e.g., the bushfire de-
tection query computes the spatial overlap of geographic areas).
Also, these queries have larger time windows and, hence, tend to
generate more partial matches.

8 RELATEDWORK
Prefetching and caching strategies have been incorporated in data
processing systems for decades. Below, we review some important
related techniques in diverse contexts and application scenarios.

Prefetching: Two surveys [27, 28] review general mechanisms
for prefetching. Many of them are based on data access patterns de-
rived by static and dynamic program analysis, including sequential
patterns [29, 30] or patterns induced by specific operators like hash
joins [31], call graphs [32], and irregular memory accesses [33, 33].
Under the umbrella of semantic prefetching, it was also suggested
to derive patterns from data structure correlations [34] or from
models that predict user behaviour [35].

Caching: Kossmann [36] surveyed optimization techniques for
distributed query processing, including caching mechanisms to re-
duce communication costs. Here, the focus has been on the design of
database proxies to generate distributed query plans that efficiently
synchronize cached data with the original database [37–39]. Similar
questions have been addressed in the field of web caching [40, 41].

Compared to our work, the above mechanisms face similar trade-
offs, e.g., between dataset sizes and their usage frequency. Naturally,
though, the actual cost models and problem formulations to address
these trade-offs look very different. Our work is the first systematic
exploration of prefetching and caching strategies to incorporate
data from remote sources in event stream processing.

9 CONCLUSIONS
We proposed EIRES, a framework for efficient integration of remote
data in the evaluation of queries over event streams. Our core idea is
to decouple fetching of remote data and its use in query evaluation.
Data elements may be fetched before the need for themmaterializes
and the evaluation of partial matches may be postponed until after
the data is available. The EIRES framework facilitates these ideas
through a cost model to evaluate data utility; strategies for fetching
remote data, either through prefetching or lazy evaluation; and
policies for cache management. Our experimental results show that
EIRES improves the latency of query evaluation by up to 3,752×
for synthetic data and 47× for real-world data.

In future work, we intend to explore the instantiation of EIRES
for tree-based execution models [5] that define an order of operator
evaluation and a hierarchy of buffers. Since our utility modelling is
based on present and future partial matches, we expect to confirm
our experimental results obtained for automata-based models.
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