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Abstract—Privacy-preserving process mining enables the anal-
ysis of business processes using event logs, while giving guarantees
on the protection of sensitive information on process stakeholders.
To this end, existing approaches add noise to the results of
queries that extract properties of an event log, such as the
frequency distribution of trace variants, for analysis. Noise
insertion neglects the semantics of the process, though, and
may generate traces not present in the original log. This is
problematic. It lowers the utility of the published data and makes
noise easily identifiable, as some traces will violate well-known
semantic constraints. In this paper, we therefore argue for privacy
preservation that incorporates a process’ semantics. For common
trace-variant queries, we show how, based on the exponential
mechanism, semantic constraints are incorporated to ensure
differential privacy of the query result. Experiments demonstrate
that our semantics-aware anonymization yields event logs of
significantly higher utility than existing approaches.

Index Terms—Privacy-preserving Process Mining, Differential
Privacy, Anonymization

I. INTRODUCTION

Process mining analyses business processes based on event
logs recorded during their execution [1]. Event logs comprise
sequences of events that reveal how a process is executed,
by whom, and for whom. Since a log may include sensitive
information about people involved in a process, its content
is subject to privacy regulations, such as the GDPR [2].
Attempts to protect sensitive information through deletion or
pseudonymisation of identifying information (e.g., names) are
ineffective, given that the obscured information can often be
re-identified by relating execution sequences to knowledge
about the context of process execution [3]. To ensure that
privacy regulations are still met, privacy-preserving process
mining [4] strives to protect sensitive information in event
logs and process mining results by ensuring that they provide
well-known privacy guarantees, such as differential privacy [5].

Many process mining techniques analyse a process from
an abstract control-flow perspective, in terms of its trace-
variant distribution. They require information on the recorded
sequences of activity executions, known as trace variants, and
their occurrence frequencies. Recognising the importance of
such distributions, trace-variant queries may be anonymised [6].
By inserting noise into the variant distribution of a log,
differential privacy, a guarantee that bounds the impact of
the data of one individual on the query result, is ensured.

The state-of-the-art approach to achieve differential privacy
for trace-variant queries [6] has an important drawback, though.
Employing a Laplacian mechanism, it inserts noise randomly,
which neglects the semantics of the underlying process. The
returned trace variants may then represent behaviour that
was never observed or, more importantly, which is clearly
impossible for the process at hand. For a treatment process
in a hospital, for instance, the anonymized distribution may
include trace variants in which a patient is discharged from
the hospital before arriving there. Including such obviously
incorrect sequences lowers the utility of the published data
for process analysis, e.g., resulting in misleading models. At
the same time, adversaries can easily recognize such trace
variants as the result of the anonymization procedure, so that
the assumed privacy guarantee no longer holds. Against this
background, we target the question of how to incorporate a
process’ semantics in control-flow anonymization.

In this paper, we address the above research question
with SaCoFa, an approach for semantics-aware control-flow
anonymization. Our idea is to achieve differential privacy of
trace-variant queries based on exponential noise-insertion tech-
niques. Unlike noise insertion with the Laplacian mechanism,
the exponential mechanism enables us to control the way noise
is inserted, while providing the same degree of privacy [7].

Specifically, we present SaCoFa as a general algorithm
to achieve controlled noise insertion using the exponential
mechanism. That includes the definition of a score function to
assess the loss induced by the insertion of noise, which enables
us to incorporate a process’ semantics. Given the exponential
runtime complexity of SaCoFa, we further present semantics-
aware optimizations for approximate privacy guarantees.

Compared to the state of the art, trace-variant distributions
obtained with SaCoFa have a higher utility for process analysis
and provide more robust privacy guarantees. We demonstrate
these advantages in experiments with public datasets: Models
discovered from the resulting distributions show higher F-scores
and better generalization. Also, SaCoFa introduces less obvious
noise, as classified by anomaly detection techniques.

Below, Section II first motivates the need for our work, before
Section III introduces background information. Section IV
presents SaCoFa, which we evaluate in Section V. We review
related work in Section VI and conclude in Section VII.



TABLE I: Illustration of a trace-variant distribution, both original and privatized.

(a) Original trace-variant distribution.

Trace Variant #

〈Register ,Triage,Surg.,Release〉 20
〈Register ,Triage,Surg.,Antibio.,Release〉 12
〈Register ,Triage,Antibio.,Antibio..Release〉 6
〈Register ,Triage,Antibio.,Surg.,Release〉 5
〈Register ,Triage,Consul.,Release〉 2
〈Register ,Triage,Consul.,Surg.,Release〉 4

(b) Privatized trace-variant distribution.

Trace Variant #

〈Register ,Triage,Surg.,Release〉 18
〈Register ,Triage,Antibio.,Antibio.,Release〉 7
〈Release,Triage,Triage,Surg.,Register〉 4

II. MOTIVATION

The state-of-the-art technique for the privatization of trace-
variant distributions [6] constructs a prefix tree. It considers
prefixes of trace variants of increasing lengths and obfuscates
their occurrence counts using the Laplacian mechanism [7].
Due to the exponential growth of the set of possible prefixes
for a set of activities, infrequent prefixes are pruned to achieve
an acceptable runtime of the algorithm. While the resulting
trace-variant distribution is differentially private, new behaviour
may have been introduced to the distribution and behaviour
from the original log may have been removed. We illustrate the
resulting issues using the trace-variant distributions in Table I.

Behaviour insertion problems. The Laplacian mechanism
introduces noise into a trace-variant distribution in a fully
random manner. Any new trace variant is considered to be
equally suitable or problematic, respectively. Depending on the
underlying process, however, some trace variants may easily
be identified as manipulated ones. For instance, the third trace
variant in Table Ib contains a repetition of the Triage activity.
Similarly, although all traces in the original log start with the
prefix 〈Register ,Triage〉 and end with a Release activity, the
aforementioned variant in Table Ib violates these patterns. Even
without detailed knowledge about the process, an adversary
immediately identifies this variant as artificial behaviour and
omits it during an attack, which effectively reduces the privacy
guarantee associated with the published query result.

Behaviour removal problems. The pruning strategies em-
ployed when anonymizing a trace-variant distribution also lead
to the removal of behaviour. In our example, the third, fourth,
and fifth variants of Table Ia do not appear in Table Ib, i.e., they
are assigned a count of zero. Since pruning is applied in the
construction of the prefix tree, it may have far reaching conse-
quences: Assigning the prefix 〈Register ,Triage,Consul .〉 an
occurrence frequency below the pruning threshold implies that
none of the variants with this prefix will appear in the resulting
distribution. In the worst case, this effect may materialize for
the prefix 〈Register ,Triage〉 in our example, which, arguably,
would render the result useless for most process analyses.

Proposed approach. To alleviate the above issues, we argue
that noise insertion shall be based on the exponential mecha-
nism [8]. It enables us to assign scores to potential outputs, i.e.,
specific trace variants in our setting. This way, a prioritization
of the trace variants that shall appear in the resulting distribution
is achieved. In the remainder, we show how this idea enables us
to incorporate the semantics of a process in the anonymization.

III. BACKGROUND

Event model. Our work focuses on the control-flow perspective
of business processes. Therefore, we use an event model that
builds upon a set of activities A. Each event in a log is assumed
to correspond to one of these activities. Using E to denote
the universe of all events, a single execution of a process, i.e.,
a trace, is modelled as a sequence of events ξ ∈ E∗, such
that no event can occur in more than one trace. An event log
is a set of traces, L ⊆ 2E

∗
, with L as the universe of event

logs. Distinct traces that indicate the same sequence of activity
executions are said to be of the same trace variant, i.e., A∗ is
the universe of trace variants. The set of activities referenced
by events in an event log L is denoted by A(L).
Trace-variant queries. A trace-variant query is a function
τ(L) : L → A∗ × N that returns the trace-variant distribution
of an event log L, i.e., it captures how often certain trace
variants occur in L. Aside from τ(L) as the query over all
trace variants, we define τ(L, v) as a query that returns the
number of traces in L, for which the events correspond to the
sequence of activities of trace variant v.
Differential privacy. The privacy of a query can be guaranteed
by fulfilling a privacy guarantee [9]. A common guarantee is
differential privacy [10], which has been adopted by companies
such as Apple, SAP, and Google. The general idea behind
differential privacy is to ensure that the inclusion of the data of
one individual in a certain dataset will not significantly change
the result returned by a query over this data. In the context
of our work, this means that a trace-variant query τ is said
to preserve differential privacy, if the trace-variant distribution
returned by query τ(L) does not significantly differ from the
distribution returned by a query over a neighbouring log, i.e.,
a log that contains one additional trace, τ(L ∪ {t}), for any
trace t ∈ E∗.

A trace-variant query τ that returns the actual frequency
distribution, in general, cannot be expected to satisfy differential
privacy. Hence, one relies on probabilistic queries τ̂ that
approximate the true distribution, while satisfying the privacy
guarantee. This leads to the following definition:

Definition 1 (Differential Privacy): Given a probabilistic
trace-variant query τ̂ and privacy parameter ε ∈ R, query τ̂
provides ε-differential privacy, if for all neighbouring pairs of
event logs L1, L2 ∈ L and for all sets of possible trace-variant
distributions, D ⊆ A∗ × N, it holds that:

Pr[τ̂(L1) ∈ D] ≤ eε × Pr[τ̂(L2) ∈ D]
where the probability is taken over the randomness introduced
by the query τ̂ .



The lower the value of ε, the stronger the privacy guarantee
that is provided. In scenarios where an individual can be part
of multiple traces, the privacy parameter ε shall be divided by
the maximal number of traces related to an individual, in order
to achieve the same degree of privacy.

To ensure differential privacy for a query, it is common to
define a probabilistic query that inserts noise into the result of
the original one. This noise-insertion mechanism is generally
guided by a probability distribution.
Laplacian mechanism. The Laplacian mechanism inserts
noise based on a Laplacian distribution. This mechanism was
used in [6] to anonymize a trace-variant distribution. The impact
of this mechanism generally depends on the strength of the
privacy guarantee ε and the sensitivity ∆f of some query q. A
query q̂ protected by the Laplace mechanism can formally be
described as:

q̂ ← q + Lap(
∆f

ε
)

The sensitivity ∆f depends on the maximum impact one
individual can have on the result of query q. So, if q is a
trace-variant query (τ , as introduced above) and one individual
participates in at most one trace, the sensitivity is ∆f = 1.
If an individual can appear in multiple traces, the sensitivity
is higher and more noise needs to be introduced to achieve
ε-differential privacy. However, in such scenarios, the guarantee
of ε-differential privacy may also be relaxed, which lowers
the increase in sensitivity and still provides a relatively strong
protection [11].

When used to insert noise into a trace-variant distribution,
the Laplacian mechanism has considerable drawbacks, see
Section II. That is, the probability that a certain anonymized
trace-variant distribution is returned, only depends on the
syntactic distance of this distribution to the actual one. This
ignores that certain distributions are less desirable than others,
even when they are syntactically just as different.
Exponential mechanism. The exponential mechanism enables
a prioritization of certain query results by incorporating the
notion of a score function into the noise insertion process. The
score function s defines some results to be more desirable than
others for the given dataset over which the query is evaluated,
i.e., the higher s(d, r), the more desirable is the query result
r for the dataset d. Moreover, ∆s is the sensitivity of the
score function, i.e., the maximum differences between scores
assigned to the possible results for two neighbouring datasets.
Then, for some query q over dataset d and privacy parameter ε,
the query q̂ protected by the exponential mechanism is derived
by choosing the result r with a probability proportional to
e(εs(d,r))/(2∆s).

The mechanism may be lifted to our case of a trace variant
query. For a given log L and a possible trace-variant distribution
D ∈ A∗ × N, the score s(L,D) shall capture whether D is
desirable in terms of a process’ semantics, as captured by L.
Then, the mechanism returns a specific trace-variant distribution
D with a probability proportional to e(εs(L,D))/(2∆s). This
general idea will be exploited in our SaCoFa approach, as
presented in the next section.

IV. SEMANTICS-AWARE CONTROL-FLOW ANONYMIZATION

This section introduces SaCoFa (semantics-aware control-
flow anonymization) as an approach to retrieve the anonymized
behaviour of an event log. Section IV-A presents the general
algorithm based on the exponential mechanism. Section IV-B
then defines the score function, needed to incorporate a process’
semantics. Finally, Section IV-C discusses pruning strategies
for SaCoFa, their computational necessity, and how the score
function helps to decrease the negative effects of pruning.

A. The SaCoFa Algorithm

The idea of the SaCoFa algorithm is to construct a prefix
tree of trace variants through step-wise expansion, where each
step adds an activity or a dedicated end symbol to a branch
in the tree. During this construction, prefixes are evaluated
based on a score function, which reflects their compliance with
the process’ semantics, as captured in the original event log.
Specifically, prefixes are categorized as harmful or harmless,
depending on whether they violate semantic constraints and
hence, threaten the utility of a trace-variant distribution.

While harmless prefixes are always added to the tree, some
harmful prefixes typically also need to be incorporated, to
achieve differential privacy. To this end, we leverage the
exponential mechanism, which incorporates the score function
to assign lower probabilities to prefixes that induce a stronger
violation of a process’ semantics. Hence, we are able to nudge
the expansion of the tree to prefixes that are less harmful. In
any case, all prefixes added to the tree are assigned noisy
counts. To cope with the exponential growth of the prefix tree,
we also prune the tree based on these noisy counts in each
step of its expansion.

In Algorithm 1, we provide the pseudo-code for our algo-
rithm. It takes as input an event log L and several parameters:
the strength of the desired privacy guarantee ε, an upper bound
on the trace-variant length k, and a pruning parameter p (or two
pruning parameters pharmless and pharmful , as detailed later).
It returns τ ′(L), i.e., an anonymized trace-variant distribution.

First, the algorithm initializes the prefix tree, represented as
a set of prefixes T (line 1). Next, the trace-variant distribution d
and the current prefix length n are initialized (lines 2-3). Then,
the prefix tree is iteratively expanded, which will terminate
when n reaches the maximal prefix length k (line 4).

Candidate generation. For each n ≤ k, we expand the current
tree by first generating a set of candidate prefixes. To obtain
these candidates, we select each prefix v ∈ T that is maximal,
|v| = n− 1, and has not yet been ended, v(|v|) 6= ⊥ (line 6).
Note, the first iteration takes the empty prefix. Then, for each
a ∈ A(L) ∪ {⊥}, i.e., for any activity or the end symbol ⊥,
we generate a new candidate by appending a to v and add it
to the candidate set C (lines 7-8).

Tree expansion. The candidate prefixes in C are evaluated
with a score function to classify them as harmless (Cexpand )
or harmful (Charm ) (lines 9-10). The definition of the score
function depends on the incorporated notion of a process’
semantics and will be discussed in Section IV-B. Here, we



Algorithm 1: The SaCoFa Algorithm
input : L, an event log; ε, the privacy parameter; k, the max. prefix

length; p (pharmless , pharmful ), the pruning parameter(s).
output : the result of τ ′(L), an anonymized trace-variant distribution.

1 T ← {〈〉}; /* Initalize the prefix tree */
2 d← ∅; /* Initalize the trace-variant distribution */
3 n← 1; /* Initialize the current prefix length */

4 while n ≤ k do /* Consider prefixes up to length k */
5 C ← ∅; /* Initialize candidate set */

/* Select candidate prefixes to expand */
6 foreach v ∈ T ∧ |v| = n− 1 ∧ v(|v|) 6=⊥ do

/* For each possible activity */
7 foreach a ∈ A(L) ∪ {⊥} do

/* Add expanded prefix to candidate set */
8 C ← C ∪ {v.〈a〉};

/* Determine harmless prefix candidates */
9 Cexpand ← {c ∈ C | score(L, c) = 1} ;

/* Determine harmfull prefix candidates */
10 Charm ← C \ Cexpand ;

/* Select prefixes; harmful prefix candidates are
selected using the exponential mechanism */

11 Cexpand ← Cexpand ∪ Exp(Charm , score(L, .), ε);

/* Assign positive noisy count to prefixes */
12 foreach v ∈ Cexpand do
13 d(v)← [τ(L, v) + Lap( 1

ε
)]≥0 ;

14 T ← prune(T, d, p, Charm ); /* Prune prefix tree */

15 n← n+ 1; /* Increase current prefix length */

/* Return the distribution over all prefixes that are
complete or of length k */

16 return {d(v) | v ∈ T ∧ (v(|v|) = ⊥ ∨ |v| = k)};

assume the score function to be applicable to prefixes, while the
actual scoring (function s in Section III) refers to a distribution
over prefixes with their frequencies all set to one.

Employing the exponential mechanism, we determine which
of the harmful prefixes to add to the tree by random selection
(line 11). Then, the selected harmful prefixes, together with
the harmless ones, expand the prefix tree (line 12). Each of
these prefixes is assigned a noisy count, based on its number
of occurrences in the original log and random, Laplacian noise
(line 13). The latter is configured by the privacy guarantee,
while the noisy count is enforced to be a positive value, since
the decision to include the prefix has already been taken as
part of the exponential mechanism.
Tree pruning. After expanding the prefix tree, we prune it
based on the noisy counts assigned to trace variants (line 14). A
simple pruning strategy removes all prefixes from the tree, for
which the noisy count is below a threshold set by parameter p.
However, as we will discuss in Section IV-C, pruning may treat
harmful and harmless prefixes differently (using two thresholds,
pharmless and pharmful ). In general, we also favour pruning of
harmful prefixes to avoid the removal of prefixes that conform
to the semantics of the process at hand.

Result construction. Finally, the resulting trace-variant dis-
tribution is derived and returned (line 16). To this end, the
counts of all prefixes that end with the symbol ⊥ or that have a
length of k are considered. Intuitively, prefixes of length k may
represent variants of traces that have not yet finished execution.

Register, Triage, Antibio., Surg.

Register Triage Surg. Antibio. Consul. Release ⊥
× × × X × X ×

Fig. 1: Example for prefix expansion.

B. A Semantics-aware Score Function

The SaCoFa algorithm uses a score function to assess the
utility loss associated with a prefix based on the process be-
haviour included in the original log L. The function is employed
to distinguish harmless prefixes (Cexpand ) from harmful ones
(Charm ) (line 9) and in the exponential mechanism (line 11).
As such, the definition of the score function denotes a design
choice that enables us to incorporate different notions of a
process’ semantics in the anonymization.

To exemplify this design choice, we propose a function that
is based on a generalization of the behaviour in the original log.
Specifically, we consider a behavioural abstraction that was
proposed in the context of the behavioural appropriateness mea-
sure [12]. This behavioural abstraction defines rules between
pairs of activities, reflecting their order and co-occurrence in
a log. Specifically, given a1, a2 ∈ A(L), the rules capture if
a1 will always, never, or sometimes follow (or precede) an
activity a2, not necessarily directly. As such, the set of rules
encodes hidden business logic, derived from a log without
manual intervention.

We instantiate two score functions based on these rules, a
binary and a continuous one. The binary instantiation classifies
all prefixes that violate at least one rule as harmful, and all other
prefixes as harmless. In contrast, the continuous instantiation
counts the number of rule violations to quantify the harmfulness
of a prefix. This degree of harmfulness is limited by a user-
defined upper bound, since the sensitivity of the exponential
mechanism considers the maximum impact that one trace can
have on the score function.

As an illustration, consider the example given
in Fig. 1, which depicts the expansion of prefix
〈Register ,Triage,Antibio.,Surg .〉, based on the example
from Table I. In the original log, activity Surg . is always
followed by activity Release, may be followed by activity
Antibio., and is never followed by the remaining activities.
Respecting these behavioural rules, expansions based on the
former two activities are considered harmless, while those in
the latter are categorized as harmful.

As mentioned above, the score function may also be defined
based on other behavioural models. In particular, it may be
grounded in other sets of behavioural rules, such as those
presented in [13], [14], which are then instantiated for the
original log to capture the semantics of the underlying process.
Moreover, rules may also originate from other sources, such
as textual documents [15]. However, deriving the rules from
the original log ensures that trace variants in the original log
are more likely to be preserved.



C. Semantics-aware Pruning

To achieve differential privacy, the number of prefixes to
be considered in the SaCoFa algorithm grows exponentially
in the prefix length. Consequently, we incorporate pruning of
trace variants to achieve tractability, as detailed below.

The need for generalization. Pruning comes with the risk of
removing prefixes (and thus trace variants) that are common in
the original log, which reduces the utility of the anonymized
trace-variant distribution. However, unlike log anonymization
with the Laplacian mechanism, our approach supports a
differentiation between prefixes that are harmful and harmless
for an anonymized distribution. Therefore, we can limit pruning
to harmful prefixes. This way, the overall number of pruned
prefixes is reduced, but harmless prefixes are always preserved,
even when their noisy count is below the pruning parameter p.

A lower number of pruned prefixes, in general, also reduces
privacy degradation. However, when pruning solely harmful
prefixes, there is a risk to violate the required differential
privacy guarantee. That is, if harmful prefixes are characterized
based on their absence in the original log, the following may
happen: For two neighbouring event logs, that differ by a
trace of a variant that appears only in one of the logs, the
anonymized variant-distributions may enable the identification
of the respective trace. To avoid such situations, we employ a
pruning strategy that incorporates behavioural generalization.

Rule-based pruning. By employing the abstraction underlying
the behavioural appropriateness measure to identify harmful
prefixes for pruning, we avoid to reveal the difference between
two neighbouring event logs. Due to the implied behavioural
generalization, a trace representing a difference between two
logs may also induce a change in the respective rule sets. The
changed rules potentially allow for more behaviour, i.e., they
increase the set of harmless prefixes. Hence, the anonymized
trace-variant distributions of neighbouring logs may differ by
multiple trace variants, instead of just a single one.

For illustration, consider a log L1 containing only traces
that represent variants from Table Ia. Let L2 = L1 ∪ {t}
be a neighbouring log, where t is a trace of the variant
〈Register ,Antibio.,Release〉. Comparing the rule sets of
both logs, trace t adds the rule that Register is sometimes
followed by Antibio. Hence, the SaCoFa algorithm would
consider the prefix 〈Register ,Antibio.〉 as harmless when
anonymizing L2, whereas it would be harmful regarding L1.
For L2, further prefixes would then be derived and con-
sidered as harmless, e.g., 〈Register ,Antibio.,Release〉 and
〈Register ,Antibio.,Surg .,Release〉. Hence, the distributions
derived for the logs will differ by more than one trace variant.

Therefore, pruning only harmful prefixes requires that a
single trace either leads to multiple trace variants to be
considered as harmless, or none at all. In practice, this
may not be the case, which is why we relax the pruning
strategy, as follows. We introduce pharmless and pharmful as
separate pruning thresholds for harmless and harmful prefixes,
respectively. By setting 1 < pharmless < pharmful , we favour
pruning of harmful prefixes. Yet, by pruning also some harmless

prefixes, we ensure that information on the existence of a single
trace variant is not disclosed, even if the above requirement is
not met. Also, the two aforementioned extreme scenarios could
be configured accordingly, i.e., pruning only harmful traces
(pharmless = 1 and pharmful > 1) or pruning all prefixes that
introduce new behaviour (pharmless = 1 and pharmful =∞).

V. EVALUATION

In this section, we investigate if control-flow anonymization
with SaCoFa provides higher utility for process discovery than
the state of the art. We first review the used datasets (Sec-
tion V-A) and our experimental setup (Section V-B). We then
present our experimental results (Section V-C), before we close
with a qualitative discussion of the approach (Section V-D).

A. Dataset

We use three real-world event logs as a basis for our
experiments, of which some characteristics are listed in Table II.
We selected these logs since they differ in their size and
complexity. The Traffic Fines log contains data on a very
structured process, with just 231 variants over a total of 150,370
traces. In contrast, the Sepsis log captures an unstructured
hospital-treatment process, containing 846 variants of which
the vast majority occurred just once. Finally, the CoSeLoG
event log provides a middle ground, with a semi-structured
process that consists of 116 variants over 1,434 cases.

TABLE II: Descriptive statistics for the event logs.

Event Log # Events # Activities # Cases # Variants

CoSeLoG [16] 8,577 27 1,434 116
Sepsis [17] 15,214 16 1,050 846
Traffic Fines [18] 561,470 11 150,370 231

B. Experimental Setup

Baseline. We evaluate our approach against the state-of-the-art
approach by Mannhardt et al. [6], which anonymizes the result
of trace-variant queries based on the Laplacian mechanism.
Parameter settings. As specified in Section IV-A, SaCoFa
takes four parameters: the strength of the desired privacy
guarantee ε, an upper bound on the trace-variant length k, and
the pruning parameters pharmful and pharmless . Per event log,
we set k so that roughly 80-90% of the original trace variants
are covered. For each of the employed privacy guarantees, i.e.,
ε = {1.0, 0.1, 0.01}, we explored pruning parameters starting
at 2, 20, and 200, respectively, until a configuration was found
such that the trace-variant query could be executed within
several seconds. Overall, this approach resulted in the parameter
settings given in Table III, which we employed for our approach
and, if applicable, for the baseline.
Evaluation measures. To quantify the efficacy of our work,
we assess the utility of process models discovered on the
basis of the anonymized trace-variant distributions generated
by SaCoFa and the baseline. For this discovery, we employ the
Inductive Miner Infrequent [19] with the default noise threshold
of 20%. Then, we determine the utility of a discovered model



TABLE III: Employed parameter settings.

Log ε k pharmful pharmless

1.0 10 3 /
CoSeLoG 0.1 10 25 22

0.01 10 220 200

1.0 23 4 /
Sepsis 0.1 23 20 15

0.01 23 190 150

1.0 9 2 /
Traffic Fines 0.1 9 20 15

0.01 9 150 120

CoSeLoG Sepsis traffic_fines
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Fig. 2: F-score of discovered process models.

by measuring its F -score in relation to the original event log,
i.e., the harmonic mean of the fitness [20] and precision [21].
Also, we evaluate the generalization [22] of the process models
discovered from the anonymized event logs.

As a second evaluation dimension, we measure the fraction of
easily-recognizable noise introduced into the anonymized event
logs. To this end, we apply a standard anomaly detection tech-
nique, which employs isolation forests [23], to the anonymized
event logs. We train the model on the original log, before
using it to detect anomalous traces in the anonymized logs. As
features in the learning process, we use a binary encoding of
the activities, signalling if they are present in a trace. Moreover,
we also encode the presence of directly-follows relations in a
trace, with a binary encoding.

Implementation. To conduct our experiments, we implemented
SaCoFa in Python. The source code is available on GitHub1

under the MIT license. Furthermore, we used PM4Py’s [24]
implementation of the Inductive Miner and the evaluation
measures. The implementation of the isolation forest is available
in scikit-learn.2

Repetitions. To account for the non-deterministic nature of
the algorithms, we perform 10 repetitions of all experiments.
In the remainder, we report on the median and the bounds for
the upper and lower quartile, using box plots.

C. Results

Fig. 2 depicts the F -scores of the process models generated
by SaCoFa, as well as the Laplacian baseline. As shown,
SaCoFa outperforms the baseline considerably, being on par
only for the setting with the strongest privacy guarantee (ε =
0.01) and the most structured process (Traffic Fines).

1https://github.com/samadeusfp/SaCoFa
2https://scikit-learn.org/stable/

(a) Laplacian baseline.

(b) SaCoFa approach.

Fig. 3: Process models obtained for anonymized versions of
CoSeLoG (ε = 0.01).

In particular, we observe major improvements for the two
less-structured processes, which have more activities and longer
traces, resulting in significantly higher F -scores obtained
using SaCoFa, while providing the same privacy guarantee.
Furthermore, our results also illustrate that, sometimes, the
anonymized event logs lead to higher F-scores than the original
log. The reason being that the Inductive Miner guarantees the
generation of a fitting model, which may result in very low
precision values. If an anonymized log contains less behaviour,
above the threshold adopted by the discovery algorithm to filter
noise, the model becomes more compact. It then shows higher
precision and, therefore, also a higher F-score.

To further illustrate the above results, Fig. 3 shows excerpts
of the process models obtained for the CoSeLoG process under
the strongest privacy guarantee (ε = 0.01). Here, Fig. 3a shows
part of the model discovered from the log anonymized with
the Laplacian baseline, while Fig. 3b is based on SaCoFa. As
seen, the process model generated with SaCoFa is much more
structured. It starts with a sequence of activities that, notably, is
also the same in the process model generated from the original
event log. In contrast, the model in Fig. 3a is very unstructured
and strays far from the original process: nearly all activities
can start a trace, be skipped, or executed multiple times.

Next, we turn to an assessment of the generalization of the
obtained models. As illustrated in Fig. 4, the models generated
based on the logs derived with SaCoFa are more general, i.e.,
they abstract more from the behaviour represented in the event
log. Combined with the results for the F -score, we conclude
that the logs anonymized with SaCoFa indeed have a higher
utility for process discovery.

https://github.com/samadeusfp/SaCoFa
https://scikit-learn.org/stable/
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Fig. 4: Generalization of discovered process models.
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Fig. 5: Relative frequency of normal behaviour in event logs.

After investigating the utility for process discovery, we
turn to our second evaluation perspective, the presence of
easily-recognizable noise. In Fig. 5, we show the percentage
of behaviour that is classified as normal behaviour by the
aforementioned anomaly detection technique. While SaCoFa
and the baseline both achieve good results for the Traffic Fines
dataset, there is a clear trend for the other two logs: the baseline
produces much more noise, directly recognizable as anomalous.
Therefore, the traces introduced by SaCoFa are more in line
with the original process’ behaviour.

Finally, we investigate the effects of semantics-aware pruning,
as all previously shown result have been obtained with regular
pruning. Fig. 6 shows the F -score of models discovered from
logs anonymized with and without pruning. Overall, semantics-
aware pruning turns out to only be beneficial for the Traffic
Fines log, which is the most structured one. For the less-
structured logs, the F -score actually decreases in comparison
to the approach without pruning. We attribute this observation
to the significance of the rules used to separate harmful and
harmless prefixes. Apparently, they are not always sophisticated
enough to compensate for the additional variance introduced
to the trace-variant distribution.

D. Discussion

Runtime aspects. As mentioned in Section V-B, parameter
settings must be carefully selected in order for trace-variant
queries to complete in a reasonable time. Specifically, we
observed that the anonymization procedure either terminated
within seconds, or not all, for both SaCoFa and the baseline.
This reveals that there is a clear point when the prefix growth
makes the trace-variant query intractable. So far this point is
determined by step-wise altering the maximal variant length
(k) and pruning parameters for a given ε. Nevertheless, we
observe that SaCoFa can compute results for lower pruning
thresholds than the Laplacian baseline. However, to ensure a

CoSeLoG Sepsis traffic_fines

0.01 0.1 0.01 0.1 0.01 0.1
0.00

0.25

0.50

0.75

1.00

Epsilon

F
−

sc
or

e

Algorithm
Without SA−Prunung
With SA−Pruning

Original

Fig. 6: F-score for configurations with and without pruning.

fair comparison, we used the same pruning parameters for all
mechanisms in our experiments.

Non-binary score functions. Beyond determining if a prefix
is harmful or not, the behavioural appropriateness-based score
can be used to quantify its degree of harmfulness. However,
the sensitivity of the exponential mechanism depends on
the maximal impact that a single case can have on the
score function, i.e., on the function’s maximal value (see
Section III). Therefore, if we define a score function that
quantifies harmfulness in, e.g., the range [0, 3], the query’s
sensitivity would be ∆f = 3, instead of ∆f = 1 for a binary
assessment. Since the exponential mechanism needs to insert
more noise for a higher sensitivity, the benefit obtained from
quantifying harmfulness in a non-binary manner, must outweigh
the increased sensitivity that comes with it. While this did not
appear to be the case in our current experiments, we believe
that this approach could still work for more sophisticated score
functions, tailored to the specifics of the process at hand. In any
case, it is important to consider this trade-off and take it into
account when choosing the right pruning parameter values.

VI. RELATED WORK

We introduced SaCoFa as an approach for control-flow
anonymization that answers trace-variant queries, while guar-
anteeing differential privacy. The state of the art to derive a
trace-variant distribution, and the related directly-follows graph,
under differential privacy, uses the Laplacian mechanism [6].
As discussed, this neglects a process’ semantics, leading
to potentially low data utility and noise that can be easily
recognized. For trace-variant queries, Elkoumy et al. [25]
further studied the relation between utility and risk, while
the PRIPEL framework [26] uses trace-variant queries as a
basis for privacy-preserving event log publishing.

Beyond differential privacy, the anonymization of event logs
based on other privacy guarantees was studied. PRETSA [27]
sanitizes event logs to ensure k-anonymity and t-closeness,
which are guarantees based on the idea of grouping similar
cases together. Furthermore, a process mining-specific exten-
sion of k-anonymity, called TLKC, was introduced in [28].
Previous work focused on improving the utility of these
techniques through feature learning-based distance metrics [29].
Another group-based approach was introduced by Batista et
al. [30], based on the uniformization of events within a group of
individuals. The issue of continuously publishing anonymized
event logs was studied in [31].



Approaching privacy preservation from the viewpoint of the
analysis techniques used in process mining, it was shown how
multi-party computation enables the construction of process
models based on inter-organizational processes, without sharing
the data between parties [32]. Other approaches target privacy-
aware role mining [33] and the establishment of privacy-aware
process performance indicators through the enforcement of
differential privacy [34].

VII. CONCLUSION

Targeting control-flow anonymization for event logs, we
introduced the SaCoFa approach to answer trace-variant queries.
It is based on a prefix tree construction and the exponential
mechanism. Unlike state-of-the-art techniques that leverage the
Laplacian mechanism and, hence, introduce noise randomly to
achieve differential privacy, SaCoFa incorporates the semantics
of the underlying process when inserting noise, achieving
the same privacy guarantee. Specifically, we introduced a
score function that differentiates prefixes as being harmful
or harmless, thereby incorporating a process’ semantics in the
anonymization. We further showed how an assessment of the
harmfulness of prefixes may also guide pruning decisions in
the prefix tree construction in order to achieve tractability.

Our evaluation experiments highlight that process models
generated based on control-flow behaviour anonymized with
SaCoFa have higher utility than those obtained with the state
of the art. At the same time, the models are more general and,
hence, abstract better from the behaviour represented in the
event log. Moreover, we also showed that SaCoFa introduces
less noise that is directly labelled as anomalous compared to
the state of the art.
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