
RuM: Declarative Process Mining,
Distilled

Anti Alman1(B), Claudio Di Ciccio2, Fabrizio Maria Maggi3, Marco Montali3,
and Han van der Aa4

1 University of Tartu, Tartu, Estonia
anti.alman@ut.ee

2 Sapienza University of Rome, Rome, Italy
claudio.diciccio@uniroma1.it

3 Free University of Bozen-Bolzano, Bolzano, Italy
{maggi,montali}@inf.unibz.it

4 University of Mannheim, Mannheim, Germany
han@informatik.uni-mannheim.de

Abstract. Flexibility is a key characteristic of numerous business pro-
cess management domains. In these domains, the paths to fulfil pro-
cess goals may not be fully predetermined, but can strongly depend on
dynamic decisions made based on the current circumstances of a case. A
common example is the adaptation of a standard treatment process to the
needs of a specific patient. However, high flexibility does not mean chaos:
certain key process rules still delimit the execution space, such as rules
that prohibit the joint administration of certain drugs in a treatment,
due to dangerous interactions. A renowned means to handle flexibility
by design is the declarative approach, which aims to define processes
through their core behavioural rules, thus leaving room for dynamic
adaptation. This declarative approach to both process modelling and
mining involves a paradigm shift in process thinking and, therefore, the
support of novel concepts and tools. Complementing our tutorial with
the same title, this paper provides a high-level introduction to declar-
ative process mining, including its operationalisation through the RuM
toolkit, key conceptual considerations, and an outlook for the future.

Keywords: Declare · Declarative process mining · Rule mining ·
Process discovery · Conformance checking · Process monitoring ·
Declarative modelling

1 Introduction

Infusing flexibility in process-aware information systems is widely recognised as
a key challenge in business process management (BPM) and information systems
engineering [17]. Within the flexibility spectrum, flexibility by design advocates
that process modelling languages themselves need to offer modelling primitives

c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 23–29, 2021.
https://doi.org/10.1007/978-3-030-85469-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85469-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-85469-0_3


24 A. Alman et al.

that provide freedom to process executors when deciding how to execute the pro-
cess. The question then becomes how such languages help in finding a suitable
trade-off between flexibility and control. Declarative approaches tackle this prob-
lem in an extreme way: the model indicates what the relevant temporal/dynamic
constraints that have to be respected during process execution enforce, leaving
the executors free to decide how to unfold the concrete executions.

After seminal papers on the topic were published between 1998 and 2003
within BPM and neighboring fields [5,18,19], the community started investigat-
ing declarative process modelling more systematically starting from 2006, when
Pesic and van der Aalst proposed to apply temporal logic patterns [8] to declar-
atively capture process constraints [20], eventually leading to the Declare lan-
guage and system [16] and to the definition of a variety of reasoning tasks thanks
to different logic-based formalisations [14,15]. This interest was further fueled
by the introduction of other declarative approaches, most prominently Dynamic
Condition-Response Graphs [11].

A well-known issue with declarative approaches is that while they enjoy flex-
ibility, they typically do not explicitly indicate how the execution has to be
controlled. In other words, conforming executions are only implicitly described
as those that satisfy all the given constraints. Constraints, in turn, may be quite
diverse from each other (e.g., indicating what is expected to occur, but also what
should not happen). At the same time, constraints implicitly and mutually affect
each other (a phenomenon referred to as hidden dependencies in the cognitive
dimension framework used to evaluate the characteristics of notations [6,9,15]).
This notoriously challenges understandability and interpretability of declarative
process models [10], and calls for toolkits providing continuous support to the
end users [9]. One such toolkit is RuM [2], which addresses some of the above-
mentioned issues by providing a unified user interface for declarative process
mining algorithms.

2 Declarative Process Mining with RuM

RuM [2] is the first software platform natively designed for declarative process
modelling and process mining. RuM is based on the well-known modelling lan-
guage Declare [16] and its multi-perspective extension MP-Declare [3], that
is, Declare extended with data and time perspectives.

The following sections give a brief overview of RuM. Further information
and the download link can be found in [2] and at https://rulemining.org/. To
illustrate RuM’s functionality, we use the Sepsis treatment process and event log
described in [13].

Automated Process Discovery. RuM includes multiple algorithms for auto-
matically discovering a process model. As usual for Declare, the discovered
models consist of a set of constraints where each constraint describes one spe-
cific aspect of the process (i.e., constrains the behaviour of the process in a
specific way).

https://rulemining.org/


RuM: Declarative Process Mining, Distilled 25

In general, a constraint describes either the cardinality of an activity (i.e., the
number of occurrence thereof in a trace) or a relation between two activities (i.e.,
how the occurrence of an activity requires or disables the occurrence of another
one). For example, Exactly1(ER Triage) means that activity ER Triage will
occur exactly once in each trace. ChainResponse(ER Registration,ER Triage)
means that when activity ER Registration occurs then ER Triage will occur
immediately after.

The discovered model is by default visualised using the standard Declare
notation (Fig. 1). Alternatively, it is possible to represent the model procedurally
as an equivalent deterministic finite state automaton (Fig. 2). Finally, it is pos-
sible to represent the entire model as a set of natural language sentences, e.g.,
“When ER Registration occurs, then ER Triage occurs immediately afterwards”.

Conformance Checking and Monitoring. RuM provides two conformance
checking approaches. The first one detects constraint fulfilments and viola-
tions (Fig. 3a), which pinpoint both the events that occur as specified in the
model and those events that contradict it. The second approach is based on log

Fig. 1. An example of a Declare model represented as a map.

Leucocytes

ER Sepsis Triage LeucocytesER Registration ER Triage

Leucocytes

Fig. 2. An automaton representation of the Declare model in Fig. 1.

Fig. 3. Conformance checking approaches



26 A. Alman et al.

alignments (Fig. 3b), as it identifies the event insertions and/or deletions that
would make the event log conforming with the Declare model.

The conformance checking results are provided at different levels, i.e., per
event log, per trace, and per constraint. The latter is especially useful since it
allows for clear insights and overall explainability of the conformance checking
results with respect to specific process constraints. Additionally, RuM provides a
monitoring functionality, which allows the user to interactively replay the traces
one event at a time. During replay, RuM visualises the state of each constraint in
the model (possibly/permanently satisfied and possibly/permanently violated)
as the events of the trace are occurring.

Model Editing. RuM provides model editing capabilities through a fully MP-
Declare compliant model editor, which supports the different representations
discussed for process discovery above (cf., Figs. 1 and 2). These representations
are updated and the inputs are validated on the fly as the model is being edited.
In addition to editing the constraints directly, it is also possible to specify con-
straints and data conditions by using natural language speech and written text.
This functionality is implemented as a simple chatbot named Declo [1].

Log Generation. Finally, RuM can generate event logs based on a given
Declare model [7]. Although, by default, a generated log satisfies all con-
straints in the model, RuM also allows for the insertion of vacuous traces, i.e.,
traces that do not activate some constraints, and negative ones, i.e., traces that
violate constraints.

3 Considerations About Declarative Process Mining

The constraint-based nature of the declarative approach has various interest-
ing implications and advantages with respect to the traditional, imperative
paradigm. For instance, since declarative constraints establish behavioural rules
that delimit the possible execution space for processes, they act like norms with
which all process runs have to comply with. This characteristic make declara-
tive models open, in that any execution is permitted as long as the expressed
rules are not violated, as opposed to the closed scope of imperative models (e.g.,
Workflow nets, BPMN diagrams, event-process chains), which depict the whole
execution space, from start to end [12].

From a mining perspective, declarative process mining aims to establish,
measure and validate the rules that best define the behaviour emerging from the
traces recorded in event logs – in the closest etymological sense of “defining”, i.e.,
marking out their boundary. Therefore, exceptional, ad-hoc, or optional variants
of process behaviour are fully supported as long as no constraints are expressed
that contradict them. By contrast, an imperative model requires an alteration
of its structure any time its unfolding does not encompass an alternative path
that is evidenced in an event log. Declarative models can be used to represent
the distinguishing core rules of event logs exposing high variability as per their
stored runs, thereby catering for flexibility.



RuM: Declarative Process Mining, Distilled 27

Fig. 4. A Declare negative constraint.

Declarative process rules are exerted over whole runs. Such a global state
perspective differs from the imperative approach in which, given a current state,
only the next enabled actions are made explicit (local state perspective). This
reflects the difference between functional (declarative) and procedural (impera-
tive) approaches to programming. A declarative rule applies any time a situation
that triggers it is reached, regardless of the history of actions that led there. Also,
the effect can span the whole execution of the process, i.e., at any moment in the
future or the past: for instance, Precedence(ER Sepsis Triage, IV Antibiotics)
requires that ER Sepsis Triage must occur at any point in time before the inoc-
ulation of antibiotics. In contrast, imperative models dictate what the possible
operations are for the next step given a case’s history.

Declarative process models enjoy compositionality based on the conjunction
of their constraints: the intersection of permitted behaviour from each rule deter-
mines the overall specification [4]. Adding rules restricts the range of acceptable
runs. In contrast, the addition of new states and transitions to an imperative
model enlarges the execution space. We remark two consequences of this dif-
ference. Firstly, more flexible processes may create more cluttered imperative
models (the so-called spaghetti models) as declarative specifications would rep-
resent the core behavioural rules they are subject to rather than all the possible
runs that would comply with them [16]. Secondly, declarative models are better
suited for the seamless support of negative rules, i.e., constraints that impose
the disablement of task occurrences given a specified condition. For example,
NotSuccession(Admission IC, IV Antibiotics) imposes that after patients are
admitted in the intensive care unit, they cannot undergo an inoculation of antibi-
otics. Adding this constraint to the model depicted in Fig. 1 is straightforward
as declarative process models consist of lists of statements dictating the process
rules. Graphically, it requires the sole juxtaposition of the constraint illustrated
in Fig. 4 to the existing map. Including this constraint in the automaton repre-
sentation in Fig. 2 requires the addition of numerous states and transitions as
illustrated in Fig. 5 though.

To conclude, we remark that as the declarative process specifications dictate
the rules that process executions are required to abide by, they can act as a
bounding box within which imperative process models need to be defined to
represent specific strategies implemented to achieve the goals of the operating
organisation, depending on the expertise, resources and context of the latter.



28 A. Alman et al.

Admission IC
LeucocytesIV Antibiotics

Leucocytes Admission IC

ER Sepsis Triage

Admission IC
Leucocytes

ER Sepsis Triage

IV Antibiotics

Admission IC

Leucocytes

Leucocytes

Admission IC

Admission IC
IV Antibiotics

Leucocytes
ER Registration ER Triage

Fig. 5. The automaton representation of the model in Fig. 1 including the constraint
in Fig. 4.

4 Research Opportunities

Beyond the current state of the art, we foresee several research opportunities
in the context of declarative process modelling and mining. From a modelling
perspective, a clear opportunity relates to the graphical notation. The original
version of the Declare language is known to be difficult to understand [10].
Although some effort has been done in this direction already, an extensive user
evaluation to compare the different ways to represent constraints is still miss-
ing. Also, an interesting challenge is the analysis of declarative process models
mixing crisp and probabilistic constraints, as discovered models often retain
constraints that are violated by a set of traces in an event log. Another aspect
currently under investigation pertains to the so-called hybrid process models,
which consist of both imperative and declarative parts. This is important since
real processes often contain both structured and unstructured parts. Finally, a
highly promising research direction is the development of declarative modelling
and mining instruments to deal with object-centric processes. This problem is
also closely related to the assessment of the relevance of a constraint in a given
process execution, which can depend on the nature of the actions and of the
objects involved in the constraint.

Acknowledgements. The work of A. Alman was supported by the Estonian Research
Council (project PRG1226) and ERDF via the IT Academy Program. The work of
C. Di Ciccio was supported by MIUR under grant “Dipartimenti di eccellenza 2018–
2022” of the Department of Computer Science at Sapienza and by the Sapienza research
project “SPECTRA”.

References

1. Alman, A., Balder, K.J., Maggi, F.M., van der Aa, H.: Declo: a chatbot for user-
friendly specification of declarative process models. In: BPM (PhD/Demos), pp.
122–126 (2020)

2. Alman, A., Di Ciccio, C., Haas, D., Maggi, F.M., Nolte, A.: Rule mining with
RuM. In: ICPM, pp. 121–128 (2020)

3. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)



RuM: Declarative Process Mining, Distilled 29

4. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

5. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based
modeling and analysis of workflows. In: PODS, pp. 25–33. ACM (1998)

6. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden depen-
dencies in constraint-based declarative process models for improving understand-
ability. Inf. Syst. 74(Part 1), 40–52 (2018)

7. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs
through the simulation of Declare models. In: EOMAS@CAiSE, pp. 20–36 (2015)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420. ACM (1999)

9. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Vis. Comp. Lang. 7(2), 131–174 (1996)

10. Haisjackl, C., et al.: Understanding Declare models: strategies, pitfalls, empirical
results. Softw. Syst. Model. 15(2), 325–352 (2016)

11. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES, vol. 69 of EPTCS, pp.
59–73 (2010)

12. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: CAiSE, pp. 270–285
(2012)

13. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using
process mining. In: RADAR+EMISA@CAiSE, pp. 72–80 (2017)

14. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14538-4

15. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans.
Web 4(1), 3:1–3:62 (2010)

16. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287–300 (2007)

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30409-5

18. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
In: S.Kunii, H., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp.
513–526. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45581-7 38

19. Singh, M.P.: Distributed enactment of multiagent workflows: temporal logic for
web service composition. In: AAMAS, pp. 907–914. ACM (2003)

20. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: WS-FM, pp. 1–23 (2006)

https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/3-540-45581-7_38

	RuM: Declarative Process Mining, Distilled
	1 Introduction
	2 Declarative Process Mining with RuM
	3 Considerations About Declarative Process Mining
	4 Research Opportunities
	References




