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Abstract

Business process modeling is a crucial task in organizations. Yet, the creation of consistent and complete

process models is challenging and necessitates the support of process modelers with their task. In previous

work, we presented a rule-based activity-recommendation approach, which recommends appropriate labels

for a new activity inserted by a modeler in a process model under development. While our method has

shown to work well, it is limited by the fact that it only learns rules that describe the inter-relations between

complete activity labels. In the case that the model’s activities and the ones in the training repository are

disjoint, the existing approach will thus not be able to provide any recommendations. In this paper, we

overcome this restriction by additionally considering the natural language-based semantics of the process

models. In particular, we propose a semantics-aware recommendation approach that extends the existing

approach in both central phases, i.e., in the rule-learning phase and in the rule-application phase. We

equip the rule learning with novel rule types, which capture action and business-object patterns in process

models. For the rule application, we developed an optional similarity extension that allows rules to make

recommendations even if the bodies of the rules are not exactly true for the given model. Through an

evaluation on a large set of real-world process models, we demonstrate that the semantic extensions can

improve the quality of recommendations.
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1. Introduction

Business processes structure the operations of organizations. They consist of sets of activities that

jointly lead to an outcome that is of value to an organization or its clients [1]. These processes are found in

a wide variety of contexts, ranging from classical procure-to-pay and order-to-cash processes to treatment
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processes in healthcare organizations. Process models capture information on such processes in a graphical

manner, e.g., in the form of BPMN (Business Process Model and Notation) models, EPCs (Event-driven

Process Chains), or Petri nets. These models are widely used as a basis for the documentation, analysis,

and improvement of business processes. Therefore, business process modeling has become an integral part

of process management initiatives in organizations [2].

Yet, despite their relevance, creating process models is a time-consuming and error-prone task, which

requires substantial expertise [3, 4]. These issues are amplified in large scale modeling projects, where the

creation of models often relies on modelers with limited experience [5, 6], whereas the distributed nature of

such settings makes it hard to ensure consistency and clarity in the established models [7]. Overall, these

modeling difficulties and pitfalls can result in situations in which downstream analysis and managerial tasks

are conducted based on incorrect, incomplete, or inconsistent models [8, 9].

These issues motivate the need for proper support for the process modeling task. Such support can

manifest itself in the form of recommendations to modelers on how to expand a process model they are

working on [10]. An established instantiation of this is referred to as activity recommendation [11–13], which

involves the context-aware recommendation of suitable labels for a new activity placed by a modeler in

a model under development. For example, an activity-recommendation system may suggest that a send

invoice activity could be followed by an activity labeled receive payment.

To provide context-aware activity recommendations during process modeling, we previously proposed a

rule-based recommendation approach [14], which learns logical rules that describe how activities are used in

a given repository of available process models. These rules are subsequently used to recommend appropriate

labels for a new activity in a process model under development. For instance, a rule could express how

likely it is that a model that contains a create purchase order activity also contains check purchase order.

Although this rule-based approach outperforms both standard machine learning [15, 16] and embedding-

based [11] techniques, it is limited by the fact that it only learns rules for completely equivalent activity

labels. Due to this rigidity, the existing approach is unable to generalize the information contained within

activity labels, such as the probability that the actions create and check are used in the same process or

that send invoice and send bill are highly similar to each other, so that they likely should be subject to the

same rules. This lack of generalization may lead to sub-par recommendations in general, whereas for cases

where a model’s activities are disjoint from the ones in the training repository, the existing approach will

not be able to provide any recommendations at all.

In this paper, we overcome these limitations by additionally considering the natural language-based

semantics of the process models. In particular, we propose a semantics-aware recommendation approach

that extends the existing approach [14] with new rule types that capture action and business-object patterns

in process models. In this manner, the proposed approach is able to, e.g., learn which actions (or business

objects) commonly co-occur or follow each other. Besides the improvement of the rule-learning phase
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with new rule types, we also introduce a novel extension of the rule application that considers semantic

similarity of actions and business objects. As such, our extensions aim to improve the quality of the

provided recommendations, as well as the ability to provide recommendations for unseen activity labels. We

demonstrate these points in an experimental evaluation using a large repository of publicly available process

models. The results show that the semantic extensions indeed improve the existing approach. In addition,

we investigate the impact of the different rule types in an ablation study, which reveals that especially

structural and action patterns are useful for the recommendation of activities.

The remainder of the paper is organized as follows. Section 2 illustrates the advantages of consider-

ing natural language-based semantics for activity recommendation, before providing a formal definition of

the activity-recommendation problem in Section 3. Section 4 presents our rule-based approach with the

semantic-based extensions, followed by a discussion of an experimental evaluation in Section 5. Section 6

reflects on related work, before concluding in Section 7.

2. Motivation

In this section, we motivate the use of rules for activity recommendation, as well as the semantic exten-

sions we propose in this paper. As a basis for this motivation, we use the exemplary process model under

development depicted in Figure 1, in which the user has just inserted an unlabeled activity on the right-hand

side. The recommendation task is to suggest an appropriate label for this newly inserted activity node.

In our work, we use a repository of process models as a basis to learn recommendation rules from. So

far, our existing work [14] learns rules that capture activity inter-relations in the given repository. In this

Figure 1: A process model under development
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manner, we find regularities such as ‘create order template is followed by approve purchase order ’ or ‘check

purchase order and create delivery appear in the same process’. Such rules are then employed to suggest

suitable labels in an activity-recommendation task. For example, this might result in the recommendations

of approve purchase order and create delivery for the task depicted in Figure 1, if such rules can indeed be

learned from similar models in the available repository.

However, if the labels included in the process model under development and the ones in the available

repository are disjoint, our existing work would not be able to provide any recommendations, since it has

not learned any rules that relate to the current recommendation task. Therefore, in this work we recognize

that an analysis of the natural language-based semantics of activity labels can yield more general patterns,

allowing us to improve the completeness and quality of activity recommendations. In particular, our work

sets out to provide additional recommendations based on action patterns, business-object patterns, and

semantic similarity:

• Action patterns. By parsing activity labels, we may learn that for activities that apply to the same

business object, a label with a create action (e.g., create request) is commonly followed by a label

involving an analyze action (e.g., analyze request). This allows us to learn a general pattern that

‘create * is followed by analyze * ’, where * can be replaced by any specific business object. Based

on this rule, we would then be able to recommend analyze order template as a suitable label for the

activity in Figure 1, given its preceding create order template activity. Similarly, a different action

pattern might result in the depicted approve purchase order label, given the inclusion of the create

purchase order activity in the model, even if the available repository does not specifically contain any

of these labels.

• Business-object patterns. By also considering inter-relations between business objects, we may

learn from a repository that labels related to order template and delivery business objects commonly

appear in the same process, while being complemented by the same action. We might, for example,

observe a model that contains the activities check order template and check delivery, and another

model that includes the activities process order template and process delivery. From this, we may

learn the business-object pattern that there is a co-occurrence of * order template and * delivery,

where * can be replaced by any specific action. Given this pattern, we can then recommend a create

delivery label for the task in Figure 1, even if we never observed create order template and/or create

delivery in the available repository.

• Semantic similarity. The activity labels used in the given repository of process models can also

consist of action and business objects that are not exactly the same as the ones used in the process

model under development. However, if we have learned the pattern that generate * is followed by

analyze *, where * can be replaced by any specific business object, then it is likely that actions that
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are similar to generate, e.g., create, are also followed by analyze. Analogously, we can expect that the

business-object pattern ‘* order form and * delivery are in the same process’ can also be applied to

business objects that are similar to order form, e.g., ‘* order template and * delivery are in the same

process’. Both observations are based on the similarity of actions or business objects and lead in the

example of Figure 1 to the recommendations analyze order template and create delivery, respectively,

even if neither create nor order template can be observed in the available repository.

In our approach, the identification of action and business-object patterns constitute rule-learning extensions,

while we can consider the similarity of actions and business objects during rule application. Before we get

to the details of our approach, the next section deals with the formalization of the underlying problem.

3. Problem Definition

In this section, we first provide essential definitions on the employed formalization of process models

(Section 3.1), followed by the specification of the addressed activity-recommendation problem (Section 3.2).

3.1. Preliminaries

Our work is independent of any specific modeling notation that can be used to capture business processes,

such as Petri nets or BPMN. Therefore, we employ the notion of business process graphs as a generic

representation of process models to capture the behavioral relations that our recommendation approach

uses as a basis.

Business process graphs. We use the following definition of business process graphs, adapted from

Dijkman et al. [17], to represent a process model as a directed attributed graph:

Definition 1 (Business process graph). Let L be the universe of all activity labels and R be a set of be-

havioral relation types. Let P(R) denote the power set of R. A business process graph is a tuple (N,E, λ, τ),

where N is a set of nodes, E ⊆ N ×N is a set of directed edges, λ : N → L is a function that maps a node

to a label, and τ : E → P(R) is a function that maps an edge to a set of relation types.

Note that, following this definition, a label can occur in multiple models, while the underlying nodes them-

selves always belong to exactly one model.

Behavioral abstraction using business process graphs. A business process model can be converted

to a business process graph by using an abstraction procedure, where the model’s content is mapped to the

graph representation. This procedure has several degrees of freedom: We might, for example, drop (or keep)

certain types of nodes and have to select the types of behavioral relations that we use and assign to edges

(e.g., directly follows). In the following, we use a transformation from Petri nets to business process graphs

as an illustration of the abstraction procedure and the various relations that our approach can use as basis.
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However, similar abstraction procedures can be derived for other modeling notations. For instance, BPMN

models can first be translated into Petri nets [18] before applying the abstraction approach.

Given a Petri net, we consider transitions, which correspond to activities, as nodes in a business process

graph and omit its places. Then, for any pair of nodes m and n, we have to decide if we create a directed edge

e = (m,n) ∈ E and which relation types from a set R to assign to this directed edge. For this procedure,

we follow Wang et al. [11], who propose three abstraction strategies, based on different sets of behavioral

relations. We refer to [11] for details and here stick to an intuitive explanation.

• Directly-follows abstraction: This abstraction strategy only considers which activities may follow

each other during process execution, captured in the followedBy relation. Formally, if a node m can

be directly followed by a node n, we add an edge e = (m,n) with τ(e) = {followedBy}. Naturally,

this strategy loses part of the semantics expressed in the original Petri net. For instance, it does not

distinguish between transitions that exclude each other (XOR split) and those that can be executed

concurrently (AND split).

• Causal abstraction: The second strategy reduces the abstraction loss by distinguishing between

alwaysCausal and sometimesCausal relations, and their inverse counterparts. A pair of activities (m,n)

is in the alwaysCausal relation if any occurrence of m is always followed by an occurrence of n,

whereas the sometimesCausal relation applies if this is sometimes the case (due to an XOR-split in

the process). Conversely, m and n are in the inverseAlwaysCausal relation if any occurrence of n

is always preceded by an occurence of m, while the inverseSometimesCausal relation holds if this

is sometimes the case (due to an XOR-join in the process). Since this distinction is assymetric,

e.g., an alwaysCausal relation does not guarantee an inverseAlwaysCausal relation between two

activities, we assign the forward and the inverse relation between m and n to the edge e = (m,n), e.g.,

τ(e) = {alwaysCausal,inverseSometimesCausal}.

• Causal and concurrent abstraction: Finally, the third strategy introduces additional relations

that can be used to describe types of concurrency between activities, on top of the aforementioned

causal ones. These relations are called alwaysConcurrent, sometimesConcurrent, and neverConcurrent,

reflecting whether two activities can, must, or must not occur concurrently.

In the remainder, we useRX to denote a set of relation types that has been used in an abstraction strategy X.

For instance, Figure 2 shows the business process graph obtained for the running example of Figure 1, based

on Rcausal+concurrent. Although the business process graph abstracts from some details, the overall structure

and sequence of activities is preserved with respect to the original model. Note that a Rcausal-graph can be

obtained by omitting all dashed edges from Figure 2, while a RfollowedBy-graph corresponds to the Rcausal-

graph in which all relation types are replaced by followedBy.
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Figure 2: A business process graph corresponding to the process model in Figure 1 using the relation types Rcausal+concurrent

3.2. The activity-recommendation problem

Given a process model under development, captured as a business process graph B, the activity-

recommendation problem is concerned with recommending a suitable label for a newly added activity n̂:

Definition 2 (Activity-recommendation problem). Let B be a process model repository, i.e., set of

business process graphs, and let B = (N,E, λ, τ) be a business process graph under development with one

unlabeled node n̂, i.e., λ(n) is given for all n ∈ N \ {n̂}. Further, let L denote the universe of all activity

labels. Then, the activity-recommendation problem is to find a suitable label λ(n̂) ∈ L for n̂.

In contrast to our previous work [14], the choice of a suitable label is not limited to the activity labels used

in the given repository B and can, rather, stem from any label in L. Hence the consistent use of labels across

the process models is now no longer anchored in the problem and has to be part of the solution instead.

With this definition, the problem opens up and becomes more general.

4. Activity-recommendation Approach

As shown in Figure 3, our rule-based activity-recommendation approach consists of the two main phases:

rule learning and rule application. The rule-learning phase derives pattern-based inter-relations about

activity labels, actions, and business objects from the process models in a provided repository, capturing

them in the form of logical rules. These rules are then used in the rule-application phase to recommend

suitable labels for a new activity in a process model under development. The rule-learning phase has to be

performed only once, for a given repository of process models, whereas the rule-application phase is repeated

throughout the process-modeling task to iteratively provide recommendations at each modeling step.

4.1. Rule Learning

In the rule-learning phase, we generate logical rules that capture regularities in the use of labels within a

given repository of business process graphs B. Our approach employs a set of rule patterns, i.e., templates,
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Figure 3: Overview of the rule-based activity-recommendation approach

from which we derive a set of rules that hold in the repository B. The use of rule templates ensures that we

focus on rules that are useful for activity recommendation in business process modeling, which makes the

rule learning overall more targeted than the use of already available rule-learning systems.

Our approach includes both rigid and semantic rule templates. The rigid rule templates, covered in

Section 4.1.1, describe activity inter-relations in terms of complete activity labels. These rigid rules corre-

spond to the once we employed in our earlier work [14]. They are complemented by novel semantic rule

templates, described in Section 4.1.2, which capture regularities in the use of specific actions and business

objects throughout a model repository. After introducing both kinds of templates, Section 4.1.3 describes

how instantiations of these templates are learned from the model repository B.

4.1.1. Rigid Rule Templates

This section describes the rigid rule templates, i.e., templates that capture regularities between entire

activity labels, which our approach currently covers.

Rule predicates. For the definition of the rule templates, we first need to describe the given business process

graphs in terms of logical formulas. For this, we translate each business process graph B = (N,E, λ, τ) ∈ B

as follows:

• For each node n ∈ N we add a formula label(n, λ(n)), e.g., label(n,check purchase order), to express

that n has the label λ(n).
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• For each edge e = (m,n) ∈ E and each relation type r ∈ τ(e) we add a formula r(m,n) that captures

the type of relation between m and n, e.g., followedBy(m,n) or alwaysCausal(m,n).

• For each pair of nodes m 6= n ∈ N we add the formulas inSameProcess(m,n) and inSameProcess(n,m)

to express that m and n appear in the same business process graph.

Given a set of relations RX, we thus use |RX| + 2 (+2 for inSameProcess and label) binary predicates to

capture the structure of the process graphs in the repository B.

Templates and instantiations. When defining our templates, we use h, j, k and l ∈ L to refer to

placeholders for labels of an activity, e.g., l = check purchase order. An instantiation of a rule template is

a rule in which those placeholders are all substituted by activity labels from L. The variables W,X, Y and

Z in the templates stand for concrete activity nodes. A rule is grounded if it is an instantiation of a rule

template, where all variables are replaced by concrete values.

In our approach, we use a special form of horn rules. Particularly, we are interested in rules that have

the form label(Z,l) ← . . ., which are rules that capture the regularities of activity Z being labeled with l.

To capture inter-relations between activities, we define the following rule templates for a setting using

the directly-follows abstraction, i.e., with followedBy as the only relation type in RfollowedBy:

R.1 label(Z,l) ← inSameProcess(Y,Z), label(Y,k)

R.2 label(Z,l) ← followedBy(Y,Z), label(Y,k)

R.3 label(Z,l) ← inSameProcess(X,Y), inSameProcess(Y,Z), label(X,j), label(Y,k)

R.4 label(Z,l) ← inSameProcess(X,Y), followedBy(Y,Z), label(X,j), label(Y,k)

R.5 label(Z,l) ← followedBy(X,Y), followedBy(Y,Z), label(X,j), label(Y,k)

R.6 label(Z,l) ← followedBy(W,X), followedBy(X,Y), followedBy(Y,Z), label(W,h), label(X,j), label(Y,k)

An example for an instantiation of rule template R.1 is given by

label(Z,approve purchase order) ← followedBy(Y,Z), label(Y,parts required).

This rule captures that when an activity Z occurs in a process model that already contains an activity

labeled parts required, a possible recommendation for a label for Z is approve purchase order.

In general, each of the defined templates captures a certain type of probabilistic regularity about activity

inter-relations in process models. More specifically, the above rule templates describe which activities or

combinations of activities with certain labels have to be in the same process or must appear before activity

Z to predict l as the label of Z. We will later introduce confidence as a metric to estimate the probability

that a rule makes correct predictions. The probability of a rule that instantiates template R.1, for example,

expresses how likely it is that, if an activity (label) k is used in a process, activity l appears in that process

as well, whereas the probability of a R.2-rule tells us how probable it is that an activity k is directly followed

by an activity with label l.
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Figure 4: Template specificity lattice

Rule specificity. Certain rules inherently relate to each other. For instance, any grounding Y = a1

and Z = a2 of a R.2-rule is a grounding of the corresponding R.1-rule as well. This is the case because

inSameProcess(Y, Z) is true for Y = a1 and Z = a2 if followedBy(Y,Z) is true for Y = a1 and Z = a2 , i.e.,

if a1 is followed by a2, then a1 and a2 are naturally also part of the same process model. Since the inverse

is not true, i.e., followedBy(Y,Z) ← inSameProcess(Y,Z) does not have to hold, we say that a R.2-rule is

more specific than a R.1-rule.

Similar inter-relations also exist for the other rule templates. The black-colored part of Figure 4 shows

a complete specificity lattice of the R templates (for now we ignore the grey-coloured parts of the figure).

Most of the arcs in the specificity lattice can be explained by the simple rule shown above or the fact that

the body of one rule is a subset of another rule’s body. Rules that instantiate template R.6 are the most

specific rules. Whenever a rule r is more specific than a rule r′, rule r tends to make fewer and more specific

predictions compared to rule r′.

Templates in other abstraction settings. The rule templates in the Rcausal setting can be derived by

replacing each occurrence of followedBy in the templates by each of the four types of causal relations in

Rcausal. Due to repeated occurrences of followedBy in certain templates, this results in a total of 90 templates

for the Rcausal setting, primarily due to 4 × 4 = 16 different versions of template R.5 and 4 × 4 × 4 = 64

of template R.6. For brevity, we refer to the versions derived from one of the templates R.1-R.6 as a

template group in the remainder. To additionally incorporate the three types of concurrent relations in the
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Rcausal+concurrent setting, we introduce a further template group R.7, which contains three templates that

are similar to template R.2, but in which the followedBy relation in R.2 is replaced by one of the three

concurrent relations, e.g., label(Z,l) ← alwaysConcurrent(Y,Z), label(Y,k).

4.1.2. Semantic Rule Templates

In addition to activity inter-relations, we want to consider natural language-based semantics in the form

of action and business-object patterns. Corresponding to established work on the semantic analysis of

activity labels in process models [19], we use the term business object to refer to an entity to which a label

relates, e.g., requirements, order template or parts from stock. Actions of a label operate on business objects,

e.g., specify (action) requirements (business object).

To formalize the semantic patterns that we want to detect in a set of business process graphs B, we

concentrate on separable activity labels for the semantic rule templates. We refer to an activity as separable

if it allows for a clear separation between the actions and the business objects of its label, for example, as

in the activities specify (action) requirements (business object), update and review (actions) requirements

(business object) or match (action) goods receipt and purchase order (business objects). In particular,

separable activities can involve multiple actions or business objects. For a separable label λ, we denote by

α(λ) the action part of the label while β(λ) denotes the business-object part such that λ = α(λ) β(λ) or

λ = β(λ) α(λ). The functions α and β can be instantiated using existing approaches for the analysis of

activity and event labels, cf., [20, 21]. Since we do not distinguish between other semantic roles than actions

and business objects, this means in practice that, given a label, we first identify the action(s) of the label

and consider the rest of the label as business object(s).

Rule predicates. For the semantic rule templates, we add the following logical formulas to the translation

of a business process graph B = (N,E, λ, τ) ∈ B in addition to the ones previously specified in Section 4.1.1,

where we denote by LB ⊂ L the labels that are used in repository B:

• For each separable label λ ∈ LB with action part a we add a formula α(λ) = a to capture the actions

of the labels that are used in the repository, e.g., α(create order template)=create or α(update and

review invoice)=update and review.

• Analogously, we add for each separable label λ ∈ LB with business object b a formula β(λ) = b to also

add the business objects of the labels, e.g., β(create order template)=order template or β(update and

review invoice)=invoice.

Moreover, we define the replace functions replaceAction, replaceActionAndFlip, replaceBusinessObject and

replaceBusinessObjectAndFlip, which we apply on separable labels only. The function replaceAction :

(λ, a) → replaceAction(λ, a) copies label λ and replaces its action part α(λ) by the action part a while
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the business-object part remains the same, e.g., replaceAction(create request, analyze)=analyze request.

The function replaceActionAndFlip has the same effect as the function replaceAction but additionally flips

the order of action and business-object part of the generated label, e.g., replaceActionAndFlip(analyze re-

quest, approved)=request approved. The functions replaceBusinessObject and replaceBusinessObjectAndFlip

can be explained analogously.

The aforementioned replace functions cover all possible combinations of action and business-object parts

of separable labels in the repository. Since separable labels consist of two parts, they can occur in both

orders, i.e., action part - business-object part and business-object part - action part. Since either might

be used in practice, we support both orders. While the replaceAction and replaceBusinessObject functions

combine different parts maintaining their positions in the labels, the replaceActionAndFlip and replaceBusi-

nessObjectAndFlip functions combine different parts flipping their order in the labels.

Templates and instantiations. We define four additional template sets, which adapt the R templates

defined in Section 4.1.1 to capture patterns on actions and business objects, as well as their flipped forms.

We here provide the A templates for action patterns (referred to as A.1 to A.6) in detail, whereas the other

sets are described more briefly.

To capture action patterns, we define the following rule templates in the RfollowedBy-setting, where a

and a′ indicate action parts used in LB:

A.1 label(Z,replaceAction(K,a′)) ← inSameProcess(Y,Z), label(Y,K), α(K)=a

A.2 label(Z,replaceAction(K,a′)) ← followedBy(Y,Z), label(Y,K), α(K)=a

A.3 label(Z,replaceAction(K,a′)) ← inSameProcess(X,Y), inSameProcess(Y,Z), label(X,j), label(Y,K), α(K)=a

A.4 label(Z,replaceAction(K,a′)) ← inSameProcess(X,Y), followedBy(Y,Z), label(X,j), label(Y,K), α(K)=a

A.5 label(Z,replaceAction(K,a′)) ← followedBy(X,Y), followedBy(Y,Z), label(X,j), label(Y,K), α(K)=a

A.6 label(Z,replaceAction(K,a′)) ← followedBy(W,X), followedBy(X,Y), followedBy(Y,Z), label(W,h), label(X,j),

label(Y,K), α(K)=a

To yield rules that instantiate the templates, the placeholders h and j have to be replaced by concrete labels

from LB, whereas a and a′ have to be replaced by concrete action parts used in LB.

The A templates provide action-based counterparts for the R templates. For example, whereas R.1 cap-

tures patterns on the co-occurrence of entire labels, the corresponding A.1 template captures co-occurrence

patterns between actions. An exemplary instantiation of this template is:

label(Z,replaceAction(K,approve)) ← inSameProcess(Y,Z), label(Y,K), α(K)=create

This rule captures that when an activity Z occurs in a process model that already contains an activity with

a label K = create someObject, a possible recommendation for a label for Z is approve someObject. This

recommendation is defined by replaceAction(K, approve), which replaces the action of label K with approve

while preserving its business object (someObject).
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Similarly, the following is an instantiation of the behavioral template A.2:

label(Z,replaceAction(K,analyze)) ← followedBy(Y,Z), label(Y,K), α(K)=create

This rule describes that an activity Y with action create is followed by an activity Z with action analyze

while the business objects of Y and Z are the same.

The templates A.3-A.6 combine behavioral or co-occurrence action patterns with regularities that involve

whole activity labels as in the R templates. For example, the probability of a rule that instantiates template

A.3 tells us how likely it is that, if an activity X labeled j is used in the same process with an activity Y

with label K, where K includes action part a, then the label of activity Z in the same process consists of

action part a’ and the business-object part of K.

Additional template sets. The function replaceActionAndFlip is used in another type of rule templates

denoted by AF.1-AF.6, where we replace each occurence of replaceAction in the templates A.1-A.6 by

replaceActionAndFlip. For example, an instantiation of rule template AF.2 is:

label(Z,replaceActionAndFlip(K,check)) ← followedBy(Y,Z), label(Y,K), α(K)=create

This rule captures that when an activity Z occurs in a process model that already contains an activity

with a label K=create someObject, a possible recommendation for a label for Z is someObject check. This

recommendation is defined by replaceActionAndFlip(K,check), which replaces the action of label K with

check while preserving its business object (someObject) and additionally flips the order of action part and

business-object part in the label Z as compared to the order in label K.

The A and AF rule templates thus capture the regularities of two actions following each other and

two actions co-occurring in one process, where the functions replaceAction and replaceActionAndFlip are

instructions on how the label l of activity Z is composed.

Analogously, we receive another two types of rule templates B.1-B.6 and BF.1-BF.6 for capturing

business-object patterns by replacing action and replaceAction in A.1-A.6 by businessObject and replace-

BusinessObject or replaceBusinessObjectAndFlip, respectively. The rule templates in the Rcausal- and in the

Rcausal+concurrent-setting can be derived as described in Section 4.1.1 for the rigid rule templates.

Template specificity. Turning back to the specificity lattice in Figure 4, we see how the grey arcs show

the specificity relations of the A and B rule templates, which are similar to those of the rigid templates.

Also, Figure 4 illustrates the inter-relations between the rigid rule templates R.1-R.6 and the semantic rule

templates A.1-A.6 and B.1-B.6. For instance, whenever the body of a R.1-rule is true, then the corresponding

A.1 and B.1 rules are true as well. In general, the A and B rules are weaker forms of their R counterparts,

which reflects that the semantic rule templates are more widely applicable than the rigid rule templates, i.e.,

the rules can be applied when labels just share an action or a business object, rather than be fully identical.

Thus, the semantic rule templates make our approach as a whole more broadly applicable. For clarity, we

did not include the AF and BF templates in Figure 4, since the specificity of these templates is equivalent
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to their non-flipped A and B counterparts.

Approach extensibility. Note that our approach is further extendable, since the rule templates can

be modified or complemented with additional ones. It is also possible to support even more specific and

longer rules templates. However, it should be taken into account that longer rule templates and a higher

number of templates greatly expand the search space, which may limit the applicability of the approach on

large datasets. Thus, it is always a trade-off between expressiveness and efficiency which guides the final

selection. With rule template R.6, for example, we already added a rather specific rule template, which

requires that three activities with certain labels appear in a sequence. This condition will usually result in

highly accurate predictions, however, at the same time we know that this rule can only be applied if the

model under development is very similar to models in the repository.

4.1.3. Rule Generation

To receive a set of rules from the given repository of process models, we instantiate the rule templates

by replacing all placeholder variables with labels, actions, or business objects from the repository. In theory,

this means that we, for example, have |LB| ∗ |LB| = |LB|2 possible instantiations of templates R.1 and

R.2. However, when learning the rules, it would be infeasible to instantiate the rule templates with all

possible combinations of labels, actions and business objects and to check then if the rules apply in the

given repository. Instead, we generate only such rules for which the conjunction of rule body and rule head

hold at least once in the repository.

Rule instantiation. For each rule template, we start with a relation atom between two activity nodes,

for instance, inSameProcess(X,Y), and limit the instantiations of the template to those activities X and

Y that are indeed in this relation in the given repository, i.e., activities X and Y occur in the same

model at least once. This specifies the values in the associated label, α or β atoms. If we are looking for

instantiations of rule template R.4, for example, and two activity nodes with the labels loan needed and

determine needs are in the inSameProcess-relation in the repository, then we add this pair of labels to the

set of actual instantiations of j and k in template R.4. Then, we repeat this procedure for the remaining

relation atoms of the template on the narrowed set of actual instantiations. With every additional relation

atom between two activity nodes in the rule template, the number of actual instantiations decreases. Once

there are no relation atoms left, we instantiate the rule template with the determined combinations of

labels. For the semantic rule templates, which involve the functions replaceAction, replaceActionAndFlip,

replaceBusinessObject or replaceBusinessObjectAndFlip, we additionally limit the instantiations of the rule

templates to those activities Y and Z that have separable labels (cf., Section 4.1.2) and that relate to the

same business object (for action templates in A and AF) or to the same action (for business-object templates

in B and BF). In the case of rule template A.6, for instance, the labels of the activities that replace Y and

Z need to be separable and their business objects have to be equal.
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Rule confidence. For each rule that is an instantiation of one of the rule templates, we compute its

confidence as a measure of its quality. For this, we follow the definition by Galárraga et al. [22], which states

that the support of a horn rule head ← body shall be computed by counting all groundings for which both

the head and body of the rule are true. Then, to compute a rule’s confidence, we divide its support by the

number of those groundings that make the body true. Thus, the confidence of the rule can be understood

as the probability that the rule makes a correct prediction within the given repository of business process

graphs B. For instance, the following two rules are related to activities that are in the same process with a

parts required activity:

r1 = label(Z,complete purchase order) ← inSameProcess(Y,Z), label(Y,parts required)

r2 = label(Z,check purchase order) ← inSameProcess(Y,Z), label(Y,parts required)

The body of both rules is the same. Suppose that it holds 15 times over B, i.e, the pattern described by the

body appears 15 times in the process models from B. In the example at hand, this means that there are 15

activity nodes in the repository that are labeled parts required. Considering that the head is additionally

true, assume that these numbers go down to 10 and 5, respectively. For example, in ten out of the 15 cases,

a parts required activity appears in the same process model as a complete purchase order activity. Then, we

have support(r1) = 10, support(r2) = 5, confidence(r1) = 10/15 = 0.667, and confidence(r2) = 5/15 = 0.333.

Default rules. Finally, to ensure that our approach is always able to provide a sufficient number of

recommendations, we also learn ten default rules [23], which recommend the most common labels from a

repository. Since these default rules simply predict the activities that occur most often in the repository,

the confidences of these rules are low, such that they should only appear in the top ten recommendations

list if no other recommendation can be made, i.e., if a prediction task is not covered by any of the actual

rules. An example for a default rule is given by label(Z,send invoice) ← true. The confidence of this rule

is computed by dividing the number of occurrences of the label send invoice by the number of all activity

nodes in the repository.

4.2. Rule Application

Given an unfinished business process graph B with its unlabeled node n̂, we use the rules learned from B,

as described in Section 4.1, and apply them on n̂, while taking the current state of the process graph B

into account. To do this, we set Z = n̂ for all rules that we have learned and check if the model under

development contains activities that can ground the rules, such that the bodies of the rules are true for the

model. An example for a rule that instantiates template R.4 in the Rcausal setting is given by (∗). It is also

a rule that could lead to one of the recommendations for the model under development depicted in Figure 1,

where n̂ is the rightmost node.
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label(n̂,approve purchase order)← inSameProcess(X,Y ), alwaysCausal(Y, n̂), (∗)

label(X, check purchase order), label(Y, create order template)

If we compare this rule to Figure 1, we can see that the body of the rule is indeed true, as we can map X

and Y to nodes that have the respective labels.

Recommendations. Once the body of a rule is true, an activity recommendation is given by its head.

The recommendation of a default rule or a rule that instantiates the rigid rule templates R.1-R.6 is directly

given by the second argument of the label -predicate. Rule (∗), for example, recommends approve purchase

order as the label for n̂. To derive the recommendation of a rule that instantiates one of the semantic rule

templates, we have to take an additional step and evaluate the function in the second argument of the head’s

label predicate. As an example, consider the rule given by (2∗), which instantiates rule template A.2:

label(n̂,replaceAction(K,analyze))← alwaysCausal(Y,n̂), label(Y,K), action(K,create) (2∗)

Comparing this rule to the process model in Figure 1, we can map Y to the activity node with label K =create

order template, such that the body of the rule is true. The rule thus provides the recommendation analyze

order template, since we replace the create action of the label create order template with analyze.

Similarity-based recommendations. We equip our rule-application procedure with an optional extension

so that it can also make recommendations if the bodies of rules are not exactly true for the given model, but

for which the rule’s action or business-object part is semantically similar to the actions or business objects

in the process model at hand. Consider, for example, the case that rule (3∗) is given instead of (2∗), i.e.,

instead of a rule related to a create action, it now captures a pattern for generate:

label(n̂,replaceAction(K,analyze))← alwaysCausal(Y,n̂), label(Y,K), action(K,generate) (3∗)

Because of the semantic similarity of the generate and create actions, we can nonetheless map Y to the activ-

ity node with label K =create order template in Figure 1. In this way, rule (3∗) is fulfilled in a semantically

similar sense. As before, this would then lead to the recommendation analyze order template.

This optional extension makes the rule application procedure more general: Instead of collecting only the

recommendations of all rules, where the body is exactly true with respect to the unfinished process model B,

we also consider the recommendations stemming from rules, where the bodies are true in a semantically

similar sense. While such recommendations based on semantic similarity can be highly valuable, we still

take into account that these stem from rules where the bodies are not exactly true. Therefore, we diminish

the confidence scores of these recommendations by a factor that measures the similarity between the actions
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or business objects used in the model under development and the one involved in the rule with a value

between 0 and 1. If, for instance, rule (3∗) has the confidence 0.92 and the similarity score of the pair

(generate, create) is given by 0.70, then the recommendation analyze order template receives the confidence

score 0.92 · 0.70 = 0.644.

To obtain a score that measures the similarity between two action or business-object parts, we can

employ any technique from natural language processing that measures the similarity between two terms.

Such techniques typically use high-dimensional vector representations of words, so-called embeddings, which

capture semantic information of words so that similar ones are closer in the vector space. Word embeddings

can be generated using algorithms like word2vec [24]. The embedding for a term consisting of multiple

words is typically obtained by taking the average of the individual word embeddings, e.g., the embedding

of order template is the average of the embeddings of order and template. The similarity of two terms is

then calculated as the similarity of the corresponding embeddings, which is often measured using the cosine

similarity.

Confidence aggregation. During the rule-application phase, we gather the recommendations of all rules

where the body is true with respect to the unfinished model B, as well as those stemming from the seman-

tically similar rules, and weight the recommendations according to the confidence of their respective rules.

If several rules lead to the same recommendation, i.e., predict the same label, we aggregate their confidence

scores, such that we can assign the recommendation a single score and rank it accordingly. For this, we

consider two aggregation methods, which we will compare in our experiments. With the max -aggregation

method, we assign the maximum confidence of the applicable rules to the recommendation, while the noisy-

or method multiplies the complement to 1 of all confidence scores and assigns the complement to 1 of this

product to the recommendation. This method is based on the noisy-or distribution, which represents a

simplification of dependency relations in Bayesian networks [25]. After applying an aggregation method, we

obtain a set of recommendations for the recommendation task at hand, each with its own confidence score.

Recommendation transparency. One of the advantages of our approach is that the rules that serve as a

basis for recommendations allow to better understand them. For example, the rules can be used to explain

the recommendations to the user. With respect to the recommendation that results from rule (∗), such an

explanation can be phrased like: Since the previous activity is create order template and the process also

includes a check purchase order activity, there is a rather strong indication (confidence score of 0.67) that

the activity should be labeled approve purchase order. The explanation for the top-ranked recommendation

derived from rule (2∗) could be: In most cases (confidence score of 0.80) the action create is followed by the

action analyze. Such an explanation might raise the confidence of the user in the given recommendation

and might make it easier for her to make a choice between the presented alternatives. In addition, the

recommender system could also provide links to the business process models in the repository that support
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this recommendation, i.e., where the corresponding rules that lead to the recommendation are true. Hence,

the user could have a look at similar processes, which might further help her with the current modeling task.

Finally, should a user find that suggestions that they consider to be wrong have been learned from the

available dataset, it is possible to identify the rules that resulted in this recommendation and to remove them

from the rule base. In fact, this is considerably easier than it would have been to avoid such recommendations

when using, e.g., embeddings-based or neural network approaches, which are more of a blackbox, for which

it is harder to pinpoint and omit specific relations that were learned.

5. Experimental Evaluation

In this section, we present an extensive experimental study that we conducted to evaluate our semantics-

aware activity-recommendation approach. Before we get to the experiments, we introduce the used dataset

(Section 5.1) and the evaluation setup (Section 5.2). In the first part of the experiments (Section 5.3), we

compare our method to other activity-recommendation approaches in two scenarios with different evaluation

procedures. The second part (Section 5.4) represents an ablation study, in which we investigate the impact

of the individual rule templates, as well as the added value of the semantic-aware patterns. Finally, we

present a study in which we examine the extension with similarity-based recommendations (Section 5.5).

We conclude the experimental evaluation with a discussion on the limitations of our approach (Section 5.6).

5.1. Dataset

To conduct our evaluation, we used models from the Business Process Model Academic Initiative

(BPMAI) [26] collection. From this collection, we selected all Petri nets and BPMN 2.0 models that are in

English and contain between 3 and 50 activities. Given that the BPMAI collection contains multiple versions

(i.e., revisions) of process models, we obtain a total of 4 128 process models and 18 908 model versions. On

average, the process models have 14.5 activities, with a standard deviation of 8.1. The models cover a wide

range of domains, resulting in a total of 29 223 distinct activity labels (out of a total of 311 007 activities).

We employ these models in two different application scenarios. In the first scenario, we use the entire set

of 18 908 process model versions, i.e., including multiple revisions per process, which reflects the situation

that the given repository can contain models that are similar to the one for which recommendations shall

be provided. In the second scenario, we focus on the opposite case by only selecting the last revision of each

of the 4 128 models. This scenario thus results in harder recommendation tasks, given that the repository

used to train a recommendation approach will have fewer models (if any) that are similar to the process

model for which recommendations shall be made.

As input for the semantic rule templates, we identified that 82.5% of the labels are separable, i.e., consist

of an individual action and a business-object part (see Section 5.2 for details on the parsing procedure). The
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remaining 17.5% includes labels that are truly non-separable, e.g., receive error report new bill or analyze

field and identify processes, yet also includes ones that simply lack semantics, e.g., task or p t, turn out to

actually not be in English, despite the model being marked as such, or consist of just an action or business

object, rather than both, e.g., accept, shipping, or simple claim. Note that we purposefully do not filter out

even the nonsensical or non-English labels, in order to avoid biasing the results in favor of our approach.

5.2. Evaluation Setup

Implementation and environment. We implemented our activity-recommendation approach as a Python

prototype.1 To operationalize the semantic rule templates, the implementation uses the label-parsing ap-

proach by Rebmann and Van der Aa [21] to instantiate the α and β functions that, respectively, determine

the action and the business-object parts of activity labels. To improve the recognition of actions in ambigu-

ous labels, such as offer immediate help, we post-process all labels for which the parser does not detect any

action (and only business objects) using the spaCy library [27]. Specifically, we use spaCy’s part-of-speech

tagging feature to determine if any terms in the label are commonly recognized as verbs. If so, this term

is then marked as an action, while the other words remain tagged as business objects. This results, e.g., in

correctly recognizing offer as the action in the aforementioned label. As described in Section 4.1.2, we only

consider separable labels when identifying action and business-object patterns, i.e., labels that comprise one

action part followed by a business-object part, or vice versa.

We also employ spaCy to compute the similarity between two action or business-object parts. spaCy

determines the similarity of two terms as the cosine similarity of the corresponding embeddings. The

similarity score lies between 0 and 1, where a higher value indicates a greater similarity. The employed

spaCy large English model, en-core-web-lg, contains almost 700 thousand 300-d vectors generated from a

large corpus of written text and is thus fully sufficient for our use.

All experiments are conducted on an Intel® Xeon® E5-2623 v3@16x3.00 GHz CPU computer with 256G

RAM.

Cross-validation. For the evaluation we employ a 10-fold cross validation. Thus, we randomly split the

data into ten folds and use nine of those to train a recommendation approach. The remaining fold is then

used to establish recommendation tasks in the evaluation. We repeat this procedure, such that each of the

folds is used once as the evaluation set. In the remainder, we report the mean results obtained over the 10

folds of the cross validation.

Evaluation procedures. Aside from evaluating our work on two different datasets (with and without

model revisions), we also assess the accuracy in various modeling situations, as is common practice for

1For proprietary reasons, requests for the source code of the implementation should be submitted to diana.sola@sap.com.
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activity-recommendation approaches [16]. Therefore, we use three evaluation procedures, reflecting varying

states of process models under development, resulting in a variety of recommendation tasks.

The evaluation procedures work in two steps. First, given a business process graph B, one of its nodes

is selected as the node n̂, for which a label must be recommended. Then, as visualized in Figure 5, we alter

the state of the process model under development by removing some of the other nodes and their associated

edges from the graph, according to one of the evaluation procedures. The remaining graph and the selected

node n̂ then define a specific activity-recommendation task. The different procedures result in different

degrees of information that is available as a basis for recommendations.

(a) given-3 (b) hide-last-two (c) full-breadth

Figure 5: Illustration of the different evaluation procedures

• given-3. In the given-3 procedure, we pick a path of length 4 which is a longest path from a source

node (node with no incoming edges) to the activity at position 4 and aim to predict the label of

this activity. The given-3 procedure allows us to compare different recommendation approaches in a

cold-start setting, in which only little information is given. Important here is that this setting only

provides a single sequence of activities as information for a recommendation task.

• hide-last-two. The opposite to this is the hide-last-two procedure, which maintains a nearly complete

process model. Particularly, one sink node ns (node with no outgoing edges) is randomly chosen and

hidden. Then, we randomly select a node that precedes ns as the node n̂ for which a label shall be

predicted, while taking all other (non-hidden) activities into account.

• full-breadth. Finally, we have implemented a full-breadth evaluation procedure, where one activity,

which is neither a source nor sink node, is randomly chosen as the one to be predicted. Then, using s

to denote the shortest path from a source node to the selected activity, activities that are on a path of

length s starting from a source node are used as a context for the prediction, while all other activities

are hidden.

Overall, as also seen in Figure 5, the given-3 procedure thus provides the least information as a basis for

recommendation, whereas hide-last-two maintains the given process graph almost completely. Finally, the

amount of information given by the full-breadth procedure usually lies in between them.

When using the whole dataset (with revisions), we create one recommendation task for every business

process graph in the evaluation set for every evaluation procedure, i.e., we select a single node per model

as n̂ for each procedure. For the last-revision dataset, we compensate for the smaller amount of available
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models by instead evaluating all recommendation tasks per business process graph that the given evaluation

procedure can provide, e.g., for the full-breadth case, any node in the graph that is neither source nor sink

node is used as node n̂ in a recommendation task.

Evaluation metrics. To quantify the relevance of the provided recommendations, we employ two estab-

lished evaluation metrics:

First, we use the hit rate Hits@10 to report on the fraction of hits in the top 10 recommendations, i.e.,

the fraction of cases where the activity label that was actually used in the process model is among the ten

most likely recommendations provided by a recommendation approach.

Second, we report on the Mean Reciprocal Rank (MRR). The reciprocal rank of a recommendation list

has the value 0 if the actually chosen activity is not in the provided list and 1/p otherwise, where p denotes

the position of the hit in the list. Then, the MRR is computed by taking the mean of the reciprocal ranks

of all generated recommendation lists. Note that we also consider a recommendation list of length 10 for

computing the MRR. This provides a close approximation of the MRR that is based on the full ranking,

while at the same time being more realistic than assessing a ranking over all recommendations, as the list

of recommendations shown to users will in practice have a limited length as well.

While the hit rate only captures if the recommendation list covers the actually used activity label, the

MRR also takes the position of the correct prediction into account. The change of the MRR is much larger

when an activity is ranked on position 2 instead of position 1 (0.5) compared to the difference between rank

9 and 10 (0.01). Higher positions are therefore weighted more heavily by the MRR.

Approach configurations. We evaluate our rule-based approach using the rigid as well as the semantic

rule templates in all experiments, while the similarity-based recommendation extension is used in the last

part of the experiments in Section 5.5. Note that we assess the added value of the semantic rule templates

in Section 5.4 as part of an ablation study, whereas the similarity-based extension is assessed in Section 5.5.

Further, we evaluate our rule-based approach in different configurations that vary in the applied confidence-

aggregation method and the used set of behavioral relations. In particular, we combine the in Section 4.2

introduced max - and noisy-or -aggregation with each of the in Section 3 presented abstraction strategies,

i.e., followedBy, causal and causal+concurrent. This leads to six different configurations, which we denote,

for instance, by Rules followedBymax. Since the given-3 evaluation scenario always yields a sequence of

successive activities, there is no point in considering concurrent or causal relations. Therefore, we only

report on the RfollowedBy setting for the given-3 scenario.

Baselines and other approaches. To contextualize the results of our activity-recommendation approach,

we compare them to results obtained against eight existing baselines and methods:

• MostFreq [15]: This method always recommends the ten activities most frequently used in the

available process repository.
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• CoOccur [15]: This technique is based on the conditional probabilities of the simultaneous occurrence

of pairs of activities in a process. Hence, this strategy recommends activities that co-occur most often

with the activities that are already present in the process model under development.

• kNN [15]: kNN is a weighted k-nearest-neighbors-based technique. It represents each process model as

a vector containing Boolean values that capture whether or not the corresponding activity is present

in a model. kNN recommends activities that appear in similar models in the repository, where the

vectors of the processes are used to compute the similarity.

The following contextualized methods (Ctx) consider the longest path to the unlabeled activity in the

process model under development as the current modeling context for the recommendation.

• CoOccur-Ctx [16]: This contextualized version of CoOccur only considers activities that are part

of the current modeling context and recommends activities that co-occurred most often with them.

• kNN-Ctx [16]: kNN-Ctx is a contextualized version of kNN. Compared to kNN, kNN-Ctx increases

the weight of the neighbour processes that contain activities, which are also included in the current

modeling context of the process under development.

• Link-Ctx [16]: Unlike the prior techniques, the link-based Link-Ctx technique takes the order of

activities in process models into account. Specifically, it considers the current modeling context and

counts in the given repository of processes which activities occurred directly after the last element in

the process under development. The score of an activity is hence calculated as the number of times it

is a successor to the context’s last activity in the repository. Link-Ctx then recommends the activity

with the highest score.

• Chain-Ctx [16]: The chain-based method Chain-Ctx generalizes Link-Ctx by considering not only

activity chains of length two but also longer chains of activities. If longer chains in the modeling context

are matched in the repository processes, then Chain-Ctx gives higher scores to the corresponding

recommended activities.

• Hybrid-Ctx [16]: The Hybrid-Ctx technique combines the contextualized kNN strategy, kNN-

Ctx, with Link-Ctx to incorporate two methods that focus on different patterns. Hybrid-Ctx

is a weighting strategy which gives more weight to the kNN technique for larger processes under

development, while Link-Ctx receives a higher weight for smaller ones.

While the first three methods, MostFreq, CoOccur and kNN, can be understood as simple baselines, the

other five are more sophisticated techniques that have been specifically designed to perform well in highly

similar activity-recommendation scenarios.

Note that the above methods can be appropriately applied on the business process graph representations

of the process models we also use as input for our approach, since they only consider which pairs of activities

occur in the same process model and which directly follow each other. The graphs can losslessly capture

this information in the inSameProcess and followedBy relations. However, the other methods are unable to
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incorporate the causal and concurrency relations that we additionally consider in our rule-based approach,

which is why we only apply them in the RfollowedBy setting.

5.3. Evaluation Results

Table 1 shows the experimental results of the evaluated approaches and configurations on the whole

dataset, i.e., in an evaluation situation where multiple similar process models can be found in the repository.

As highlighted in bold, our rule-based recommendation approach achieves the best results in every evaluation

procedure.

given-3 full-breadth hide-last-two

Approach H@10 MRR H@10 MRR H@10 MRR

MostFreq 0.033 0.010 0.015 0.005 0.006 0.003

CoOccur 0.312 0.104 0.231 0.076 0.212 0.067

kNN 0.684 0.227 0.607 0.200 0.642 0.211

CoOccur-Ctx 0.312 0.104 0.271 0.087 0.263 0.082

kNN-Ctx 0.817 0.633 0.768 0.570 0.833 0.651

Link-Ctx 0.852 0.669 0.725 0.556 0.766 0.598

Chain-Ctx 0.934 0.820 0.774 0.643 0.827 0.713

Hybrid-Ctx 0.892 0.730 0.807 0.627 0.861 0.695

Rules followedBymax 0.938 0.824 0.889 0.798 0.930 0.857

Rules followedBynoisy-or 0.938 0.827 0.875 0.783 0.895 0.771

Rules causalmax n/a 0.887 0.803 0.931 0.872

Rules causalnoisy-or n/a 0.883 0.786 0.910 0.781

Rules causal+conc.max n/a 0.889 0.811 0.933 0.876

Rules causal+conc.noisy-or n/a 0.884 0.791 0.911 0.784

Table 1: Experimental results for the different approaches on the whole dataset. Best results per procedure are in bold.

Baseline comparison. Before we get to the results that we measured for different configurations of our

rule-based approach, we take a closer look at the baselines. As expected, the results of the simple baselines

MostFreq, CoOccur and kNN are comparatively low. However, the kNN method achieves up to three

times better results than CoOccur, which indicates that the sole consideration of pairwise co-occurrence

patterns is less suited for activity recommendation than considering the processes and their similarities as a

whole. The methods CoOccur-Ctx and kNN-Ctx work better than their non-contextualized counterparts.

This shows that the current modeling context as considered by Jannach et al. [16] can be of importance,

i.e., it can be useful to give greater consideration to certain parts of the process model under development.

Methods that (additionally) consider structural patterns rather than co-occurrence patterns only avoid
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recommending activities that could be useful in the model under development but not at the current modeling

point. Therefore, Link-Ctx, Chain-Ctx, Hybrid-Ctx and Rules achieve better results than CoOccur.

Chain-Ctx achieves better results than Link-Ctx, which proves that taking into account longer chains of

activities is useful. By combining Link-Ctx and kNN-Ctx, Hybrid-Ctx can improve the results of the

individual methods in every evaluation procedure. In the full-breadth and hide-last-two procedures, where

more context is given, Hybrid-Ctx works even better than Chain-Ctx, which indicates that considering

different patterns in the use of activities can be useful. All in all, the comparison of the baselines shows

similar trends as the comparison in the work by Jannach et. al [16]: Hybrid-Ctx and Chain-Ctx achieve

the best results, the performance of CoOccur-Ctx is rather poor and kNN-Ctx can keep up with the

methods that take the order of activities into account.

Results per configuration. Overall, the use of the max -aggregation leads to better results of our approach.

Only in the given-3 procedure, the noisy-or aggregation is the better choice, because of a slightly better

MRR. The noisy-or aggregation multiplies the confidence scores of all rules that lead to one particular

recommendation. Naturally, rules with inSameProcess predicates fire more often than those with followedBy

predicates, thus, this aggregation method gives more weight to co-occurrence patterns than to structural

patterns, which is generally unfavorable. This effect exists only to a limited degree in the given-3 procedure,

because of the small context in this case.

In general, the more precise the abstraction of business process models to graphs, i.e., the more relations

used in the abstraction strategy, the better the results of our rule-based approach. However, the hit rate

H@10 of Rules causalmax is slightly worse than the one of Rules followedBymax in the full-breadth case.

This can be explained by the fact that we learn the rules on the whole processes of the training set while

we apply them on the partial processes of the test set. When generating a partial process from a given

process graph, some of the nodes and edges are removed, which can lead to a change of the relation types

assigned to a remaining edge. If, for example, a node m can be followed by node n or node o in the

complete process graph and node o is removed for the partial graph, then node m can only be followed by

node n. This changes the corresponding relation type of edge (m,n) from sometimesCausal to alwaysCausal.

Consequently, the rules learned from highly similar process models in the repository cannot be applied to

the obtained partial process. Therefore, it could be better to learn the rules on partial processes rather than

complete processes. In practice, this would necessitate information about the modeling behavior of the user,

which is not available in the used dataset.

All in all, the variations in the results of the different configurations of our rule-based approach are small

compared to the differences to the baseline approaches. Especially in the cases where more context is given,

i.e., full-breadth and hide-last-two, our approach outperforms the other approaches by up to 10 % in H@10

and 15 % in MRR. This shows that our approach is much better at using the additional context for providing
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suitable activity recommendations.

given-3 full-breadth hide-last-two

Approach H@10 MRR H@10 MRR H@10 MRR

MostFreq 0.044 0.017 0.025 0.009 0.013 0.006

CoOccur 0.182 0.069 0.149 0.049 0.139 0.045

kNN 0.304 0.101 0.300 0.090 0.331 0.101

CoOccur-Ctx 0.182 0.069 0.164 0.052 0.165 0.051

kNN-Ctx 0.381 0.276 0.415 0.280 0.433 0.294

Link-Ctx 0.425 0.323 0.418 0.313 0.400 0.297

Chain-Ctx 0.446 0.371 0.443 0.358 0.422 0.341

Hybrid-Ctx 0.432 0.338 0.451 0.328 0.456 0.328

Rules followedBymax 0.469 0.386 0.500 0.419 0.504 0.413

Rules followedBynoisy-or 0.473 0.389 0.497 0.409 0.488 0.369

Rules causalmax n/a 0.506 0.428 0.508 0.423

Rules causalnoisy-or n/a 0.509 0.419 0.495 0.374

Rules causal+conc.max n/a 0.515 0.440 0.516 0.434

Rules causal+conc.noisy-or n/a 0.514 0.428 0.500 0.381

Table 2: Experimental results for the different approaches on the last-revision dataset. Best results per procedure are in bold.

Last-revision dataset. The experimental results of the evaluated approaches on the last-revision dataset,

where only few or even no similar models are available for the recommendation of an activity, are shown in

Table 2. The absolute numbers go down significantly in comparison to the results obtained for the dataset

with revisions. However, the general trends to be observed largely remain the same.

Even though the evaluation on the last-revision dataset reflects a challenging scenario, the hit rate

Hits@10 is around 50%, which means that, in one out of two cases, the actual activity label is among the

top 10 recommendations. Moreover, the comparably high MRR indicates that the actually used label can be

found on the first positions of the recommendation list, in case it is indeed in the top-10 recommendations.

This means for a concrete modeling task that our approach suggests the correct label in half of the cases

within a short recommendation list, whenever a new activity is added to the model. Our approach is thus still

beneficial in situations where the modeling domain is only sparsely represented in the given model repository.

Ranking. To better understand the ability of our rule-based approach to rank the right activity on the first

positions of the recommendation list, we investigate the hit rates Hits@k for k≤10. Figure 6 shows these

hit rates of our rule-based approach in the Rcausal+concurrent setting with max aggregation when evaluated

in the full-breadth procedure on the whole (left) and on the last-revision (right) dataset. Note that the
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Figure 6: Different hits rates for Rules causal+conc.max in the full-breadth evaluation procedure on the whole (left) and on

the last-revision (right) dataset

scale of the two graphs differs for the purpose of the figure. When using other settings for our approach or

the evaluation, the curves look similarly. If our approach would generate the ranking randomly, the curves

would be a rather straight line from the Hits@1 value to the Hits@10 value. Instead, both curves in Figure 6

rise steeply at the beginning, while the slope already decreases considerably from Hits@3 onwards. This

shows that our approach will in most cases still be able to give the correct recommendation even if only a

shorter recommendation is considered.

Confidence scores. In our evaluation we have not yet considered the confidence scores, which come along

with the recommendations of our rule-based approach. For the hit rate Hits@10 and the MRR we shortened

the generated recommendation list to a top 10 list. However, it is also possible to further shorten the

list based on the confidence scores. Then we only include the recommendations with a confidence score

above a certain threshold. Figure 7 shows the length of the recommendation list (left) and the recall (right)

depending on the chosen confidence score threshold when we use our approach in the Rcausal+concurrent

setting with max aggregation and evaluate in the full-breadth procedure on the whole dataset. As before,

the graphs look similarly when using other settings for our approach or the evaluation. The recall is similar

to the hit rate, i.e., it is the fraction of cases where the activity label that was actually used in the process

model can be found in the generated recommendation list. In contrast to the hit rate that we investigated

previously, the length of the recommendation list depends on the confidence score for the recall.

The left curve in Figure 7, which depicts the recommendation list length depending on the confidence

score threshold, declines steeply until the confidence threshold 0.2, where the recommendation list length is

about 3. Then it slowly further decreases with an exception at the confidence score 0.5, where the length

again drops sharply. The right graph in Figure 7 has the same exception at the confidence score 0.5 and two

other exceptions at 0.34 and 0.67. These exceptions result from a large portion of rules having the confidence
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Figure 7: Length of recommendation list (left) and recall (right) for different confidence score thresholds when using

Rules causal+conc.max in the full-breadth evaluation procedure on the whole dataset

scores 1
2 , 1

3 or 2
3 , because there are often two or three options with the same likelihood. Apart from that,

the recall decreases with increasing confidence score threshold relatively monotonously. Bringing these two

graphs together, it could in our example be useful to have a confidence score threshold of 0.2 to make the

recommendation lists considerably shorter without decreasing the recommendation quality too much.

Runtime. The average time required to provide a recommendation is generally below 0.74s in our execution

environment. The hide-last-two scenario using max-aggregation is an exception to this, which requires 1.59s

on average to provide recommendations. The rule learning, which has to be performed only once for a given

repository of process models, takes a maximum of 2 086s (34.8 minutes) on the whole dataset and 383s (6.4

minutes) on the last-revision dataset. Since the implementation of our approach is prototypical, it can be

assumed that these runtimes can be shortened considerably for an application of the work in practice.

5.4. Ablation Study

We investigate the impact of the different rule templates in an ablation study. More specifically, we

evaluate the performance of our approach when learning and applying rules from different combinations

of rule types and template groups. Note that the numbers in Table 3 result from the application of the

RfollowedBy setting for the given-3 evaluation procedure and the Rcausal+concurrent setting for the full-breadth

and hide-last-two procedures. Moreover, we employed the max aggregation for all procedures and the last-

revision dataset.

In the first part of the ablation study, we investigate the rigid rule templates. We start by employing just

template R.1 and then add the other rule templates one after another. The first step from using template

R.1 to using templates R.1 and R.2 shows that the use of the followedBy predicate and the associated

consideration of structural patterns improves the results significantly. In the next step, we add template
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given-3 full-breadth hide-last-two

Employed templates H@10 MRR H@10 MRR H@10 MRR

R.1 0.342 0.143 0.315 0.111 0.326 0.115

R.1, R.2 0.444 0.335 0.467 0.349 0.462 0.345

R.1 - R.3 0.447 0.337 0.464 0.348 0.457 0.343

R.1 - R.4 0.456 0.367 0.488 0.414 0.483 0.404

R.1 - R.5 0.456 0.373 0.489 0.416 0.483 0.408

R.1 - R.6 0.457 0.376 0.489 0.417 0.483 0.409

R.1 - R.7 0.457 0.376 0.499 0.430 0.492 0.421

R and A templates 0.467 0.384 0.513 0.439 0.513 0.433

R and AF templates 0.460 0.379 0.502 0.431 0.497 0.423

R and B templates 0.457 0.376 0.500 0.430 0.493 0.421

R and BF templates 0.457 0.376 0.499 0.430 0.492 0.421

Rules (all templates) 0.469 0.386 0.515 0.439 0.516 0.432

Table 3: Results of the ablation study with varying sets of rule templates

R.3, which leads to further improvement in the given-3 case while the results in the other procedures full-

breadth and hide-last-two decline. Rules with two inSameProcess predicates thus rather have a positive effect

in the case that less context is given. Adding rule template R.4 with one followedBy and one inSameProcess

predicate again improves the results in every evaluation procedure. This emphasizes the importance of

considering structural patterns and co-occurrence patterns simultaneously. In the next steps, we add R.5

and R.6, which still improves the results but only to a limited degree. Consequently, considering even longer

templates, e.g., that depend on longer activity sequences, is likely unfruitful. On the contrary, adding the

rules from template group R.7, which employ the concurrent relations, has a strong positive effect on the

results again. This is as expected since the results of Rules causal+conc.max are better than the ones of

Rules causalmax in Table 2. Note that in the given-3 case the results of R.1-R.6 and R.1-R.7 are the same

as we employ the RfollowedBy setting there.

In the second part of the study, we analyze the added value of the semantic rule templates by adding

each of the four different types, i.e., A, AF, B and BF templates, to the rigid rule templates. While the BF

templates do not influence the results, the other semantic rule templates all contribute to better numbers.

Especially the A templates lead to improvements. Given these results, we could use our semantic-aware rule-

based approach without the BF templates since it is likely that they do not make a valuable contribution.

Comparing the results of R.1-R.7, where we use the rigid rule templates only, to the results of Rules, we

can conclude that the extension of our rule-based approach [14] with the semantic rule templates leads to
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consistent improvements.

Employing the semantic rule templates in addition to the rigid rule templates is naturally associated

with higher runtimes. When using the rigid rule templates only, the average time required to provide a

recommendation is generally below 0.70s, where the hide-last-two scenario using max-aggregation requiring

1.56s is an exception to this. These numbers are to be compared with the runtimes reported in Section 5.3

for our method with rigid and semantic rule templates, which are 0.74s and 1.59s, respectively. The rule

learning time increases from 1 978s (33.0 minutes) to 2 086s (34.8 minutes) on the whole dataset and from

360s (6 minutes) to 383s (6.4 minutes) on the last-revision dataset.

5.5. Experiments with Similarity-based Recommendations

In these last experiments, we want to investigate the performance of our approach when using the

similarity-based extension of the rule-application phase, which provides additional recommendations based

on the semantic similarity of terms.

Until now, we used the Hits@10 and MRR evaluation metrics, which are strict metrics in the sense that

they count a hit only if the given recommendation and the actual activity label are an exact match. If,

for instance, the recommendation is create delivery, but create shipment is used in the process model, then

the recommendation would not count as a hit. The same holds for the pair of activity labels analyse order

template and analyze order template. However, in both cases the given recommendation would arguably

still be highly useful for the user, given their similarity from a semantic point of view. Therefore, when

evaluating recommendations made using the semantic-similarity extension, we additionally consider relaxed

versions of Hits@10 and MRR that consider the similarity of activity labels.

For the relaxed metrics, we compute the similarity of each of the top-10 recommendations to the activity

label that was actually used and assign these similarity scores to the recommendations. If x denotes a

similarity score threshold, then Hits@10x considers a recommendation to be a hit if its similarity score is

equal or higher than x. Similarly, MRRx determines the reciprocal rank of a recommendation list as 1/p,

where p denotes the position of the first recommendation with similarity score equal or higher than x. As

for the regular MRR, we consider recommendation lists of length 10 for the MRRx, thus, the reciprocal

rank is 0 if none of the top-10 recommendations has a similarity score ≥ x. The MRRx is then computed

by taking the mean of the in this way determined reciprocal ranks of all recommendation lists.

Table 4 shows the results of our approach when using the similarity-based extension (Rules+sim) in

comparison to the results of the approach with regular rule application (Rules), for varying similarity

thresholds. As in the ablation study, we applied the RfollowedBy setting for the given-3 evaluation procedure,

the Rcausal+concurrent setting for the full-breadth and hide-last-two procedures and the max aggregation for

all procedures. Further, we employed the last-revision dataset.

In the given-3 procedure, where the least context for the recommendation is provided, Rules+sim leads
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given-3 full-breadth hide-last-two

Metric Rules Rules + sim Rules Rules + sim Rules Rules + sim

Hits@100.7 0.827 0.830 0.885 0.894 0.926 0.940

Hits@100.8 0.644 0.644 0.702 0.708 0.727 0.736

Hits@100.9 0.540 0.533 0.584 0.583 0.591 0.591

Hits@10 0.469 0.461 0.515 0.509 0.516 0.507

MRR0.7 0.589 0.592 0.652 0.655 0.680 0.684

MRR0.8 0.494 0.491 0.554 0.554 0.565 0.566

MRR0.9 0.432 0.426 0.485 0.482 0.484 0.481

MRR 0.386 0.379 0.440 0.434 0.434 0.427

Hits@100 0.514 0.517 0.564 0.569 0.565 0.572

Table 4: Results with and without similarity-based recommendations

to better results than Rules for the most relaxed threshold, i.e., when x = 0.7. For the full-breadth and

hide-last-two procedures, Rules+sim performs better for both x = 0.7 and x = 0.8. From this, we observe

that the similarity-based extension can thus provide additional recommendations that are highly similar to

the actual label used in a process model. Notably, the more context information is available, the higher the

similarity of these recommendations to the actual label.

However, we also observe that the performance in terms of the strict Hits@10 and MRR metrics is

better without the similarity-based extension. Because of this rather surprising result, we had a look

at the Hits@100 rates, i.e., the fraction of hits in the top-100 recommendations found by the approach.

Here, we found that the approach with the extension achieves better Hits@100 scores in every evaluation

procedure. On the one hand, this shows that the similarity-based extension can more often recommend

the actual activity label used in a process model. On the other hand, though, it also shows that the

approach assigns relatively low likelihood to such recommendations, since they often only appear in the

top-100 recommendations, as evidenced by the lower Hits@10 and MRR scores. Consequently, it seems that

diminishing the confidence scores of the similarity-based recommendations, as described in Section 4.2, does

not achieve the desired result and needs to be improved in future work.
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5.6. Limitations

Our rule-based approach is subject to some limitations. First, our approach requires some similarities of

the process model under development and the process models in the repository. For rules that instantiate

rigid rule templates, this means that the process model under development and the available models need

to share some labels. With the semantic extensions we were able to partially overcome this limitation such

that the process model under development and the available models only need to share actions or business

objects (for rules that instantiate semantic rule templates) or semantically similar labels (for similarity-

based recommendation). Since our method is able to learn action and business-object patterns across

different domains, companies with a small number of available process models or repositories with limited

representativeness can additionally use other available datasets for learning the rules, e.g., the BPMAI

dataset that we used in the experiments.

A second limitation relates to the labeling style of the process models. While the rigid rule templates work

independently from the labeling style, the semantic rule templates and the semantic-based recommendation

work on separable labels only. In the available dataset, this applied to more than 80% of the labels. However,

even if none of the labels follow the labeling style needed for the semantic extensions, our approach will

be able to make recommendations based on the rigid rule templates. Therefore, the use of the semantic

extensions with their labeling style requirement will not reduce the number of models that can be leveraged

for the recommendation approach. Rather, they offer the opportunity to leverage other patterns in the

labels to make recommendations.

Another limitation is related to the extension with the similarity-based recommendations. In our ex-

periments, this extension did not improve our approach in terms of Hits@10 and MRR. However, it led to

an improvement in terms of the relaxed metrics, which means that the extension can generate recommen-

dations that are similar to the actually chosen activity and can thus be very useful for the modeler. Also,

the Hits@100 results showed that the approach with similarity-based extension can recommend the actual

activity more often but not in the first positions. With a better method to integrate the recommendations

stemming from the similarity-based extension, the approach could thus be improved even more.

6. Related Work

Our work primarily relates to other approaches for activity recommendation in process models, as well

as to research streams on activity label analysis and rule learning.

Activity recommendation. Various existing works provide activity recommendations while modeling a

process. A common approach is the abstraction of business process models to directed graphs, followed by

the use of graph mining techniques to extract structural patterns from a process repository. The similarity

between the extracted patterns and a process model under development can then be calculated using different
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distance measures, including common subgraph distance [28] and edit distance [12, 13, 28]. However, graph

mining methods reach their limits when applied to large datasets, e.g., containing thousands of process

models. To overcome this, Wang et al. [11] developed an embedding-based activity recommendation method,

called RLRecommender. While this method is able to handle large datasets and outperforms the graph

mining methods in the conducted experiments, it only considers one preceding activity in the process model

under development and its inter-relation with the unlabeled activity as a context for the recommendation.

As we have shown in previous work [14, 29], the performance of RLRecommender is comparatively low for

this reason.

The work by Jannach et al. [16], in contrast, focuses on considering the modeling context for the provision

of recommendations. Originally developed to provide modeling support for users in the specific area of data

analysis workflows, the recommendation techniques by Jannach et al. can also be used to recommend

activities for business process models [14]. They present a variety of methods that are based on different

concepts, i.e., k -nearest neighbors, co-occurrence and frequently linked elements. In a laboratory study, the

developed recommendation tool is shown to help users increasing the efficiency of the modeling process.

However, as shown through our experiments, our rule-based recommendation approach outperforms the

various methods they propose for the task at hand.

In previous work [29], we presented different approaches to use embedding- and rule-based knowledge

graph completion methods for activity recommendation. While we showed that standard knowledge graph

completion methods can in principle be applied to the activity-recommendation problem, the experimental

results revealed that they are not flexible enough to completely adapt to the problem.

Beyond the scope of activity recommendation, there are several other ways to support users with their

process modeling task [30], for example, by suggesting process fragments rather than single activities or by

detecting naming conflicts during the labeling of process elements. In contrast to methods that suggest a set

of process elements or even a whole process model, activity recommendation systems can be used iteratively

to assist the user modeling a business process in an interactive way.

Activity label analysis. Similarly to our approach, Smirnov et al. [31] introduce a formal framework

for the identification of co-occurrence and behavioral action patterns in the activities of process models

in a repository, based on association rule mining. While their works concentrates on action patterns, we

combine them with patterns based on extracted business objects. The focus of their work thus results in

the recommendations of actions rather than full activities. For the applicability of their action-pattern

framework, the work also lacks a component that maps an activity label to an action. Existing techniques

for the parsing of activity [32] and event labels [21] close this gap, by proposing methods that automatically

extract components such as actions and business objects from labels, as used in our work. While here used

to improve activity recommendations, recent work by Van der Aa et al. [33] also uses these patterns to
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detect behavioral anomalies in processes through common-sense analysis. This avenue may be explored in

future work, to avoid recommending activity labels that do not make sense at a given position in a model.

Rule Learning. Activity recommendation is inherently based on the identification of patterns in a given

model repository, which suggests the application of machine learning techniques. A process model can be

seen as a specific type of labeled directed graphs. Since such a graph can be described via a set of first

order formulas, symbolic methods such as association rule mining or multi-relational rule mining methods

are applicable.

While association rule mining considers patters in terms of co-occurrence, multi-relational models can

distinguish between different relations, which makes them ideally suited for describing the order of activities

in addition to their co-occurrence. One of the early relational rule mining systems is WARMR [34], which

can (in principle) learn the types of rules that we are interested in but does not scale to the large process

repositories that we are working with. More recently, systems as AMIE [22] and AnyBURL [35] have been

proposed to learn rules that describe the regularities in a given knowledge base. However, such systems have

a restricted language bias tailored to knowledge base problems and are thus not able to adjust to rule types

that are important in a process context. For example, we showed in [29] that AnyBURL performs on the

activity-recommendation task clearly worse than the specialized approach we proposed in [14].

Rule mining can be understood as a field that is highly related to or overlaps the research field Inductive

Logic Programming (ILP). Classic ILP techniques such as FOIL [36] and Tilde [37] are usually based on a

covering approach. Instead of mining all possibly relevant rules, they focus on finding a small rule set that

covers all examples in the training set once. However, in a prediction scenario we might often encounter

situations where the prediction must be based on a rather weak rule that covers only few examples and

would be redundant in the set of all rules. Thus, a rule mining approach that aims to detect all relevant

rules fits better to the activity-recommendation task. Another difference is the need for explicitly given

negative examples, which are not available in the scenario we address. For these reasons, we do not apply

ILP systems to the activity-recommendation problem.

7. Conclusion

In this paper, we presented a rule-based approach to support process modelers with activity recom-

mendations, which makes additional use of label semantics. In particular, our approach considers not only

activity inter-relations in terms of complete activity labels but also action and business-object patterns in

the use of labels as well as their semantic similarity. The semantic components in both the rule-learning

and rule-application phases make our approach better applicable in cases where the process model under

development contains unseen activity labels. Our extensive experiments showed that considering the natural

language-based semantics of the process models is a meaningful addition and can improve the quality of the
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provided recommendations.

In future work, we would like to use methods from natural language processing to further improve our

approach. In case that the process model under development and the available process models have small

or even no overlap, where our rule-based approach might generate recommendations with rather low con-

fidence scores, it could be useful to apply a pre-trained language model to generate recommendations. We

could then benefit from the large vocabulary of these pre-trained models. Further improvements may be

possible by incorporating information beyond activity labels and their inter-relations into the recommenda-

tion procedure, when available. For example, resources associated with activities could be used to establish

rules that also consider which activities are typically performed by which kinds of actors. Similarly, process

model annotations could be used to discern patterns related to ontological concepts or categories [38, 39],

e.g., allowing a recommendation approach to learn what types of activities typically follow each other. Fur-

thermore, we aim to improve the order of the provided recommendations, e.g., by finding other ways to

aggregate the confidence scores of rules that lead to the same recommendation. This concerns in particular

the integration of the recommendations stemming from our similarity-based extension. Moreover, we want

to expand our approach such that it is able to also recommend larger process fragments, thus going beyond

individual activity labels.
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