
Uncovering Object-centric Data in Classical Event Logs
for the Automated Transformation from XES to OCEL

Adrian Rebmann1, Jana-Rebecca Rehse2, and Han van der Aa1

1 Data and Web Science Group, University of Mannheim, Mannheim, Germany
{rebmann|han}@informatik.uni-mannheim.de

2 Management Analytics Center, University of Mannheim, Mannheim, Germany
rehse@uni-mannheim.de

Abstract. Object-centric event logs have recently been introduced as a means to
capture event data of processes that handle multiple concurrent object types, with
potentially complex interrelations. Such logs allow process mining techniques to
handle multi-object processes in an appropriate manner. However, event data is
often not yet available in this new format, but is rather captured in the form of
classical, “flat” event logs. This flat representation obscures the true interrelations
that exist between different objects and associated events, causing issues such as
the well-known convergence and divergence of event data. This situation calls for
support to transform classical event logs into object-centric counterparts. Such a
transformation is far from straightforward, though, given that the information re-
quired for object-centric logs, such as explicitly indicated object types, identifiers,
and properties, is not readily available in flat logs. In this paper, we propose an
approach that automatically uncovers object-related information in flat event data
and uses this information to transform the flat data into an object-centric event
log according to the OCEL format. We achieve this by combining the semantic
analysis of textual attributes with data profiling and control-flow-based relation
extraction techniques. We demonstrate our approach’s efficacy through evalua-
tion experiments and highlight its usefulness by applying it to real-life event logs
in order to mitigate the quality issues caused by their flat representation.

Keywords: Process mining · Object-centric event logs · Semantic analysis

1 Introduction

Process mining focuses on the analysis of event data recorded by information systems
in order to gain insights into the true behavior of organizational processes [1]. This
behavior is captured in event logs, i.e., sequences of events that denote the execution of
activities in the process. Traditional process mining techniques assume that each event
in the log refers to exactly one case, represented by a single unambiguous case notion.
To define this case notion, researchers commonly choose the main object type that is
handled by the process, e.g., a request or an application.

However, defining a single unambiguous case notion becomes problematic if the
process handles multiple concurrent object types, with potentially complex interrela-
tions. For example, in an order handling process, multiple items can be part of one

2 A. Rebmann et al.

order and multiple orders can be shipped in one package. For such a process, there is no
main object type to serve as an unambiguous case notion. Instead, one is forced to select
an imperfect object type for this purpose, such as an order, and represent the event data
accordingly. Once the log is recorded from this perspective, the information related to
the other object types is lost, though. It is hence impossible to switch perspectives be-
tween object types or to analyze the relations between different objects in the process.
Moreover, this “flat” recording leads to spurious behavioral relations in the log [2],
which, for example, distort the results of automated process discovery techniques [12].

To overcome these issues, researchers recently introduced object-centric event logs,
which can capture multiple types of concurrent objects in the process [2]. These object-
centric logs allow process mining techniques to handle multi-object processes in a more
appropriate manner. However, there is an abundance of event data captured in the form
of classical, “flat” event logs, without access to the original data source from which
these logs were extracted (cf. [8, 9]). In this case, the only option is to transform the
flat event logs into object-centric ones. Such a transformation is far from straightfor-
ward, because it requires knowledge about which object types occur in the event log,
which object instances exist with which properties, and how these instances relate to
the events. This information is to a certain extend contained in flat event logs, but in an
unstructured, i.e., hidden way. Uncovering this information manually is a tedious and
time-consuming task, considering the complexity of real-life logs, with dozens of at-
tributes and thousands of events. Hence, the transformation from flat into object-centric
event logs needs to be supported automatically.

Therefore, we propose an approach that automatically uncovers object-related in-
formation in flat event data and uses this information to transform the flat data into
an object-centric event log according to the OCEL format [13]. For this purpose, our
approach combines the semantic analysis of textual attributes in the flat event log with
data profiling and control-flow-based relation extraction. In the following, Section 2 first
illustrates the challenges that our approach needs to address, before we define prelim-
inaries in Section 3. Our approach itself is presented in Section 4. Section 5 describes
our evaluation, which shows that our approach is able to accurately rediscover flattened
OCEL logs and can effectively mitigate quality issues in real-life logs. Section 6 sum-
marizes related work; Section 7 discusses limitations and concludes the paper.

2 Problem Illustration

In this section, we illustrate the problems caused by recording object-centric event data
in flat event logs and the challenges that must be overcome when transforming these
logs into object-centric counterparts. For this, we use an established running example of
an order handling process [2], which involves four types of objects: customers, orders,
items, and packages. As visualized in Fig. 1, a customer can place multiple orders, an
item belongs to exactly one order and one package, a package can contain multiple
orders, and an order can be split over multiple packages.
Problems of flat event logs. We illustrate the problems of recording a multi-object
process in a flat format using the following trace, with an order as the case notion:

torder : 〈Create order, Reorder item, Pick item, Send package, Pick item, Send package〉.

Uncovering Object-centric Data in Classical Event Logs 3

Package

Item1 1..*

0..*
1..* 1..*

0..1

Customer Order1 0..*

Fig. 1: UML data model of the running example.

The events in torder indicate the picking of two items and the creation of two packages.
Although their ordering suggests that these activities occur in an interleaving fashion,
there is a clear relation between first picking an item and then sending it in a package.
This clear precedence relation on the item level is lost, because there can be several
items and packages per order, which we cannot distinguish on the trace level. This
phenomenon, called divergence, is unavoidable when recording processes with object
relations beyond 1:1 in the form of flat event logs [2]. It often occurs together with
another unavoidable issue, called convergence. Convergence emerges when we use an
individual item as the case notion to represent the events from trace torder, which results
in the following traces:

titem(1) : 〈Create order, Reorder item, Pick item, Send package〉,
titem(2) : 〈Create order, Pick item, Send package〉.

Because both items belong to the same order, the “Create order” event is duplicated
across the traces. As a result, the information that both items relate to the same order is
no longer captured at the trace level. Due to the m:n relations in the process at hand, the
impact of this issue is amplified, given that also multiple orders can relate to the same
package, and vice versa.

To overcome these issues and their associated information loss, a flat event log needs
to be transformed into an object-centric counterpart, as discussed next.
From flat to object-centric logs. To illustrate the transformation of flat into object-
centric event logs, consider the example in Table 1, which provides a flat event log with
two orders. The log captures information on the events related to each order, as well as
attributes that associate events with a PackageID, a Weight, and the Customer.

As shown in Table 2 and Table 3, constructing an object-centric version of this event
log requires information about: object types (customers, orders, items, and packages),
their instances and associated properties (e.g., that package p1 has a weight of 70.8), and
the relations between object instances and events (e.g., that event e1 creates order o1,
which relates to items i1_1 and i1_2). However, such crucial information is not explicit

Table 1: Flat event log of an order handling process with the order as the case notion.
CaseID Event Activity Timestamp PackageID Weight Customer

o1 e1 Create order 05-20 09:07 Pete
o1 e2 Reorder item 05-23 10:40 12.5 Pete
o1 e3 Pick item 05-23 14:20 70.8 Pete
o1 e4 Send package 05-23 17:26 p1 70.8 Pete
o1 e6 Pick item 06-04 15:20 12.5 Pete
o1 e9 Send package 06-06 16:20 p2 20.4 Pete

o2 e5 Create order 06-03 19:17 Pete
o2 e7 Update order 06-04 18:11 Pete
o2 e8 Pick item 06-05 11:48 7.9 Pete
o2 e10 Send package 06-06 16:20 p2 20.4 Pete

4 A. Rebmann et al.

Table 2: Object-centric event log of the running example.
Event Activity Timestamp Orders Packages Items Customer

e1 Create order 05-20 09:07 {o1} ∅ {i1_1,i1_2} {Pete}
e2 Reorder item 05-23 10:40 {o1} ∅ {i1_1} {Pete}
e3 Pick item 05-23 14:20 {o1} ∅ {i1_2} {Pete}
e4 Send package 05-23 17:26 {o1} {p1} {i1_2} {Pete}
e5 Create order 06-03 19:17 {o2} ∅ {i2_1} {Pete}
e6 Pick item 06-04 15:20 {o1} ∅ {i1_1} {Pete}
e7 Update order 06-04 18:11 {o2} ∅ {i2_1} {Pete}
e8 Pick item 06-05 11:48 {o2} ∅ {i2_1} {Pete}
e9 Send package 06-06 16:20 {o1,o2} {p2} {i1_1,i2_1} {Pete}

Table 3: Objects of the object-centric event log.
Type Instances

Customer {Pete ()}
Order {o1 (), o2 ()}
Package {p1 (Weight: 70.8), p2 (Weight: 20.4)}
Item {i1_1 (Weight: 12.5), i1_2 (Weight: 70.8), i2_1 (Weight: 7.9)}

in the flat version of the event log, but rather needs to be uncovered in order to transform
flat data into an object-centric log. This results in four main transformation tasks:

1. Detect object types. Object types in a process are not explicitly indicated in flat
event logs. Rather, transformation requires these types to be extracted from un-
structured activity labels, such as the order type in “Create order”, and from certain
event attributes, such as Customer in Table 1.

2. Identify object instances. Due to divergence and convergence, a transformation
approach needs to identify distinct object instances within cases, e.g., that case o1
deals with two items and two packages, and relate object instances across cases,
e.g., that package p2 appears in both o1 and o2. This involves identifying event at-
tributes that represent identifiers of a specific object, e.g., that PackageID defines
individual packages. Furthermore, because such identifier attributes may not exist
for all object types, it also requires inferring certain object instances from the event
log itself, e.g., that events e3 and e6 yield two different items (i1_1 and i1_2).

3. Relate objects to their properties. Flat event logs do not distinguish between at-
tributes that relate to a specific event, such as a resource performing it, and attributes
that provide information about the object handled in the event, such as the Weight
attribute, which captures information about an individual package or item. When
establishing an object-centric log, such relations must thus be derived by separating
event attributes from object properties, in order to have a comprehensive view on
the instances involved in the process, as captured in Table 3.

4. Associate object instances with events. Finally, instead of referring to a specific
case, each event in an object-centric log must be mapped to the object instances it
relates to. Obtaining a complete mapping requires a thorough analysis of the inter-
relations that exist between object instances. For example, this requires the recog-
nition that package p2 relates to orders o1 and o2, as well as items i1_1 and i2_1,

Uncovering Object-centric Data in Classical Event Logs 5

and associating all these objects with event e9, even though the objects originally
stem from a range of different events and cases in the flat log.

In this paper, we propose an approach that tackles these tasks by combining the seman-
tic analysis of the textual attributes of flat events logs with data profiling and control-
flow-based relation extraction. In this manner, our approach uncovers object types, their
instances and properties, as well as the relations between instances and events.

3 Preliminaries

We define objects, events, flat event logs, and object-centric event logs as follows based
on the definitions by Van der Aalst [2].
Objects. An object is a tuple o = (oi, ot, vmap), with oi as its identifier, ot its type,
and vmap a value map, which captures the assignment of values to o’s properties. For
instance, object i1_1 has the identifier i1_1.oi = “i1_1”, the type i1_1.ot = item, and
has a value map assigning it a weight, i1_1.vmap = {Weight : “12.5”}.
Events. An event is a tuple e = (a, ts, omap, vmap), with a its activity label, ts its
timestamp, omap the object map, which captures the objects that e relates to, and vmap
the value map, which assigns values to e’s attributes. For instance, event e1 in Table 2
has an activity label e1.a = Create order, a timestamp e1.ts = 05-20 09:07, an object
map e1.omap = {o1,i1_1,i1_2,Pete}, and a value map e1.vmap = {Event : “e1”}.
Flat event logs. A flat event log L is a set of events that all have exactly one case identi-
fier in their value map, i.e., ∀e∈LCaseID ∈ dom(e.vmap)∧|e.vmap(CaseID)| = 1,
whereas their object maps are empty. Events that have the same CaseID are said to be
part of the same case. Events belonging to the same case are assumed to have a total or-
der, following, e.g., from their timestamps. For instance, event e1 in Table 1 has a value
map e1.vmap = {CaseID : “o1”,Event : “e1”,Customer : “Pete”}, whereas, all
events in this log have an empty object map, e.g., e1.omap = ∅. Note that, for instance,
e9 in Table 2 would be part of two cases of a flat event log, when the order type serves
as the case notion (cf. e9 and e10 in Table 1), because each event must have exactly one
CaseID, yet, e9 refers to two orders, o1 and o2 resulting in two case identifiers.

Finally, we define Att =
⋃

e∈L dom(e.vmap) as the set of attributes in L. For the
log in Table 1, we get: Att = {CaseID,Event,PackageID,Weight, Customer}.
Object-centric event logs. An object-centric event log O is a set of events that have
populated object maps. For instance, event e9 in Table 2 has an object map e9.omap =
{o1,o2, p2, i1_1, i2_1,Pete} and a value map e9.vmap = {Event : “e9”}. The events
in O are assumed to have a known partial order, following, e.g., from their timestamps.

4 Approach

As visualized in Fig. 2, our approach for the transformation of a flat into an object-
centric event log consists of five main steps. Step 1 extracts the object types and ac-
tions from the activity label and other textual attributes of events, which yields object
types and the applied actions per event. Steps 2 and 3 jointly establish a set of object

6 A. Rebmann et al.

instances: Step 2 first matches extracted object types to attributes that capture identi-
fiers to recognize distinct instances of object types, whereas Step 3 aims to discover
instances for object types for which no such identifier attribute was found. Afterwards,
Step 4 aims to assign properties to object types by identifying attributes that represent
object properties. Finally, Step 5 assigns the discovered object instances to events by
exploiting behavioral relations among object types and instances discovered in previous
steps. Based on the result of Step 5, we create an object-centric event log according to
the OCEL format [13]. In the remainder, we describe each of these five steps in detail.

Flat Event Log
(e.g., XES)

1. Object-Type
and Action
Extraction

Object-centric
Event Log(OCEL)

3. Object-
Instance

Discovery

4. Property-
to-Type

Assignment

5. Instance-
to-Event

Assignment

Object Types & Actions Object Instances Object Properties Instance-Event-Relations

2.Type-to-
Identifier
Matching

Fig. 2: Overview of the approach.

4.1 Step 1: Object-Type and Action Extraction

The first step of our approach extracts the object types and actions from an event log.
As illustrated in Section 2, object types need to be derived from unstructured textual at-
tribute values, such as activity labels, and attribute names of a flat event log. An action
is applied to an object, incurring a change in its state [15]. For instance, the “Create
order” activity label indicates that a create action is applied to an order. We extract ac-
tions along with the object types since these can contain information about the creation
of new object instances, which we will exploit in a later step.

To achieve this, we use a semantic extraction technique from our earlier work [23].
This technique extracts parts of textual attribute values that correspond to different se-
mantic roles, such as object types and actions in two ways:
1. Instance-level labeling: The extraction technique labels parts of unstructured tex-

tual attribute values with semantic roles. The parts that correspond to the desired
roles are then extracted. For instance, for the “Send package” activity label of event
e9, the technique labels “package” as an object type and “send” as an action.

2. Attribute-level classification: The extraction technique also identifies event attributes
that in their entirety correspond to a certain semantic role. It does so based on an
attribute’s name and its value range. This, e.g., applies to the Customer attribute
in Table 1, which allows us to also identify customer as an object type contained in
the event log, assigning this type to any event that has a value for the attribute.

By taking the output of this extraction technique, Step 1 instantiates a function extract,
which, given an event e ∈ L, extracts the object types and the actions applied to them
(if any) from e. The result maps the object types to a (possibly empty) set of actions,
e.g., extract(e9) = {package → {send}, customer → ∅}. Each event’s object map is
then initialized with its object types, e.g., e9.omap = {package → ∅, customer → ∅}.
Finally, we establish a set of identified object types T =

⋃
e∈L dom(e.omap) and move

to Step 2, which aims to match these types to identifier attributes.

Uncovering Object-centric Data in Classical Event Logs 7

4.2 Step 2: Type-to-Identifier Matching

In this step, our approach tries to associate identifier attributes with the extracted object
types to be able to recognize distinct object instances. For our running example, we can
differentiate between the two packages p1 and p2 by recognizing that the PackageID
is an identifier for package objects. Such identifier attributes are not explicitly given,
meaning that we need to match object types to attributes. To establish these matches,
our approach first identifies a set AttID of potential object identifiers, by categorizing
attributes according to their domain. Then, we match these attributes to object types in
T , resulting in a mapping M , consisting of (ot, att) pairs with ot ∈ T and att ∈ AttID .
Finding potential identifier attributes. To identify the set AttID ⊆ Att, we recog-
nize that identifiers generally use alphanumeric domains, i.e., string or int, such
as PackageID (“p1” and “p2”) and Customer (“Pete”) in Table 1. Therefore, we
categorize attributes according to their domain’s data type and add those with string
and int domains to AttID . In this manner, we discard attributes corresponding to, e.g.,
timestamps, boolean values, and floats, such as the Weight attribute.
Matching identifier attributes and object types. Next, we aim to identify matches
between the object types in T and potential identifier attributes in AttID , resulting in
the set M . Some object types and attributes can be directly matched. For others, we first
establish candidate matches, and then verify the validity of these candidates.
Direct matching. Object types in T that stem from the attribute-level classification of
Step 1 reflect objects that correspond to the name of a specific event attribute, such
as the customer object type corresponding to the Customer attribute. Because these
types were identified in this manner, we know that their identifiers are captured in the
corresponding attributes, if indeed these are part of AttID . Therefore, we can directly
add such pairs, e.g., (customer, Customer), to the matches in M .
Establishing candidate matches. For object types that cannot be directly matched, such
as the package type extracted from activity labels, we first establish candidate matches,
collected in a set MC , using two strategies, considering attribute names and values.

First, we establish candidate matches by checking if the name of an unmatched ob-
ject type encompasses the name of an unmatched attribute, or vice versa. In this man-
ner, we recognize a candidate match between the package type and the PackageID
attribute, or between the item type and a, hypothetical, order_item attribute.

Then, for attributes in AttID that are not yet in a candidate match with an object
type, we apply a strategy inspired by data profiling [4], which checks if an attribute ex-
clusively co-occurs with an object type. For the running example, all events associated
with the package type (e4, e9, e10) have values for the PackageID attribute, but this
attribute does not apply to any other events. Therefore, even if PackageID was named
pID and hence not a name-based candidate match, our approach would still be able to
recognize it as a potential identifier for the package type and add it to MC .
Validating candidate matches. Although name-based similarity and co-occurrence are
useful indicators to identify relations between object types and attributes, there is no
guarantee that the candidate matches actually capture proper identifiers. Therefore, we
next validate each candidate match (ot, att) ∈MC by determining if each unique value
of att is indeed associated with a specific instance of ot, and vice versa.

8 A. Rebmann et al.

This validation task is complex, though, given that multiple events in a case can
relate to the same object instance (e.g., creating and updating an order) or multiple
instances of the same object type (e.g., shipping multiple packages for one order), and
that, due to duplication issues, the same event can essentially appear in two cases (cf. e9
and e10). For an object type ot, we deal with these issues by aiming to establish a set of
events E′(ot) that should each relate to a different instance of ot. Given E(ot) ⊆ L as
the events related to ot (i.e., that have ot in their omap after Step 1), we obtain E′(ot)
by avoiding duplicate events and by selecting only a single event per case. Our approach
avoids duplicates by only selecting events from E(ot) that have a unique combination
of an activity label, timestamp, and event attributes (aside from their CaseID and event
ID, if available). In this manner, we detect e9 and e10 as duplicates. Given the identified
duplicates, we select a single event per case related to ot, in a manner that maximizes
the size of E′(ot). For instance, given E(package) = {e4, e9, e10}, we select e10,
because e4 and e9 stem from the same case, and obtain E′(package) = {e4, e10}.

Finally, if the attribute values of att are unique for the events in E′(ot), we consider
att as a valid identifier of ot and add (ot, att) to M . For instance, we consider (package,
PackageID) a valid match, given that the two events in E′(package) have unique
values for the attribute, “p1” and “p2”. If there are multiple valid candidates for the
same object type, we match the type to the attribute with the largest number of unique
values and discard the other candidates.
Object-instance creation. For all matches (ot, att) ∈ M , our approach creates an
object instance o with its type ot for each unique value of att, i.e., its identifier oi, and
adds these instances to the object maps of the events that refer to this instance. For
example, we add package p1 to event e4 and package p2 to events e9 and e10.

4.3 Step 3: Object-Instance Discovery

Next, we aim to discover instances for those object types for which no explicit identifier
attribute was found in the previous step, such as the item type in the running example.
For this, we try to find activities that indicate the instantiation of objects, either based
on their activity labels or based on the life cycle of an object.
Instance discovery based on creation actions. We first aim to identify activities whose
meaning hints at the instantiation of an object, such as “Create order”. To this end, we
use the action classification framework of the MIT Process Handbook [20], which de-
fines a set of 15 creation actions (see Table 4) describing the creation of some output.

Table 4: Creation actions [20] used by Step 3.

build compute construct copy create
design develop document duplicate generate
make manufacture perform produce record

Given an event, we check if
any of its actions, extracted in
Step 1, corresponds to an action
in this set. If so, the occurrence
of this event implies the instan-
tiation of a new object. For in-
stance, we recognize that events e1 and e5, corresponding to the “Create order” activity
label, result in two new orders.

Although we here identify creation actions based on the 15 actions from the MIT
Process Handbook, our work is independent of this specific resource. It can be replaced

Uncovering Object-centric Data in Classical Event Logs 9

or enhanced with alternatives, such as the build verbs from the classification framework
by Levin [16], multilingual resources, such as ConceptNet [14], or a self-defined set.
Instance discovery based on object life cycles. Although creation actions are a reliable
indicator for the creation of new objects, they are not always available for an object
type. Therefore, our approach next analyzes the life cycles of object types in terms of
the applied activities per case. To illustrate this, consider the life cycles in Fig. 3.

⟨Receive request, Update request, Complete request⟩

Indicator activity: “Receive request”

 life cycle 1
life cycle 2 ⟨Receive request, Complete request, Receive request, Complete request⟩

Fig. 3: Recognizing activities that indicate new object instances.

For an object type ot, we aim to identify an indicator activity, which corresponds
to a new object instance. We look for such an indicator by checking if there are any
activities related to ot that occur for every case of this type. For example, assuming
only the two depicted cases relate to requests in the process at hand, both “Receive
request” and “Complete request” are candidate activities, since they occur in both life
cycles. In case of such a tie, we select the activity that most commonly occurs first
among the candidates—“Receive request” in the example—as the activity that we use
to identify new object instances. Therefore, we recognize that the cases in Fig. 3 relate
to three distinct request objects: one in the first life cycle and two in the second.
Object-instance creation. For each event that indicates a new object instance, based on
a creation action or indicator activity, our approach establishes an object instance, for
which we generate a unique identifier oi, and add it to the event’s object map. Duplicate
events, as identified in Step 2, form an exception here. Since they correspond to the
creation of the same object instance, which is why we assign the same instance to them.

Note that we discard all object types for which neither Step 2 nor Step 3 identified
any instances, by removing the type from T as well as from any event’s object map.

4.4 Step 4: Property-to-Type Assignment

In this step, our approach tries to associate properties to object types, which are at-
tributes that capture information about an object instance associated with an event,
rather than relate to the event itself. For instance, although event e3 (“Pick item”) has a
Weight attribute with a value of “70.8”, it is clear that this refers to the weight of the
item, not of the event. Therefore, in this step we aim to establish a mapping between a
log’s attributes Att and the object types in T .

To establish this mapping, we first select all attributes that were not recognized as
object identifiers in Step 2. Then, we consider an attribute att to be a property of an
object type ot if (1) events related to ot have a value for att and (2) all events related to
the same object instance have the same value for att. The former ensures co-occurrence,
ascertaining that att indeed relates to ot, whereas the latter ensures that object properties
are immutable per object instance, in line with their definition in the OCEL format. In
this manner, we identify that Weight is an attribute of both the item and package

10 A. Rebmann et al.

types, whereas attributes such as a timestamp or employee are not identified as
properties, because they change across the events related to the same object instance.

Finally, we avoid assigning an attribute att as a property to multiple object types if
the attribute name indicates a clear relation to one of the types. For example, we avoid
assigning an item_category attribute to the package type, given that this property
clearly relates to items, irrespective of the co-occurrence of the attribute and packages.

4.5 Step 5: Instance-to-Event Assignment

Finally, our approach aims to complete the mapping between events and object in-
stances, which is necessary to account for missing instance-to-event and instance-to-
instance relations. The former involves events that correspond to a particular object
type, but for which no particular instance has yet been discovered. For example, event
e2 (“Reorder item”) is already recognized as relating to the item type, yet we still need
to identify that this event refers to the same item that is later handled by event e6 (“Pick
item”). The latter refers to the inter-relations that can exist among object instances,
which need to be reflected in the object maps of the corresponding events. For example,
since package p1 relates to order o1, event e4, which creates this package, should also
be associated with that order. We identify these missing relations as follows.
Finding missing instance-to-event relations. To find missing instance-to-event rela-
tions, we first identify the events that are associated with an object type (through Step 1),
but for which no instance was discovered in Step 2 or 3. This applies, e.g., to event e2
(“Reorder item”) and e7 (“Update order”). Then, given such an event, we search within
the case for other events that are associated with an object instance of the same type and
verify that the object’s properties match across the events. For instance, since event e2
has a Weight of 12.5, we do not want to associate it with the item of event e3, which
has a weight of 70.8, but rather with the same item as event e6, which also relates to
an item weighing 12.5kg. Should multiple object instances satisfy this requirement, we
associate the event to the instance of its nearest predecessor or successor.
Finding missing instance-to-instance relations. We look for instance-to-instance re-
lations by (1) considering relations between instances and cases, (2) identifying strict
orders among object types, and (3) consolidating cross-case relations.
Discovering case objects. We first exploit that, commonly, each case in a flat event log
corresponds to an instance of a particular object type, such as an order in our running
example. If such a case object can be identified, we know that any other object instance
handled in the same case also relates to that object, e.g., that the items and packages
handled in the first case all relate to order o1 as well.

However, to recognize such inter-relations, we need to identify the case object type,
if any, for a particular event log. Given that instances of this object type must, by def-
inition, be in a 1:1 relation with the cases in a log, we first discount all object types
for which this does not apply, i.e., which are affected by convergence and divergence
issues. Given an object type ot, we thus ensure that (1) no instance of ot is associated
with multiple cases in the log, such as the package type in the example, and (2) that no
case in the log is associated with multiple instances of ot, such as the item type.

If these checks yield a single case object type, otc, then we add each object instance
of that type to the object map of all events e in their case, using CaseID as the in-

Uncovering Object-centric Data in Classical Event Logs 11

stance’s identifier. For the example, order is the only object type that passes the checks,
which means that we assign orders o1 and o2 to all events in their respective cases.
Strict order between object types. We next identify instance-to-instance relations by
looking for the existence of strict orders between object types. Here, we consider an
object type ot1 to be in a strict order with type ot2 if every time an event related to ot2
occurs, an event related to ot1 (directly or indirectly) precedes it. In this manner, we, for
example, observe a strict order between items and packages in the running example.3

Given such a strict order between ot1 and ot2, we relate an instance o1 of type ot1 to
an instance o2 of ot2 if the life cycle of o1 completes before the life cycle of o2 begins,
i.e., if the last event related to o1 comes before the first event related to o2. For example,
we relate item i1_1, which last occurs in e6, to package p2, which first occurs in e9.
Consolidating cross-case relations. Last, we consolidate inter-relations across cases by
ensuring that duplicate events are associated with the same sets of object instances.
Given two duplicates, e and e′, we achieve this by associating both events with all
object instances stemming from the union of their object maps. For example, having
recognized that events e9 and e10 are duplicates, we add all object instances stemming
from case o1 (associated with e9) to the object map of e10, and vice versa. In this
manner, we, e.g., recognize that package p2, which is created by these duplicate events,
deals with item i1_1 (stemming from case o1) as well as item i2_1 (stemming from o2).

Having associated events with all object instances, our approach has uncovered the
necessary information to construct its output, an object-centric event log.

4.6 Output

Our approach returns an object-centric event log according to the OCEL format [13],
which, at a high level, consists of an objects and an events map.

The objects map relates object identifiers to instances, which are in turn associated
with their type and property values. To populate this map, we add all instance iden-
tifiers, either detected in Step 2 or generated in Step 3, to the map and associate these
instances with their properties identified in Step 4. Simultaneously, we also disassociate
any object property from the events that they were associated with in the flat event log,
e.g., rather than having Weight as an attribute of event e4, we represent it as a property
of the respective package: objects[p1] = {package, {Weight:“70.8”}}.

The events map associates identifiers with events, which are associated with object
instances through their omap. It is important to recognize that these events are no longer
grouped per case. As a result, we can omit any duplicate event from consideration, e.g.,
by removing event e10 and preserving e9. The map is then populated with the remaining
events, which are each associated with the identifiers of their respective object instances,
as assigned in Steps 2, 3, and 5, e.g., e1.omap = {“o1”,“i1_1”,“i1_2”}.

Based on the established maps, we return the object-centric log, which can directly
be used by object-centric process mining techniques [3, 18].

3 Note that these object types can still occur in an interspersed manner, as e.g., seen in case o1,
where events related to items also occur in between packages.

12 A. Rebmann et al.

5 Evaluation

We implemented our approach as a Python prototype1, using the PM4Py library [7]
for event log handling. Based on this prototype, we perform evaluation experiments to
assess our approach’s capability to rediscover artificially flattened object-centric logs
(Section 5.1). Then, we illustrate its practical value by showing that it can resolve di-
vergence and convergence in real-life scenarios (Section 5.2). Finally, we discuss the
main insights from our evaluation and its limitations (Section 5.3).

5.1 Rediscovering Object-centric Event Logs

We assess whether our approach is able to rediscover an artificially flattened object-
centric log by comparing its output with the original OCEL log.
Data. For our evaluation experiments, we use a publicly available OCEL log of an order
handling process.4 Currently, this is the only available log suitable for this evaluation.
It contains 22,367 events and 11,522 object instances of five object types: 2,000 orders,
8,159 items, 20 products, 17 customers, and 1,325 packages. From this original OCEL
log, we create three flattened logs, using the item, order, or package as the case notion.
The resulting logs capture 1:n, n:1, and n:m relationships between objects and include
object types both in attribute names and activity labels. Thus, all relation types are
covered, meaning that all strategies employed by our approach can be assessed.
Setup. To assess the ability of our approach to correctly discover relevant object-centric
information in the flat event log, we conduct experiments using two settings:
(1) All attributes. In this setting, we use all information from the flattened event logs as
input for the rediscovery task.
(2) Masked ID attributes. To assess the robustness of our approach, we also purposefully
reduce the information that is available by masking object ID attributes in the flattened
event logs. This increases the dependency of our approach on its instance discovery
techniques employed in Step 3. Specifically, we mask each ID attribute once for each
of the three flattened logs. Since the item and order logs include identifiers for all four
other types, and the package log captures only a customer identifier, we obtain nine
masked logs, one with package, four with item, and four with order as the case notion.

We measure the performance of our approach in terms of the well-known precision,
recall, and F1-score metrics with respect to the original OCEL log per type of element,
i.e., object types, object instances, properties, and instance-to-event-assignments. Using
A to denote the set of elements uncovered by our approach and G for the set of elements
in the ground truth, i.e., the OCEL log, precision is the fraction of elements uncovered
by our approach that are actually correct (|A∩G|/|A|), recall is the fraction of elements
in the OCEL log that were also correctly uncovered by our approach (|A∩G|/|G|), and
the F1-score is the harmonic mean of precision and recall. Because flattening the log
causes a loss of information about entire object types, we only include object types in
G that are actually contained in a particular flattened log. To avoid propagating false

1 https://gitlab.uni-mannheim.de/processanalytics/uncovering-object-centric-data
4 http://ocel-standard.org/1.0/running-example.jsonocel.zip

https://gitlab.uni-mannheim.de/processanalytics/uncovering-object-centric-data
http://ocel-standard.org/1.0/running-example.jsonocel.zip

Uncovering Object-centric Data in Classical Event Logs 13

positives from object-type extraction (Step 1), we only include elements in A that relate
to object types actually present in the original OCEL log for the other steps.
Results. Table 5 reports on the results of our rediscovery experiments, micro-averaged
over the logs for the respective settings. In the following, we discuss the results for the
different tasks that our approach addresses.
Object-type extraction. For the extraction of object types, our approach achieves a re-
call of 1.00 and a precision of 0.71, yielding an F1-score of 0.82. We thus accurately
identify all object types from the original log. The lower precision is caused by the ex-
traction of two additional object types, payment reminder and delivery. Although not
contained in the original OCEL log, their extraction is not problematic and can even
enable additional insights, e.g., on the number of payment reminders sent per order.
Object-instance identification. Our approach identifies object instances with perfect ac-
curacy in both the regular and masked settings. This highlights its ability to find and
match ID attributes to object types (Step 2) and the usefulness of our instance-discovery
strategies (Step 3), which can identify instances for types with masked ID attributes.
Property-to-type assignment. When assigning properties to object types, our approach
achieves a perfect recall, but a rather low precision of 0.37. An in-depth look reveals
that these different assignments are not problematic, though. For example, the attribute
cost is assigned to both product and item, whereas in the original it is only associated
with products. However, given that also items have costs, such assignments are redun-
dant, but not wrong. Similarly, our approach associates attributes such as price and
weight with orders, items, packages, and products. While these are realistic assign-
ments, the attributes are not considered as properties in the original OCEL log, but are
associated with events. Thus, our approach actually provides a more complete mapping.
Instance-to-event assignment. For instance-to-event assignment, we achieve an excel-
lent recall (0.998, rounded in Table 5) and a high precision (0.94) in the all-attributes
setting. Thus, our approach assigns relevant object instances to events they relate to. An
in-depth look into the constructed OCEL logs reveals that the superfluous assignments
of instances to events are mainly assignments of packages to events that relate to items
shipped in the respective package. Such assignments are not considered in the original
log, but can enable insights into the packaging process in a post-hoc analysis.

When masking identifier attributes, precision and recall decrease slightly, which
indicates that our approach occasionally makes incorrect assignments. This is especially
the case for 1:n relationships between object types and the case notion. For example, in
the order event log, where one order may contain many different items, items with the
same properties may be assigned incorrectly. However, it is important to recognize that

Table 5: Results of the evaluation experiments averaged over flattened logs.
Element All Attributes Masked ID Attribute

Count Precision Recall F1-score Count Precision Recall F1-score

Object Types 12 0.71 1.00 0.82 42 0.71 1.00 0.82
Object Instances 24k 1.00 1.00 1.00 94k 1.00 1.00 1.00
Object Properties 10 0.37 1.00 0.54 34 0.39 1.00 0.56
Instance-to-Event 411k 0.94 1.00 0.97 1,559k 0.93 0.97 0.95

14 A. Rebmann et al.

such assignments are simply not possible based on the information in the masked log,
whether done by an automated approach or manually.

5.2 Real-life Application Cases

We next demonstrate the practical value of our approach by showing that it is capable
of resolving convergence and divergence issues in well-known real-life event logs. The
full results and OCEL logs obtained by our approach can be found in our repository
(see Page 12). In the following, we use individual cases and events from these logs to
illustrate in detail how our approach mitigates divergence and convergence.
Divergence. We use the BPI17 application log [8] to show how our approach mitigates
divergence issues. The log captures a loan application process, containing 1,202,267
events, 31,509 cases, and 26 distinct activities. Divergence is particularly frequent, be-
cause the log uses the application as the case notion and one application can have multi-
ple offers. This means that cases in the log often contain multiple events that denote ex-
ecution of the same activity for distinct offers (divergence). Applying process discovery
to the log leads to loop-backs, as visualized in Fig. 4. This shows the directly-follows
graph (DFG) discovered for one case of the log, which is already quite complex.

When applying our approach to mitigate the divergence issue, we discover that
42,995 offers are handled in the 31,509 applications and that offers have several prop-
erties, such as an offered amount and a monthly cost. For the particular case in Fig. 4,
we find that four distinct offers are handled in this application, that these all have differ-
ent properties, and that the process is linear with respect to a single offer, e.g., 〈Create
Offer, O Created, O Sent, O Canceled〉. It is important to stress that this information
on the sub-case level is not readily available in the flat log and has to be uncovered by
identifying the distinct offers handled in a single case. Our approach achieves this by
extracting the offer type, finding an identifier attribute for it, and assigning it, among
others, the MonthlyCost and OfferedAmount properties.

Create Application
Create Offer

A Complete A Canceled
O Cancelled

O Created

O Sent

A Accepted

Fig. 4: Directly-follows graph of application 196483749 of the BPI17 log.

Convergence. To illustrate how our approach can mitigate convergence issues, we
chose the BPI19 event log [9], which captures data on the purchasing process of a
multinational company and contains 1,595,923 events across 251,734 cases with 42
distinct activities. Each event relates to a single purchase order item and multiple pur-
chase order items can belong to the same purchasing document. Consequently, events
on the purchasing-document level are duplicated across cases (convergence). For exam-
ple, the duplication of “Vendor creates invoice” events suggests the creation of invoices
per purchase order item, whereas in reality invoices can cover multiple such items.

When applying our approach to mitigate convergence, we discover, among others,
251,734 purchase order items, 76,349 purchasing documents, 86,868 invoices, 1,975

Uncovering Object-centric Data in Classical Event Logs 15

vendors, and 4 companies. The resulting OCEL log reveals the relationships between
object types, as shown in Fig. 5: Purchasing documents consist of any number of pur-
chase order items, a vendor creates multiple invoices, and each invoice is associated
with one purchasing document. Notably, in contrast to the input log, events related to
purchasing documents and invoices, such as “Vendor creates invoice” or “Document
created”, are not captured at the level of individual purchase order items, but at the
level of purchasing documents, thus eliminating duplicate events. This demonstrates
that our approach is able to reveal actual relationships among objects and mitigate the
convergence issue present in real-life logs.

1

1..*

0..*

11

1..*

Vendor Purchasing Document1 1..*

CompanyInvoice

Purchase Order Item1 1..*

Fig. 5: UML data model with relations between object types found in the BPI19 log.

5.3 Discussion

Our evaluation experiments show that our approach is capable of accurately uncovering
object-centric information from an artificially flattened object-centric event log, using
different settings and case notions. We also observe that our approach even uncovers
more information than originally captured in the OCEL log. This includes additional
object types, properties, and relations, which allow for deeper insights into the process.
The main difficulty for our approach was the recognition of object inter-relations for ob-
jects in a 1:n relation with the case object, which resulted in several incorrect instance-
to-event assignments. Despite their promise, the evaluation results must be considered
with care, given that only one original OCEL log was available as a basis.

The real-life application cases demonstrate that our approach can mitigate diver-
gence and convergence in real-life event logs. Although, due to a lack of a ground
truth, the completeness of uncovered object-centric information cannot be quantified,
the results nevertheless show that our approach provides considerable practical value
by extending the analysis potential for flat event logs of multi-object processes.

6 Related Work

Our work primarily relates to research on object-centric representations of event data
and discovering object-centric information from event logs.

After storing event data in flat formats like XES [5] for many years, the first data
format proposed for object-centric event logs was XOC [17], which does not require
a case notion and therefore avoids flattening multi-dimensional data. More recently,
researchers introduced the OCEL format [13], which allows for more efficient storage
and processing than its predecessor. Beyond log formats, another proposed option for
storing multi-dimensional object-centric event data are event graphs, which enable the

16 A. Rebmann et al.

analysis of behavior of different objects handled in a process [11]. For our approach,
we adopt OCEL as the output format, which, among others, enables the subsequent
application of techniques for discovering object-centric process models, such as object-
centric behavioral constraint models [18] and object-centric Petri nets [3].

Approaches for the discovery of object types and their behavioral relations from
event data usually require relational data or rich logs that cover multiple perspectives
of a process as input. This includes approaches for the discovery of artifact (i.e., object)
life cycles from raw logs of artifact-centric systems [10, 22] as well as the discovery of
behavioral dependencies between object types based on such logs [21] or based on data
extracted from ERP systems [19]. Compared to these approaches, our approach takes
flat event logs, where no explicit relations between objects are given, and transforms
them into object-centric logs. The approach by Bano et al. [6] also uses flat event logs
as input data, but their goal is to discover UML models from activity labels and attribute
names to provide analysts with domain-specific context information.

7 Conclusion

In this paper, we proposed an approach to uncover object-centric data from flat event
logs to automatically transform them into object-centric logs according to the OCEL
format. To this end, our approach combines the semantic analysis of textual attributes
with data profiling and control-flow-based relation extraction. It extracts object types,
discovers object instances and their properties, and assigns these instances to events
they relate to. We demonstrated our approach’s efficacy in an evaluation by showing
that it is able to rediscover an artificially flattened object-centric log and that it can
mitigate convergence and divergence issues in real-life event logs.

Our approach is subject to certain limitations. First, object types must at least be
mentioned in the flat log for our approach to extract them. However, once an object
type is extracted, instances, properties, and relations can be identified through the use
of diverse strategies that include and go beyond the semantic analysis of events. Second,
to accurately handle n:1 and m:n relations with respect to the case notion, our approach
relies on duplicate detection, which requires (non-duplicate) events to have discrimina-
tive timestamps or attribute values. Finally, because the assignment of objects to events
often depends on domain knowledge about inter-object relations, our approach can cur-
rently not handle all scenarios. For example, it is not clear without domain knowledge
that items shall relate to packages but not vice versa. Nevertheless, as our evaluation
shows, our approach achieves promising results and thus provides an important contri-
bution towards the applicability of object-centric process mining.

In future work, we aim to give domain experts the option to provide input regard-
ing the higher-level relations between different object types in the form of rules. For
example, they could state that, if an event results in the creation of an order, it also re-
lates to the items of that order. Then, only assignments that adhere to these rules could
be made. Moreover, we want to integrate common-sense knowledge into our approach,
which could help to derive relations between object types through their meaning.
Reproducibility: The implementation, employed data, and obtained OCEL logs are
available through the repository linked in Section 5.

Uncovering Object-centric Data in Classical Event Logs 17

References

1. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
2. van der Aalst, W.: Object-centric process mining: Dealing with divergence and convergence

in event data. In: Software Engineering and Formal Methods. pp. 3–25. Springer (2019)
3. van der Aalst, W., Berti, A.: Discovering object-centric petri nets. Fundamenta informaticae

175(1-4), 1–40 (2020)
4. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. The VLDB Journal

24(4), 557–581 (2015)
5. Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W., Günther, C., Verbeek, E.: IEEE

1849tm: The XES standard. IEEE Computational Intelligence Magazine pp. 4–8 (2017)
6. Bano, D., Weske, M.: Discovering data models from event logs. In: International Conference

on Conceptual Modeling. pp. 62–76. Springer (2020)
7. Berti, A., van Zelst, S., van der Aalst, W.: Process mining for python (PM4Py): Bridging the

gap between process-and data science. In: ICPM Demo Track. pp. 13–16. CEUR-WS (2019)
8. van Dongen, B.: BPI Challenge (2017). https://doi.org/10.4121/uuid:5f3067df-f10b-45da-

b98b-86ae4c7a310b
9. van Dongen, B.: BPI Challenge (2019). https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-

8ec8-e19730c248f1
10. van Eck, M., Sidorova, N., van der Aalst, W.: Guided interaction exploration in artifact-

centric process models. In: Business Informatics. pp. 109–118. IEEE (2017)
11. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. Journal on Data

Semantics 10(1), 109–141 (2021)
12. Fahland, D.: Artifact-centric process mining. In: Encyclopedia of Big Data Technologies, pp.

108–117. Springer (2019)
13. Ghahfarokhi, A., Park, G., Berti, A., van der Aalst, W.: OCEL: A standard for object-centric

event logs. In: Adv. in Databases and Information Systems. pp. 169–175. Springer (2021)
14. Havasi, C., Speer, R., Alonso, J.: Conceptnet 3: a flexible, multilingual semantic network for

common sense knowledge. In: Recent advances in natural language processing. pp. 27–29.
John Benjamins Philadelphia, PA (2007)

15. Leopold, H., van der Aa, H., Offenberg, J., Reijers, H.A.: Using Hidden Markov Models for
the accurate linguistic analysis of process model activity labels. Inf. Syst. 83, 30–39 (2019)

16. Levin, B.: English verb classes and alternations: A preliminary investigation. University of
Chicago press (1993)

17. Li, G., González López de Murillas, E., Medeiros de Carvalho, R., van der Aalst, W.: Ex-
tracting object-centric event logs to support process mining on databases. In: Advanced In-
formation Systems Engineering. pp. 182–199. Springer (2018)

18. Li, G., Medeiros de Carvalho, R., van der Aalst, W.: Automatic discovery of object-centric
behavioral constraint models. In: Business Information Systems. pp. 43–58. Springer (2017)

19. Lu, X., Nagelkerke, M., Van De Wiel, D., Fahland, D.: Discovering interacting artifacts from
erp systems. IEEE Transactions on Services Computing 8(6), 861–873 (2015)

20. Malone, T., Crowston, K., Herman, G.: Organizing business knowledge: The MIT process
handbook. MIT press (2003)

21. Popova, V., Dumas, M.: Discovering unbounded synchronization conditions in artifact-
centric process models. In: Business Process Management. pp. 28–40. Springer (2013)

22. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. International Journal of
Cooperative Information Systems 24(01) (2015)

23. Rebmann, A., van der Aa, H.: Extracting semantic process information from the natural
language in event logs. In: Advanced Information Systems Engineering. pp. 57–74 (2021)

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

	 Uncovering Object-centric Data in Classical Event Logs for the Automated Transformation from XES to OCEL

