
Enabling Semantics-aware Process Mining through
the Automatic Annotation of Event Logs

Adrian Rebmann, Han van der Aa
Data and Web Science Group, University of Mannheim, Mannheim, Germany

Abstract

Process mining is concerned with the analysis of organizational processes based on event data recorded during

their execution. Foundational process mining techniques analyze such data in an abstract manner, without

taking the meaning of these events or their payload into consideration. By contrast, other techniques may

exploit specific kinds of information contained in event data, such as resources in organizational mining and

business objects in object-centric analysis, to gain more specific insights into an organization’s operations.

However, the information required for such analyses is typically not readily available. Rather, the meaning

of events is often captured in an ad hoc manner, commonly through unstructured textual attributes, such

as an event’s label, or in unclearly named attributes. In this work, we address this gap by proposing an

approach for the automatic annotation of semantic components in event logs. To achieve this, we combine

the analysis of textual attribute values, based on a state-of-the-art language model, with novel attribute

classification and component categorization techniques. In this manner, our approach first identifies up to

eight semantic components per event, revealing information on the actions, business objects, and resources

recorded in an event log. Afterwards, our approach further categorizes the identified actions and actors,

allowing for a more in-depth analysis of key process perspectives. We demonstrate our approach’s efficacy

through an evaluation using a broad range of event logs and highlight its usefulness through four application

scenarios enabled by our approach.
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1. Introduction

Process mining refers to a family of techniques that analyze how organizational processes are truly

executed [1]. As a basis for this, these techniques use data recorded during the execution of processes,

stored in so-called event logs. An event log consists of a number of traces, each of which represents a

sequence of events that was performed for a particular case, such as an individual order or request. Most
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foundational process mining techniques treat these traces as sequences of abstract symbols, e.g., 〈a, b, c, d〉.

In this manner, they recognize that events have different classes (e.g., a or b), but they do not consider what

these actually mean in relation to the process (what is the role of step a in a process), or what the payload of

an event, in terms of its data attributes, says about the performed process step. Beyond such foundational

control-flow analysis of business processes, more advanced techniques do take the meaning of events or a part

of their data attributes into account. Examples for this include social network analysis [2], which considers

the actors that perform events, object-centric process analysis [3], which considers the business objects that

are handled in a process, and semantic anomaly detection [4], which detects abnormal process behavior by

considering the meaning of performed actions.

A key inhibitor of such advanced techniques is that the information required to conduct these analyses,

such as the actions, business objects, and actors associated with events, is not readily available in most

event logs. A prime cause for this is the limited standardization of event data, which is neither enforced nor

complete with respect to the relevant pieces of information, which we shall refer to as semantic components.

To illustrate these issues, consider Figure 1, which shows three events from real-life event logs, capturing

information on semantic components in various manners.

concept:name      O_Create Offer
time:timestamp    11-07-16 18:54
org:resource         User_28
Accepted              False         

object

obj.status

human

actor instance

create action

action

(a) Event e1 from BPI17 [5]

concept:name     SRM: In transfer to 
                            Execution Syst.
time:timestamp   02-01-18 14:53
User                     batch_00

action

passive role

system

actor instance

modify action

(b) Event e2 from BPI19 [6]

concept:name     Declaration final_approved 
                            by supervisor
time:timestamp   26-02-18 05:15
org:resource        staff member  

action

actor role

action statusobject

decide action

actor role

human

(c) Event e3 from BPI20 [7]

Figure 1: Exemplary events and their semantic components

All events have an event label (concept:name) and a timestamp (time:timestamp), specified using

attributes from the XES standard [8], whereas event e1 also uses the standard org:resource attribute to

capture which actor performed the event. However, this XES standard is not always followed properly.

For example, event e2 uses User, rather than the standard org:resource attribute, to indicate the actor,

whereas event e3 erroneously uses this standard attribute to capture information on the actor’s role (a staff

member) rather than on the specific actor instance. Furthermore, the XES standard only covers a limited set

of attributes, which means that information on semantic components such as actions, business objects, and

their status are not covered by the standard at all. Particularly problematic here is that information on these

and other components is commonly not explicitly captured through event attributes, but is rather part of

unstructured, textual data attributes associated with events, usually as part of their labels. For example, the
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“Declaration final_approved by supervisor ” label of e3 captures the event’s business object (declaration), the

action (submitted) along with its status (final), and the role of the actor (supervisor). Since these components

are all contained in the same label, the information cannot be used by process mining techniques.

Enabling this use requires the processing of each individual attribute value in order to identify the in-

cluded semantic information. Clearly, this is an extremely tedious and time-consuming task when considered

in light of the complexity of real-life logs, with hundreds of event classes, dozens of attributes, and thousands

of instances. Therefore, this calls for automated support for the semantic annotation of event data, in order

to make the information on relevant semantic components available to process mining techniques.

To accomplish this, we propose an approach that automatically identifies semantic information from

events without imposing any assumptions on the content or structure of a log’s attributes. In particular,

our approach aims to identify information on eight semantic component types, covering various kinds of

information related to business objects, actions, actors, and other resources. After this, our approach

further categorizes the identified actions and actors into various categories, allowing for a more fine-granular

analysis of the way in which a process is executed and what kind of resources are involved in its execution.

To achieve its goal, our approach combines state-of-the-art natural language processing (NLP) techniques,

tailored to the task of semantic role labeling, with novel techniques for semantic attribute classification and

component categorization.

We assess the accuracy of our approach by applying it on a collection of 14 real-world event logs.

Furthermore, we demonstrate its usefulness by showcasing four application scenarios that are only possible

thanks to the semantic annotations that our approach provides. Specifically, we show how our approach can

be used to (1) refine event labels in order to reduce the complexity of discovered process models, (2) enable

object-centric process analysis, (3) abstract event data by grouping together event classes belonging to the

same types of actions, and (4) analyze the automation degree of processes based on actor information.

This paper is an extended and revised version of our earlier work on the extraction of semantic process

information from event logs [9]. The approach presented here extends its previous version in terms of its

accuracy and scope. We improved its accuracy by expanding the attribute classification technique that we

developed to identify attribute-level semantic information, whereas the scope has been broadened by the

addition of an additional stage, which covers the aforementioned semantic categorization of identified actions

and resources. The utility of both extensions is assessed in additional evaluation experiments, whereas we

also added two new application scenarios to demonstrate the value of the expanded scope of our work.

The remainder of the paper is structured as follows. Section 2 defines the scope of our work in terms of

the covered semantic information and the main aspects involved in the annotation task. Section 3 presents

our improved and extended annotation approach. Section 4 reports on evaluation experiments that show

that our approach achieves accurate results on real-life event logs, spanning various domains and varying

considerably in terms of their informational structure. Afterwards, Section 5 highlights the usefulness of our
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approach in a qualitative manner by using it in four application cases. Finally, Section 6 discusses streams

of related work, whereas Section 7 concludes the paper.

2. Scope

This section describes the scope of our work in terms of the covered semantic information and the main

aspects involved in the annotation task. We divide this discussion into two parts: Section 2.1 covers the

scope with respect to the identification of semantic components in event data, whereas Section 2.2 discusses

the subsequent further categorization of identified components into more specific types.

2.1. Semantic Component Identification

Given an event log, our work first sets out to annotate pieces of information associated with events

that correspond to particular semantic components. This identification task covers the following semantic

component types (Section 2.1.1) and aspects (Section 2.1.2).

2.1.1. Semantic Component Types

Our work covers various component types that support a detailed analysis of business process execution

from a behavioral perspective, i.e., we target semantic components that are commonly observed in event

logs and that are relevant for an order-based analysis of event data. Therefore, we consider information

related to business objects, actions, and active and passive resources involved in a process’ execution. For

each of these categories, we define multiple semantic component types:

Business objects. In line with convention [10], we use the term business object to broadly refer to any

artifact or entity that is being handled in a process, which covers documents such as an offer or a declaration,

physical objects such as a car or a computer, but can also an relate to, e.g., a customer or an applicant. For

the events in a log, our work annotates two component types:

• object as the type of a business object, such as an offer or a declaration associated with an event,

and

• objectstatus as the reported status of a business object, e.g., whether an identified order is indicated

as being open, canceled, or accepted.

Actions. Similarly, we define two types of components to capture information on the actions that are

applied to business objects:

• action as the performed action itself, e.g., create, transfer, or approve, and

• actionstatus as further information on its lifecycle status, e.g., started, paused, final, or completed.

Resources. We capture information regarding the active resources of events, i.e., the entities that actually

performed the recorded actions, in the following two component types:
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• actorrole as the type or role of active resource in the event, e.g., a “supervisor ” or a “system”, and

• actorinstance for information indicating the specific actor instance, e.g., an employee identifier such

as “User_28 ”.

Aside from the actor, events may also store information on passive resources involved in an event, primarily

in the form of recipients. For this, we again define two component types:

• passiverole as the type or role of passive resource related to the event, e.g., the “supervisor ” receiving

a document or a system on which a file is stored or transferred through, and

• passiveinstance for information indicating the specific resource, e.g., an employee or system identifier

such as “batch_00 ”.

Coverage and extensibility. The considered semantic component types enable a broad range of fine-

granular insights into the execution of a process. For example, the business object and action categories allow

one to obtain detailed insights into the business objects moving through a process, their inter-relations, and

their life-cycles. Furthermore, by also considering the resource-related components, one can, for instance,

gain detailed insights into the resource behavior associated with a particular business object, e.g., how

resources jointly collaborate on the processing of a specific document.

While the covered component types, thus, support a wide range of analyses and are purposefully se-

lected based on their relevance in real-life event logs, our approach is by no means limited to these specific

component types. Given that we employ state-of-the-art NLP and classification technology that generalizes

well, the availability of appropriate event data allows our approach to be easily extended to cover additional

semantic component types, both within and outside the informational categories considered here.

2.1.2. The Component Identification Task

To ensure that all relevant information is identified in an event log, our work considers two aspects of

the semantic component identification task, concerned with two kinds of event attributes: attribute-level

classification for attributes dedicated to a single semantic component type and instance-level labeling for

textual attributes covering various component types:

Attribute-level classification. Attribute-level classification aims to determine the component types of

attributes that provide the same kind of information throughout an event log, e.g., a doctype attribute

indicating a business object (object) or an org:resource attribute capturing information on the specific

resource performing an event (actorinstance).

Although the XES standard [8] specifies several dedicated event attributes, such as org:resource and

org:role, these only cover a subset of the semantic component types relevant for our approach. Specifically,

they omit component types related to business objects, actions, and passive resources. Information on these

types may, thus, be captured in attributes with diverse names, e.g., in the real-life Hospital log [11], the

status of business objects (objectstatus) is jointly indicated by several event attributes, such as isCancelled
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and isClosed. Furthermore, even for component types covered by standard attributes, there is no guarantee

that event logs adhere to the conventions, e.g., rather than using org:group, the BPI14 [12] log captures

information on actors in an Assignment_Group attribute.

Instance-level labeling. Instance-level labeling, in turn, aims to identify semantic information for at-

tributes with unstructured, textual values that encompass various semantic component types, differing per

event instance. This task is most relevant for so-called event labels, often stored in a concept:name attribute.

Log ID Event label Semantic components

WABO [13] l1 T08 Draft and send request for advice action (×2), object

BPI15 [14] l2 send design decision to stakeholders action, object, passiverole

BPI15 [14] l3 send letter in progress action, object, actionstatus

RTFM [15] l4 Insert Date Appeal to Prefecture action, object, passiverole

BPI19 [6] l5 Vendor creates invoice actorrole, action, object

BPI19 [6] l6 SRM: In transfer to Execution Syst. action, passiverole

BPI20 [7] l7 Declaration final_approved by supervisor object, actionstatus, action, actorrole

BPI17 [5] l8 O_Create Offer action, object

Table 1: Exemplary event labels from real-life event logs with their semantic components.

These labels contain highly valuable semantic information, yet also present considerable challenges to

their proper handling, as illustrated through the real-life event labels in Table 1. The examples highlight the

diversity of textual labels, in terms of their structure and the semantic component types that they cover. It

is worth mentioning that such differences may even exist for labels within the same event log, e.g., labels

l5 and l6 (the label of e2 of the running example) differ considerably in their textual structure and the

information they cover, yet they both stem from the same event log. Another characteristic to point out

is the possibility of recurring component types within a label, such as seen for label l1, which contains two

action components: draft and send. Hence, an approach for instance-level labeling needs to be able to deal

with textual attribute values that are highly variable in terms of the information they convey, as well as

their structure.

2.2. Semantic Component Categorization

In this extended version of our initial semantic extraction work [9], we follow the identification of semantic

components with a further component categorization step. In this step, we use action categorization to

classify identified actions into pre-defined types of high-level actions, whereas we use resource categorization

to distinguish between human and system actors involved in a process.
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Action categorization. Due to the wide range of domains in which organizational processes occur, pro-

cesses can consist of a plethora of different actions, resulting in a virtually unlimited universe of potential

actions. Thanks to the state-of-the-art NLP technology on which our work builds, our component identifica-

tion approach can still recognize action components in an accurate manner, despite this variety. Neverthe-

less, various kinds of process analysis, such as abstraction, filtering, and conformance checking, can benefit

from having an understanding about which actions (or activities) in a process serve a similar purpose and

what that purpose actually entails, e.g., improving and updating both refer to a modification of a certain

business object. This calls for a reduction of the range of actions observed in a process to a set of known

higher-level action types.

To operationalize this, we use action categorization to assign a meaningful action type to each action

component identified for a process. As a basis for this categorization, we adopt the established action

classification framework of the MIT Process Handbook [16], which classifies process-related actions in a

hierarchical manner1. The top-most level of this hierarchy defines eight high-level actions, as follows:

• Create: An action is classified as create if its essence is focused on the creation of an output of some

sort, e.g., producing or documenting something.

• Modify : An action is classified as modify if its essence is focused on changing some attribute of the

input as the output, e.g., improving or sending something.

• Preserve: An action is classified as preserve if its essence is to keep the input unchanged as an output,

just at a later point in time, e.g., storing or packaging something.

• Destroy : An action is classified as destroy if its essence is focused on the destruction of an input of

some sort, e.g., retiring or eliminating something.

• Combine: An action is classified as combine if its essence is grouping or integrating multiples of an

input into a single collected output, e.g., grouping or matching something.

• Separate: An action is classified as separate if its essence is ungrouping or splitting a single collected

input into multiple outputs, e.g., dividing or extracting something.

• Decide: An action is classified as decide if its essence is a choice among multiple alternatives, e.g.,

determining or approving something.

• Manage: An action is classified as manage when the actual process to be used is yet unspecified, such

as a means of coordinating a dependency or other process, e.g., assigning or scheduling something.

A categorization of actions into these top-level action types then enables a more detailed view on the

process allowing analyses based on their meaning. For instance, it allows us to separate a process into

different stages, such as creation, processing (modifying), and decision phases, as we later illustrate in a

1Note that our work is independent of this specific classification scheme. It can be replaced with any categorization for

which instance data is available, such as the broader verb classification framework by Levin [17].
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real-world application scenario (Section 5).

Resource categorization. Being aware whether process steps are performed by humans or systems allows

for a detailed analysis of a process with respect to the resource perspective. For instance, it enables an

assessment of the degree of automation or system support of a process, as later shown in an application

scenario (Section 5). Furthermore, in the context of organizational mining, the interactions among employees

are of particular interest, which requires the ability to distinguish human from non-human resources. To

enable such analyses, we further categorize identified actors into system and human resources through

resource categorization.

While this categorization thus involves only two classes, properly operationalizing it is particularly in-

teresting. Specifically, a categorization approach has to take into account that the nature of a resource can

be derived from various kinds of information, which may or may not be available in a given event log or

for a particular resource. For example, while actorrole components that indicate roles such as a supervisor

or a service, already reveal the category of an actor from a semantic perspective, such clear descriptions

are rarely available. Similarly, actorinstance components can be expressive, e.g., User_28 or batch_00, but

may also be unspecific, e.g., res_90. Thus, both types of semantic components can provide useful informa-

tion, but cannot be solely relied on. Nevertheless, even when no meaningful information is available in the

actor-specific components themselves, insights about the resource category may still be derived by looking

at the context in which an actor operates. This can, for example, be achieved by considering the kind of

activities an actor performs—a resource associated with “SRM: In transfer to Execution Syst.” events is

likely to be a system—whereas also the duration of activities (instant versus highly variable), can be useful

to distinguish between actor types.

3. Semantic Annotation Approach

This section presents our approach for the semantic annotation of event data. Section 3.1 first introduces

the approach at a high level, whereas Section 3.2–Section 3.4 describe its main stages in detail. Finally,

Section 3.5 describes the output our approach generates in detail.

3.1. Approach Overview

The main input, main structure, and output of our semantic annotation approach are as follows:

Approach input. Our approach takes as input an event log L that consists of events recorded by an

information system. Each event e ∈ L carries information in its payload. This payload is defined by a set of

(data) attributes D = {D1, . . . , Dp} with dom(Di) as the domain of attribute Di, 1 ≤ i ≤ p, and name(Di),

its name. We write e.D for the value of D for an event e.
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Event log L Data type 
preprocessing

Semantic component 
identification

Instance-level 
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categorization

Action 
categorization
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categorization

Annotated 
event log L’

Figure 2: Overview of the approach.

Note that we do not impose any assumptions on the attributes contained in an event log L, meaning

that we do not assume that attributes such as concept:name and org:role are included in D.

Approach structure. The goal of our approach is to annotate the events in a log with additional informa-

tion about the semantic components contained in an event’s payload, as described in Section 2. To achieve

this, our approach consists of three main parts, as illustrated in Figure 2.

Given a log L, the data type preprocessing step first analyzes the domains of attributes in order to differ-

entiate among textual, miscellaneous, and irrelevant attributes. Next, the semantic component identification

stage aims to annotate each event with up to eight different component types. This stage consists of two

subsequent steps: instance-level labeling, which annotates the individual values of textual attributes, and

attribute-level classification, which determines the appropriate component type for entire attributes. Af-

terwards, our approach proceeds with the semantic component categorization stage, which consists of two

independent steps: in the action categorization step, identified action components are classified according

to eight high-level types, whereas resource categorization differentiates between human and system resources.

Output. As output, our approach returns an augmented event log L’, in the XES format, in which each

event e is extended with additional semantic information, i.e., with its action(s) and action type(s), business

object(s), and various kinds of resource-related information.

3.2. Data Type Preprocessing

In this step, our approach identifies sets of textual attributes DT , which will serve as input for the

instance-level labeling step, and miscellaneous attributes DM , which will become the input to the attribute-

level classification step. Attributes not included in either of these sets are deemed as irrelevant for our

purposes and, thus, omitted from further consideration. This preprocessing step is performed as follows.

Data type classification. We first use standard techniques, such as provided by the Pandas library2, to

classify each attribute in D as either timestamp, numeric, boolean, or string, based on its domain.

2https://pandas.pydata.org
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Identifying textual attributes. To identify the set of textual attributes DT , we differentiate between

string attributes with true natural language values, e.g., “Declaration final_approved by supervisor ” or

“O_Create Offer ”, and other kinds of alphanumeric attributes, with values such as “User_28 ”, “A”, and

“R_45_2A”. Only the former kind of attributes will be assigned to DT and, thus, analyzed on an instance-

level in the remainder of the approach. We identify such true textual attributes as follows:

1. Given a string attribute, we first apply a tokenization function tok, which splits an attribute

value into lowercase tokens (based on whitespace, camel-case, underscores, etc.) and omits any nu-

meric ones. E.g., given s1 = “Declaration final_approved by supervisor ”, s2 =“User_28 ”, and s3 =

“08_AWB45_005 ”, we obtain: tok(s1) = [declaration, final, approved, by, supervisor ], tok(s2) =

[user ] and tok(s3) = [awb].

2. We apply a part-of-speech tagger, provided by standard NLP tools (e.g., Spacy [18]), to assign a token

from the Universal Part of Speech tag set3 to each token. In this manner, we obtain [(declaration,

NOUN ), (final, NOUN ), (approved, VERB), (by, ADP), (supervisor, NOUN )] for s1, [(user, NOUN )]

for s2, and [(awb, PROPN )] for s3.

3. Finally, we exclude any attribute that only has values with the same token in tok(s) or that do not

contain any NOUN, VERB, ADV, ADP, or ADJ tokens. In this way, we omit attributes with values such as

s2 = “User_28" and s3 = “08_AWB45_005 ”, which are identifiers, rather than real textual attributes.

The other attributes, which have diverse, textual values, e.g., s1 =“Declaration final_approved by

supervisor”, are assigned to DT .

Selecting miscellaneous attributes. We also identify a set of non-textual attributes that are candidates

for semantic labeling, referred to as the set of miscellaneous attributes, DM ⊆ D \ DT . This set contains

attributes that are not included in DT , yet have a data type that may still correspond to certain semantic

component types, such as statuses or identifiers.

To establish DM , we first discard those attributes in D \ DT categorized as timestamp attributes, as

well as numeric attributes that include real or negative values. We exclude these because they are not

used to capture semantic information. By contrast, the remaining attributes have data types that may

correspond to component types, such as boolean attributes that can be used to indicate specific states,

e.g., Accepted, whereas non-negative integers are commonly used as identifiers, e.g., a customer attribute

with values such as “32015 ” and “49102 ”. These remaining attributes are then joined with the string

attributes that were not selected for DT , e.g., attributes with values such as the aforementioned “User_28 ”,

and “08_AWB45_005 ” examples, in order to form the set of miscellaneous attributes DM .

In this manner, given the log of example event e1, for instance, concept:name and org:resource are

assigned to DT , Accepted is assigned to DM , and time:timestamp is omitted from consideration.

3https://universaldependencies.org/docs/u/pos/

10

https://universaldependencies.org/docs/u/pos/


3.3. Semantic Component Identification

The semantic component identification stage consists of two subsequent steps. First, instance-level

labeling processes the values of textual attributes to extract the parts that correspond to semantic component

types, e.g., recognizing that a “document received ” event label contains the business object “document” and

the action “received ”. Afterwards, the attribute-level classification step identifies the appropriate component

type for each of the remaining attributes, i.e., it aims to determine the semantic component type that

corresponds to all values of a certain attribute by considering its value domain as well as its name. For

example, it recognizes that all values of a doctype attribute correspond to the object component type. The

details of these steps are as follows.

3.3.1. Instance-level Labeling of Textual Attributes

In this step, our approach annotates the values of textual attributes in order to extract the parts that

correspond to certain semantic component types, e.g., recognizing that the “O_Create Offer ” label of event

e1 contains “offer ” as the object and “create” as the action. As discussed in Section 2.1.2, this task

comes with considerable challenges due to the high diversity of textual attribute values in terms of their

linguistic structure and informational content. To be able to deal with these challenges, we therefore build

on state-of-the-art developments in the area of natural language processing.

Tagging task. We approach the labeling of textual attribute values with semantic component types as a

text tagging task. Therefore, we instantiate a function that assigns a type from the eight component types

described in Section 2.1 to chunks (i.e., groups) of consecutive tokens from a tokenized textual attribute

value. Formally, we use T to refer to the set of component types and we denote the outcome of the tok-

enization of an attribute value for a given event e ∈ L and attribute D ∈ DT , as tok(e.D) = 〈w1, . . . , wn〉,

where each token represents a word wi. Then, we define a function tag(〈w1, . . . , wn〉)→ 〈c1\t1, . . . , cm\tm〉,

where ci for 1 ≤ i ≤ m is a chunk consisting of one or more consecutive tokens from 〈w1, . . . , wn〉, with

ti ∈ T ∪ {other} as its associated semantic component type (or other for words that are not part

of a semantic component). For instance, tag(〈create, offer〉) yields 〈create\action, offer\object〉, while

tag(〈declaration,final, approved, by, supervisor〉) yields 〈declaration\object, final\actionstatus, approved\

action, by\other, supervisor\actorrole〉.

BERT. To instantiate the tag function, we employ BERT [19], a state-of-the-art transformer-based language

model that is capable of dealing with highly diverse textual input and achieves accurate results on a wide

range of NLP tasks. BERT has been pre-trained on huge text corpora in order to develop a general

understanding of a language. This model can then be fine-tuned by training it on an additional, smaller

training data collection to target a particular task. In this manner, the trained model combines its general

language understanding with aspects that are specific to the task at hand. In our case, we thus fine-tune

BERT in order to tag chunks of textual attribute values that correspond to semantic component types.
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Fine-tuning. For the fine-tuning procedure, we manually labeled a collection of 13,231 unique textual

values stemming from existing collections of process models [20], textual process descriptions [21], and

event logs (see Section 4.1). As expected, the collected samples do not capture information on resource

instances, and rather contain information on the type level (i.e., actorrole and passiverole). For those

semantic component types that are included in the samples, we observe a considerable imbalance in their

commonality, as depicted in Table 2. In particular, while component types such as object (14,629 times),

action (12,573), and even passiverole (1,191) are relatively common, we only found few occurrences of

actorrole (135), objectstatus (92), and actionstatus (30) component types.

Table 2: Characteristics of the training data used to fine-tune our BERT-based language model

Source Count object objectstatus action actionstatus actorrole passiverole other

Process models 11,658 13,543 50 11,445 3 58 1,058 4,966

Textual desc. 498 503 11 498 0 8 114 206

Event logs 625 583 31 630 27 69 19 291

Augmentation 450 350 100 350 150 200 0 150

Total 13,231 14,979 192 12,923 180 335 1,191 5,613

To counter this imbalance, we created additional training samples with objectstatus, actionstatus, and

actorrole component types using established data augmentation strategies. In particular, we created sam-

ples by complementing randomly selected textual values with (1) known actorrole descriptions, e.g., “offer

created" is extended to “offer created by supervisor", and (2) common life-cycle transitions from [1, p.131] to

create samples containing objectstatus and actionstatus component types, e.g., “check invoice” is extended

to “check invoice completed ”. However, as shown in Table 2, we limited the number of extra samples to

avoid overemphasizing the importance of these component types.

Given this training data, we operationalize the tag function using the BERT base uncased pre-trained

language model4 with 12 transformer layers, a hidden state size of 768 and 12 self-attention heads. As

suggested by its developers [19], we trained 2 epochs using a batch size of 16 and a learning rate of 5e-5.

Reassigning noun-only attributes. After applying the tag function to the values of an attribute D ∈ DT ,

we check whether the tagging is likely to have been successful. In particular, we recognize that it is hard

for an automated technique to distinguish among the object, actorrole, and passiverole component types,

when there is no contextual information, since their values all correspond to nouns. For instance, the

User attribute of event e2, which encompasses noun-based values like “user ” and “batch”, may be falsely

tagged as object rather than actorrole. This happens because business objects are much more common

4https://github.com/google-research/bert
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in the training data and the attribute values do not provide any further context that indicates the correct

component type. To overcome this issue, we establish a set DT
n ⊆ DT that contains all such noun-only

attributes, i.e., attributes of which all values correspond solely to the object component type. This set is

then forwarded to the attribute-level classification step of our approach, whereas the tagged values of the

other attributes directly become part of our approach’s output in the form of semantic annotations.

In this manner, we annotate the values of our example events’ concept:name attributes. For e1 we

annotate: create : action, offer : object, for e2: transfer : action, execution sys. : passiverole, and e3:

declaration : object, final : actionstatus, approve : action, supervisor : actorrole. The events’ noun-only

textual attributes, i.e., org:resource and User, are reassigned to be handled in the next step.

3.3.2. Attribute-level Classification

In this step, our approach determines the semantic component types of the miscellaneous attributes in

DM , such as the boolean Accepted attribute of e1, identified in the preprocessing stage, and the noun-only

textual attributes in DT
n , such as User of e2 and org:resource of e3, stemming from the previous step. We

target this task as a classification problem at the attribute level, i.e., we aim to identify a single semantic

component type t ∈ T ∪ {other} for each D ∈ DM ∪DT
n and then assign type t to each occurrence of D in

the event log. For attributes in DM , our approach operationalizes this classification task based on just an

attribute’s name, whereas it considers the name as well as the values of attributes in DT
n .

Note that we initially assign each attribute a component type t ∈ T ′, where T ′ excludes the instance com-

ponent types, i.e. actorinstance and passiveinstance, from T . Afterwards, our approach then distinguishes

between type-level and instance-level resource attributes based on their domain.

Classifying miscellaneous attributes in DM . To determine the component type of miscellaneous at-

tributes, we recognize that their values, typically alphanumeric identifiers, integers or boolean, are mostly

uninformative and thus not helpful for the classification task. Therefore, we determine the component type

of an attribute D ∈ DM based on its name. To do this, we build a classifier that classifies a name(D) based

on a set of available attribute names, which we each manually assigned a class from the set T ′.

Attribute classifier. As training data for this classification task, we take the set of attribute names from

the available real-world event logs used in our evaluation (see Section 4.1 for further details), complemented

with attribute names from the schema.org vocabulary. This latter resource provides suggestions for standard

attribute names that cover a broad range of object-related terms, e.g., product, as well as status and resource-

related terms, e.g., pending or agent. Table 3 provides an overview of the training data obtained in this

manner, which provides a good basis to train a classifier for our purpose.

Using this training set, we built a multi-class text classifier function classify(D), which, given an

attribute D, returns tD ∈ T ′∪{other} as the semantic component type closest to name(D), with conf(rD) ∈
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Table 3: Characteristics of the data used to training our attribute classifier.

Source object objectstatus actionstatus actorrole other

Real-life logs 6 6 1 8 38

Schema.org 68 22 4 91 70

Total 74 28 5 99 108

[0, 1] as the respective confidence value. To operationalize the classify function, we encode the training

data using the GloVe [22] vector representation for words. Subsequently, we train a logistic regression

classifier on the obtained vectors, which can then be used to classify unseen attribute names. Since GloVe

provides a state-of-the-art representation to detect semantic similarity between words, the classifier can

recognize that, e.g., an item attribute is more similar to object attributes like “product”, than to the names

associated with other component types in the dataset.

Detecting status attributes. Although the classify function is able to recognize the majority of relevant

attribute classes, we observe that it relatively often fails to recognize objectstatus attributes, which may be

falsely classified as either object or other. A primary reason for this is that examples of the objectstatus

class are underrepresented in the available training data, whereas the class also relates to a broad range

of different kinds of statuses. However, we also observe that such objectstatus attributes commonly follow

a particular style. Specifically, status attributes often have a name that contains the past participle of a

verb, e.g., “selected ”, “is closed ”, “accepted ”, accompanied by Boolean or categorical attribute values, e.g.,

indicating that the respective object is indeed closed.

Using this insight, we therefore re-assign the class of any attribute D ∈ DM of which name(D) ends with

a past participle, thus overwriting the class tD assigned by the classifier with objectstatus. The detection

of such cases can be achieved by using standard NLP techniques, such as SpaCy in Python [18]. In this

manner, our approach annotates the values of the boolean Accepted attribute of e1 as objectstatus.

Classifying noun-only attributes in DT
n . Next, we turn to the classification of the noun-only attributes

in DT
n , which were identified in the instance-level labeling step. Recall that these are textual attributes of

which all values were entirely classified as being of the object component type, a situation that hints at a

lack of context for their proper analysis (see, e.g., the User attribute of event e2). To properly classify such

attributes, we therefore first apply the same classifier as used for miscellaneous attributes. If classify(D)

provides a classification with a high confidence value, i.e., conf(tD) ≥ τ for a threshold τ , our approach uses

tD as the component type for an attribute D ∈ DT
n . In this way, we directly recognize cases where name(D)

is equal or highly similar to the attributes in our training data. However, if the classifier does not yield a

confident result, we instead analyze the textual values in dom(D).
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Since noun-only attributes were previously re-assigned due to the lack of context available for their values,

e.g., they just consist of words like “user ” or “vendor ”, we overcome this issue by placing them in artificial

contexts that cover various kinds of semantic components, allowing us to recognize the appropriate role of

an attribute value. To provide these contexts, we use a selection of highly expressive textual attribute values

from the training collection of the instance-level labeling step. Specifically, we use a set T of texts consisting

of the 891 unique attribute values that contain at least three different kinds of semantic components.

To illustrate this, consider “vendor ” as an attribute value, and t =“confirm to customer that paperwork

is ok ” as the context value from T , which contains information on action (confirm), a passive resource

(customer), a business object (paperwork), and the object’s status (ok). As shown in Figure 3, we create

artificial texts for the attribute value by replacing a semantic component type from t with the word “ven-

dor ”. We subsequently feed these artificial texts into the language model used for instance-level labeling

(Section 3.3.1), which can then be used to quantify the confidence score that the attribute value corresponds

to the semantic component type it replaced in an artificial text. For instance, in Figure 3, “vendor ” is

regarded as most likely corresponding to a passive resource for the context t, which we consider as a vote in

favor of the passiverole component type. Having computed these confidence scores for all attributes values

in dom(D) against all exemplary contexts in T , we assign tD ∈ T ′ ∪ {other} as the component type that

received the most votes overall.

Context t: confirm (action) to customer (passiverole) that paperwork (object) is ok (objectstatus)

Replace action vendor to customer that paperwork is ok → conf(action) = 0.26

Replace passiverole confirm to vendor that paperwork is ok → conf(passiverole) = 0.81

Replace object confirm to customer that vendor is ok → conf(object) = 0.68

Replace objectstatus confirm to customer that paperwork is vendor → conf(objectstatus) = 0.66

Figure 3: Insertion of value “vendor ” into an existing context t, providing support for it being a passive resource.

Recognizing instance-level attributes. Since we only focused on the type-level components T ′ in

the above, we lastly check for every attribute that was classified as being resource related, i.e., with tD ∈

{actorrole, passiverole}, if it actually corresponds to an instance-level component type instead. Particularly,

we change tD to the corresponding instance-level component type if dom(D) has values that contain a numeric

part or only consist of named-entities (e.g., “Pete”). For instance, a User attribute (cf. event e2) with values

like batch_00, contains numeric parts and is, thus reassigned to actorinstance, while the attribute of event e3,

with dom(org:resource)= {staff member, system}, clearly does not describe individual resource instances

and, therefore, will retain its actorrole component type.5

5Note that this is an interesting case, given that org:resource attributes are normally used to indicate actor instances.
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3.3.3. Component Identification Output

Having completed both the instance-level labeling and attribute-level classification steps, the component

identification stage of our approach returns a collection of tuples (t, v) with t ∈ T a semantic component

type and v a value, for each event e ∈ L. For values of a textual attribute D1 ∈ DT \ DT
n ), v corresponds

to part of the attribute value e.D1. For those attributes that were classified at the attribute level, i.e.,

D2 ∈ DM ∪ DT
n , a tuple receives the entire value. In case of boolean values, the attribute’s name is used

if the original value is true, if it is false, “not” is prepended to the attribute’s name. For event e1 of our

running example, we obtain the tuples (action, create) and (object, offer) based on instance-level labeling

and (actionstatus, notAccepted) and (actorinstance, User_28 ) based on attribute-level classification. For

e2, we obtain (action, transfer) and (passiverole, execution syst.) based on instance-level labeling and

(actorinstance, batch_00 ) based on attribute-level classification. Finally, for e3, we obtain (object, declara-

tion), (actionstatus, final), (action, approve), and (actorrole, supervisor) based on instance-level labeling

and (actorrole, staff member) based on attribute-level classification.

3.4. Semantic Component Categorization

In this section, we describe the two steps of the component categorization stage: action categorization

(Section 3.4.1) and resource categorization (Section 3.4.2).

3.4.1. Action Categorization

In this step, our approach aims to classify identified action components, stemming from the previous

stage, according to the eight high-level action categories described in Section 2.2. In this manner, we are

able to recognize which events in a log relate to similar kinds of process steps, such as events that create,

modify, or combine objects. For instance, we recognize that the transfer action of event e2 modifies the

handled item, whereas the approve action of event e3 refers to a decision about a declaration.

We tackle this categorization task by establishing a set of reference actions, derived from the same MIT

Process Handbook [16] that defines the eight high-level action categories. Then, given an action identified

in the log, we use these reference actions to determine the most suitable high-level category.

Table 4 provides an overview of the collection of reference actions Ar established for this purpose, which

corresponds to the actions found in the first four layers of the action hierarchy defined by the handbook.

We note that lower parts of the hierarchy do not provide additional reference actions, but rather contain

more specific versions. For example, given “retire” as as a reference action for Destroy, further layers of

the hierarchy include “retire physical object” and “retire digital object” as specializations, whose inclusion

would not help to categorize individual actions. It is important to remark here that some reference actions

are part of multiple high-level categories, given that an action can have different impacts depending on its

context. For example, the reference action “document” is part of both the Create and Preserve categories,
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since documenting something can both indicate the creation of a new informational object, as well as the

preservation of information, such as writing down a decision.

Category Exemplary reference actions Count

Create build, duplicate, design, produce, document 15

Destroy retire, dispose, eliminate, obliterate, depreciate 7

Modify improve, update, complete, move, send 24

Preserve wait, retain, store, document, package 10

Combine group, organize, match, aggregate, link 10

Separate disaggregate, divide, segment, diversify, extract 10

Decide select, determine, assign, assess, approve 20

Manage assign, organize, allocate, schedule, budget 11

Table 4: High-level action categories and exemplary reference actions.

To categorize an identified action component a, we first determine the most similar reference action

ar ∈ Ar. For this purpose, we again employ the GloVe vector representations for words [22]. Given these

vectors, we compute the cosine similarity between all vector pairs (a, a′), with a′ ∈ Ar, retrieving the

reference action ar with the highest similarity to a. We then categorize action a according to the high-level

category that ar is part of. For example, given a = “transfer ”, we obtain ar = “move” as the reference

action, so that a is accordingly recognized as belonging to the Modify category.

Note that in cases where there are multiple reference actions with the same, highest similarity score for

a given action a (and those actions being part of different categories), or if the most similar reference action

is part of multiple high-level categories, we break the tie by computing the similarity between a and the

high-level actions themselves, assigning a to the category with the highest similarity score. For example,

given the action “write”, we obtain “document” as the reference action, which is part of both the Create

and Preserve categories. Because “write” has a higher semantic similarity to the term “create” than to

“preserve”, we assign the action to the former category.

In this manner, we annotate the create action of the example event e1 with the Create action type, the

transfer action of e2 with Modify, and the approve action of e3 with Decide.

3.4.2. Resource Categorization

Finally, our approach turns to the categorization of the resources identified in an event log, determining

whether they correspond to human or system actors. For instance, we categorize the actorinstance compo-

nent “User_28 ” of event e1 as human and the actorinstance component “batch_00 ” of event e2 as system.

Depending on the event log or specific resource, the information that may be available to perform this

categorization can vary greatly, ranging from specific descriptions of actor roles, e.g., supervisor and staff
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member in event e3, to only having information on identifiers, e.g., batch_00 or or User_28 in the other two

example events. Therefore, we propose several different strategies, exploiting different kinds of information.

Identifying individual actors. We perform this categorization task for each actor contained in a log,

which means that we first determine the set of resources R that performed events, including all information

available on them. To achieve this, we populate R with all distinct actorinstance components, since these

represent unique actors. We associate these with any actorrole components found in an actor’s events. For

example, given an event with actorinstance = “0011 ” and actorrole = “supervisor ”, we add the resource

tuple r1 = (actorrole = “supervisor ”, actorinstance = “0011 ”) to R. For events without actorinstance

but with actorrole information, we consider unique combinations of actorrole components as additional

actors and add them to R. For instance, for event e3, which has two actorrole components but no instance

information, we add r2 = (actorrole = “supervisor ”, actorrole = “staff member ”) to R.

Categorization strategies. To categorize a resource, we apply up to four categorization strategies in a

sequential manner: (1) WordNet-based categorization of actorrole components, (2) named entity recognition

of actorinstance components, (3) BERT-based resource classification, and (4) execution time analysis. The

underlying idea is that the earlier strategies are highly precise, but may not be applicable for every resource

r ∈ R. Therefore, if a strategy yields a hit for r, we use that outcome to categorize it, while otherwise our

approach moves to the next strategy in the list.

WordNet-based categorization of actorrole components. This strategy aims to categorize a resource by com-

paring its actorrole component, if available, to categories established in the lexical database WordNet [23].

This database relates words to each other via semantic relationships, such as hypernymy. A hypernym is a

more general term for a given word, e.g., “color ” is the hypernym of “red ”.

If the actorrole value of a resource r is included in WordNet, we use the hypernymy relation to check if

the value has a hypernym that corresponds to person or organization, in which case we categorize r as being

human, or to system, computer, or information, in which case we categorize r as a system. For example, this

strategy detects that a “vendor ” is a person and, thus, a human actor, whereas a “database” corresponds to

information, and is thus categorized as a system.

While this strategy is highly precise, its applicability is impeded by the relatively limited scope of

WordNet, which only covers rather common English terms. As such, this strategy requires that a resource

has a semantically meaningful actorrole component and, furthermore, that this is not too domain-specific.

Named entity recognition of actorinstance components. This strategy aims to detect human resources by

determining if information contained in the actorinstance component corresponds to a known name, e.g.,

Pete or Wil. For this purpose, we use a standard named entity recognizer (NER) [18] to check if the available

instance information is found to be a person. In this manner, we are able to recognize a broad range of

given and surnames of involved human actors, though this strategy can naturally only be applied to event
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logs that have not been properly pseudonomymized.

BERT-based resource classification. If the two previous deterministic strategies do not yield a result, we

next apply a probabilistic strategy that aims to classify a resource according to the textual information

contained in its components (if any), as well as based on the activities that it performs. While the former

speaks for itself, the idea of the latter is that the names of activities can indicate whether they are likely

to be performed in an automated manner, i.e., by a system, or not. For instance, a resource performing a

“transmit data” activity is more likely to be a system than a resource performing a “conduct quality check ”

activity, which would require the expertise of a human.

We operationalize this step by fine-tuning a BERT-based language model to the task of classifying textual

fragments, consisting of actor descriptions and activity names, as either system or human. To train this

model, we employ a dataset and gold standard established by Leopold et al. [21], which contains sets of

activities that are classified as being performed in an automated or in a manual fashion. In this manner,

the fine-tuned model will learn to distinguish texts that relate to automated activities performed by system

actors and manual activities performed by human actors. Given a resource r, we consider each unique event

label l of an event that r performs and apply the fine-tuned BERT model on the string l+ “by” +r.actorrole

(or just l if r has no actorrole). For instance, with l = “in transfer to execution sys” and res = “batch”, we

feed “in transfer to execution sys by batch” to the classifier. The classifier recognizes this activity as being

performed by a system, resulting in a vote for the system category. Afterwards, we assign the category of

r according to the most commonly predicted class across all unique labels that r has executed in the log.

Naturally, this strategy requires event labels with sufficient semantic information, i.e., activities that

refer to an action and/or business object. Therefore, we only apply this strategy for labels that contain

at least one of these components. Alternatively, in case actorrole components are available for a resource,

we can use these as standalone input to the classifier if no labels with sufficient semantic information are

available. If neither informative labels nor actor descriptions are available, we turn to the last strategy.

Execution time analysis. Finally, for resources where none of the previous semantic strategies can be applied,

we use a final categorization heuristic. Specifically, we consider the execution times of the events that are

performed by a given resource r. If these times hint at instantaneous execution of process steps, i.e., the

timestamp of an event and its predecessor is equal6, we categorize r as a system, otherwise as a human actor.

For our running example, we categorize the actor of e1, User_28, as human using BERT-based resource

classification, which is based on the word User itself, in combination with the labels of the events that

the actor performed. The actor of event e2 is categorized as system, based on the same strategy, whereas

the actor of e3 is categorized as human based on WordNet, which relates both its actorrole components,

supervisor and staff member, via the hypernymy relation to the word person.

6While the timestamp is at least specific to the second.
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3.5. Output

The component identification stage of our approach returns a collection of tuples (t, v) with t ∈ T a

semantic component type and v a value, for each event e ∈ L, as described in Section 3.3.3. Afterwards,

the component categorization stage adds a tuple (action:type, cata), with cata as a high-level action, for

each identified action component, and a tuple (actor:type, catr), with catr as either human or system, if

applicable. To enable the subsequent application of process mining techniques, the implementation of our

approach returns an augmented XES event log that captures these tuples as dedicated, additional event

attributes. We, thus, do not override any attributes from the original log.

Note that we support different ways to handle cases where an event has multiple tuples with the same

semantic component type, such as the “draft” and “send ” actions stemming from a “draft and send request”

label or staff member and supervisor, both actorrole components stemming from the same event e3. Par-

ticularly, users can choose to collect the values into one attribute, i.e., action = [draft, send ] and actorrole

= [staff member, supervisor ], or into multiple, uniquely-labeled attributes, i.e., action:0 = draft, action:1

= send and actor:role:0 = supervisor, actor:role:1 = staff member. Information on the respective

action types is then analogously captured in one or more event attributes. Lastly, if multiple objectstatus

(or actionstatus) attributes exist that each have Boolean values, e.g., isCancelled and isClosed for the

Hospital log [11], these are consolidated into a single attribute, for which events are assigned a value based

on their original Boolean attributes, e.g., {⊥, isCancelled, isClosed}.

For our running example, we obtain the annotated events as shown in Figure 4 as the final output of our

approach, which make the semantic components available for process analysis techniques.

concept:name      O_Create Offer
time:timestamp    11-07-16 18:54
org:resource         User_28
Accepted              False
————————————————
action:name         create
action:type           create
object:name         offer
object:status        notAccepted
actor:instance      User_28
actor:type             human
                       

(a) Output for event e1

concept:name     SRM: In transfer to 
                            Execution Syst.
time:timestamp   02-01-18 14:53
User                     batch_00
————————————————
action:name         transfer
action:type           modify
passive:role          Execution Syst.
actor:instance      batch_00
actor:type             system   

(b) Output for event e2

concept:name     Declaration final_approved 
                            by supervisor
time:timestamp   26-02-18 05:15
org:resource        staff member
———————————————————
action:name         approve
action:status        final
action:type           decide
object:name         declaration 
actor:role:0           supervisor
actor:role:1           staff member
actor:type             human     

(c) Output for event e3

Figure 4: Final output of our approach for the running example’s events

4. Evaluation

In this section we describe evaluation experiments we conducted to demonstrate the accuracy of our

proposed event log annotation approach with respect to its ability to both identify and categorize semantic
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components. Section 4.1 presents the collection of 14 real-life event logs we use as a basis for these ex-

periments, Section 4.2 describes the employed implementation and experimental setup, whereas the results

are presented and discussed in Section 4.3. To support reproducibility, the employed implementation, gold

standard, and links to the event logs are all available through our project repository.7

4.1. Evaluation Data

To conduct our evaluation, we selected all real-life event logs publicly available in the common 4TU

repository8, excluding those capturing data on software interactions or sensor readings, given their lack of

natural language content. For collections that included multiple event logs with highly similar attributes,

i.e., BPI13, BPI14, BPI15 and BPI20, we only selected one log per collection, to maintain objectivity of the

obtained results. Table 5 depicts the details on the resulting collection of 14 event logs. They cover processes

of different domains, for instance financial services, public administration and healthcare. Moreover, they

vary significantly in their number of event classes, textual attributes, and miscellaneous attributes.

Table 5: Event log characteristics, with C as the set of event classes, D of data attributes, and DT of textual data attributes.

Log name Ref. |C| |D| |DT| Log name Ref. |C| |D| |DT|

BPI12 [24] 24 4 2 BPI20 [7] 51 5 4

BPI13 [25] 4 11 4 CCC19 [26] 29 9 4

BPI14 [12] 39 7 2 Credit Req. [27] 8 4 3

BPI15 [14] 289 13 3 Hospital [11] 18 20 2

BPI17 [5] 26 15 4 RTFM [15] 11 15 2

BPI18 [28] 41 12 5 Sepsis [29] 16 31 1

BPI19 [6] 42 4 2 WABO [13] 27 6 2

4.2. Setup

We conducted our evaluation experiments based on the following.

Implementation. We implemented our approach in the form of a Python prototype, which is publicly

available through the aforementioned project repository and also includes a command that allows users to

directly incorporate our approach in their Python projects through pip installation.

Our implementation uses the PM4Py [30] library to handle event logs, Pandas9 for the data type prepro-

cessing stage, the BERT base uncased pre-trained language model10 as a foundation for the instance-level

labeling step, and GloVe vector representations [22] to determine semantic similarity between words.

7https://gitlab.uni-mannheim.de/processanalytics/semantic-event-log-annotation
8https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
9https://pandas.pydata.org

10https://github.com/google-research/bert
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Gold standard. As a basis for our evaluation, we established a gold standard in which we manually an-

notated the contents of all 14 event logs used in the evaluation. For the component identification stage,

we annotated all unique textual values, for instance-level labeling, and attributes, for attribute-level classi-

fication with their proper semantic component types. For the component categorization stage, we labeled

identified resource components as system if the description of the data set clearly stated which resources

are systems or if explicit information about the resource type was available from the event log itself. The

action components that our approach identified in the 14 evaluation logs were labeled with their action

type according to the MIT Process Handbook [16].

For reproducibility, the gold standard is published in the aforementioned project repository.

Cross-validation procedure. The semantic component identification stage of our approach uses a lan-

guage model in the instance-level labeling step (Section 3.3.1) and a classifier in the attribute-level classifi-

cation step (Section 3.3.2) that are both, among others, trained on data from the same real-life event logs

used in the evaluation. Therefore, to avoid biasing the results, we perform our evaluation experiments using

leave-one-out cross-validation, in which we repeatedly train our approach using data from 13 event logs and

evaluate it on the 14th. This procedure is repeated such that each log in the collection is considered as

the test log once. For the component categorization (Section 3.4), this procedure is not required, since the

training data we use does not stem from the collection of evaluation logs.

Evaluation metrics. To assess the performance of our approach, we compare the annotations obtained

using our approach against the established gold standard. Specifically, we report on the standard precision,

recall, and the F1-score. Note that for instance-level labeling, we evaluate correctness per chunk, e.g., if a

chunk (purchase order, object) is included in the gold standard, both “purchase” and “order ” need to be

associated with the object component type in the result, otherwise, neither is considered correct.

Baselines. We aim to place the results obtained by our approach into context by comparing them to those

obtained by relevant baselines. While there is no baseline against which we can compare our entire work,

we compare the accuracy of our instance-leveling step against an existing activity label parser [20] and we

compare the improved version of our attribute-level classification step against its old version [9]. The details

of these comparison are described in the respective parts of the results discussion below.

4.3. Results

In this section, we consider the accuracy of our approach when it comes to semantic component identi-

fication (Section 4.3.1) and categorization (Section 4.3.2).

4.3.1. Component Identification Results

We assess the results of the component identification stage by first considering the individual instance-

level labeling and attribute-level classification steps, followed by a discussion of the overall results.
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Instance-level labeling results. Table 6 shows the results obtained when labeling the 625 unique textual

attribute values included in the event logs, where the Count column reflects the respective number of times a

component type occurred in the gold standard. The table shows that our instance-level labeling technique is

able to identify semantic components in textual attributes with high accuracy, achieving an overall F1-score

of 0.91. The comparable precision and recall scores, e.g. 0.94 and 0.95 for action or 0.89 and 0.88 for

object, each suggest that the approach can accurately identify components while avoiding false positives.

This is particularly relevant, given that nearly half of the textual attribute values also contain information

beyond the scope of the semantic component types considered here (as shown in Table 2, there are 291

textual parts marked as other). Due to this ability to recognize which parts of texts are actually relevant

for the component identification task, our approach even performs well on complex values. For example, for

the “t13 adjust document x request unlicensed ” from the WABO log [31], our approach correctly recognizes

the business objects (document and request), the action (adjust) and status (unlicensed), while omitting the

superfluous content (t13 and x ) from consideration.

Table 6: Results of the instance-level labeling step for the 625 unique textual attribute values.

Component Count Prec. Rec. F1

object 583 0.89 0.88 0.88

objectstatus 31 0.85 0.77 0.78

action 630 0.94 0.95 0.94

actionstatus 27 0.85 0.81 0.82

actorrole 69 0.93 0.84 0.88

passiverole 19 0.84 1.00 0.91

Overall 1,359 0.91 0.91 0.91

Challenges. We observe that the primary challenge for our approach relates to the differentiation between

relatively similar semantic component types, namely between the two kinds of statuses, objectstatus and

actionstatus, as well as the two kinds of resources, actorrole and passiverole. Making this distinction is

particularly difficult in cases that lack sufficient contextual information or proper grammar. For example,

an attribute value like “denied ” can refer to either type of status, whereas it is even hard for a human

to determine whether the “create suspension competent authority” label describes competent authority as a

primary actor or a passive resource.

Baseline comparison. To put the performance of the instance-level labeling step into context, we compared

it to a state-of-the-art technique for the parsing of process model activity labels, proposed by Leopold et

al. [20]. For a fair comparison, we retrained our approach on the same training data as used to train the

baseline (corresponding to the collection of process models in Table 2) and only assess the performance with
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respect to the recognition of business objects and actions, since the baseline only targets these. Table 7

presents the results obtained in this manner for the event labels from all 14 considered event logs.

The table shows that our approach greatly outperforms the baseline, achieving an overall F1-score of

0.75 versus the baseline’s 0.47. Post-hoc analysis reveals that this improved performance primarily stems

from event labels that are more complex (e.g., multiple actions, various semantic components or compound

nouns spanning multiple words) or lack a proper grammatical structure. This is in line with expectations,

given that the baseline approach has been developed to recognize several established labeling styles, whereas

we observe that event data often does not follow such modeling guidelines in practice. Finally, it is worth

observing that the performance of our approach in this scenario is considerably lower than when trained on

the full data collection (e.g., an F1 of 0.66 versus 0.88 for the object component type), which highlights the

benefits of our data augmentation strategies as well as the benefits of also training on event labels besides

process model activities.

Table 7: Comparison of our instance-level labeling technique against a state-of-the-art label parser. Both techniques are trained

on process model activity labels and evaluated on the event labels in our data collection.

Our approach Baseline [20]

Component Count Prec. Rec. F1 Prec. Rec. F1

object 562 0.65 0.68 0.66 0.40 0.40 0.40

action 618 0.86 0.81 0.83 0.59 0.48 0.53

Overall 1,180 0.76 0.75 0.75 0.50 0.44 0.47

Attribute-level classification results. After discarding 61 out of the total of 156 attributes in the

preprocessing step and handling 24 attributes at the instance-level, a total of 71 attributes in DM ∪ DT
n

reach the attribute-level classification step. 36 of these attributes relate to one of the semantic component

types, whereas the remaining 35 are of the other category. As shown in Table 8, our approach achieves highly

accurate results for this step, with an overall precision of F1 score of 0.92 for the 36 attributes corresponding

to semantic components and of 0.91 for the entire set. Notably, these results reveal that our approach is

able to avoid false positives well, even though a substantial amount of event attributes are beyond the scope

of our semantic component types, such as monetary amounts or timestamps. This achievement can largely

be attributed to the domain analysis employed in our approach’s first step.

We remark that the outstanding performance of our approach with respect to the actionstatus and

actorinstance component types is in part due to the usage of standardized XES names for some of these

attributes, enabling easy recognition. Yet this is not always the case: 5 out of 18 actorinstance attributes use

different names than the XES standard (org:resource or org:group), such as User or Assignment_Group.

Our approach nevertheless maintains a high accuracy for these cases, correctly recognizing all such attributes.
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Table 8: Results of the attribute-classification step for the non-textual attributes

Our approach Old approach [9]

Component Count Prec. Rec. F1 Prec. Rec. F1

object 6 0.67 1.00 0.80 1.00 0.33 0.50

objectstatus 6 0.83 0.83 0.83 0.50 0.33 0.40

actionstatus 6 1.00 1.00 1.00 1.00 1.00 1.00

actorinstance 18 0.95 1.00 0.97 0.95 1.00 0.97

other 35 0.94 0.86 0.90 0.81 0.92 0.86

Overall (without other) 36 0.89 0.97 0.92 0.89 0.78 0.80

Overall (with other) 71 0.92 0.91 0.91 0.85 0.88 0.83

Overall, however, it is important to consider that these results were obtained for a relatively small set of 36

semantic attributes. Therefore, both the remarkable performance for most component types, as well as the

comparably lower accuracy for object attributes should be considered with care.

Baseline comparison. In comparison to our original attribute-level classification technique [9], we improved

this step through the incorporation of additional training data and by adding an additional heuristic tech-

nique to improve the detection of objectstatus attributes (see Section 3.3.2). As shown in Table 8, these

adaptations resulted in an improved classification accuracy, raising the F1 score from 0.80 to 0.92 for the

semantic attributes. The increase in F1 for the objectstatus attributes from 0.40 to 0.83 highlights the value

of the heuristic technique, whereas also our approach’s ability to detect object attributes improved, with

an F1 of 0.80 versus 0.50 before.

Overall component identification results. The overall performance of the component identification

stage can be considered as the average over the instance-level labeling and attribute-level classification

results, weighted against the number of entities that were annotated with this component, i.e., a unique

textual attribute value (instance-level) or an entire attribute (attribute-level). These overall scores displayed

in Table 9, which are naturally skewed heavily towards the performance of the instance-level labeling step,

given that this step covered 1,359 out of the 1,395 entities.

We observe that the approach achieves highly accurate overall results, with a micro-average precision,

recall, and F1-score of 0.91. Still, when considering the results per semantic component type, we observe

that there exist considerable differences. These differences are largely due to the lower accuracy achieved for

the underrepresented component types in the data set, since it is clear that our approach is highly accurate

on more common component types, such as the F1 score of 0.94 for the recognition of actions.
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Table 9: Overall results of the component identification stage

Component Count Prec. Rec. F1

object 589 0.89 0.88 0.88

objectstatus 37 0.85 0.78 0.79

action 630 0.94 0.95 0.94

actionstatus 33 0.88 0.84 0.85

actorrole 69 0.93 0.84 0.88

actorinstance 18 0.95 1.00 0.97

passiverole 19 0.84 1.00 0.91

Overall 1,395 0.91 0.91 0.91

4.3.2. Component Categorization Results

This section provides the results of the component categorization experiments. First, the results of the

action categorization are discussed, before focusing on the categorization of resources.

Action Categorization. Table 10 shows the results of the categorization of the 235 action components

identified by our approach in the 14 evaluation logs per action type, consisting of 42 create, 4 destroy, 113

modify, 14 preserve, 6 combine, 5 separate, 49 decide, and 2 manage actions.

Overall, our approach rather accurately categorizes the identified actions into their respective types,

achieving an F1 score of 0.79. For the more common action types, our approach performs well, achieving

an F1 score of > 0.73 for create, modify, and decide. However, the results for the less common action types,

i.e., combine, destroy, manage, preserve, and separate vary, with an F1 ranging from 0.57 (separate) to 1.00

(manage).

Looking at specific cases, we find that our approach is able to categorize both rather common actions,

e.g., such as “generate”, “accept”, and “notify”, as well as actions performed in specialized processes, such

as surgery [26]. For instance, the action “anesthetize” is correctly categorized as modify, whereas the action

“widen” is correctly categorized as separate. Though, this does not hold in all cases. For instance, the

action “clean” is categorized as create rather than modify, which can be attributed to the limited amount

of available training data.

A main challenge in this categorization task is the ambiguity of some of the actions. For instance, the

action “suspension” could be considered as either a destroy, modify, or a decide action. This makes it difficult,

also for a human, to categorize such actions. Another challenge that naturally follows from this is that the

framework does not classify actions into disjoint top-level categories. For instance, the action “document”

is both categorized as create and preserve, which both makes sense given that an artifact can be considered

both as preserved or created when it is documented. Similarly, the action “allocate” is both categorized
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Table 10: Results of the action categorization step

Category Count Prec. Rec. F1

Create 42 0.70 0.90 0.79

Destroy 4 0.75 0.75 0.75

Modify 113 0.85 0.84 0.85

Preserve 14 0.62 0.62 0.62

Combine 6 0.62 0.83 0.71

Separate 5 0.44 0.80 0.57

Decide 49 0.91 0.61 0.73

Manage 2 1.00 1.00 1.00

Overall 235 0.81 0.79 0.79

as manage and decide. While such framework-specific issues are problematic, even with this set-up, our

approach can provide a helpful categorization of actions and, thus, process activities. We demonstrate this

utility through an application scenario below (Section 5).

Resource Categorization. The 14 evaluation logs contain a total of 5,236 distinct resources. 5,204 of

these are human, while only 32 are system, an imbalance that clearly reflects the fact that many different

human actors can be involved in a process, while the number of different systems is typically limited.

Overall, we achieve an F1 score of 0.999 for human (precision and recall also 0.999) and of 0.80 for system

actors (with a precision of 0.86 and recall of 0.75). The performance of the individual strategies in terms of

their number of hits, i.e., how often they were applicable, and their precision is depicted in Table 11.

Table 11: Performance of the resource categorization strategies, with the asterisks (*) indicating class-level hits.

Strategy Category Hits Prec.

WordNet
human 6∗ 1.00

system 2∗ 1.00

NER
human 585 1.00

system 0 -

BERT
human 1,340 0.99

system 30 0.85

Time
human 1,299 1.00

system 0 -

As shown in the table, the WordNet-based strategy has perfect precision, but is only applied to a few
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cases. However, it should be noted here that these eight hits correspond to entire resource classes (i.e.,

actorrole components), rather than individual resources like the other strategies. For seven of these cases

there are no instances contained in the log, such as the Employee, Director, and Supervisor roles in the

BPI20 log. However, the Vendor role from the BPI19 log actually relates to 1,975 different resources, thus

highlighting the overall relevance of this class-level strategy.

For the NER-based strategy, we again observe a perfect precision, though this strategy can only be

applied to the BPI13 log. This event log uses first names, such as Tomas, Carrie, and Niklas, to refer to

585 specific resources.

The BERT-based strategy, which primarily focuses on activity label names, can be applied more broadly

than the previous strategies. Yet, as shown by the precision of 0.99 for human resources and 0.85 for system

ones, the accuracy of this strategy is still high. An in-depth analysis of these results reveals that a primary

challenge here involves activities that can be executed by both human and system resources, such as seen

for the BPI18 [28] log. In these situations, the analysis of activity labels does not always allow for the

appropriate distinction between resource types, affecting the strategy’s precision.

Finally, the results for the heuristic analysis of execution times are rather inconclusive, since this strategy

was not applicable to system resources in the employed event log collection. However, the strategy also did

not falsely categorize a human resource as a system, thus nevertheless achieving a precision of 1.00.

5. Application Cases

To highlight the benefits of our approach, we next look at four application cases involving real-life event

logs. Through these application cases, we show how the semantic information identified by our approach can

support (1) event class refinement, (2) object-centric process analysis, (3) semantics-aware event abstraction,

and (4) the analysis of a process’ automation degree.

5.1. Event Class Refinement

In this first application case, we show how semantic components identified in the instance-level labeling

step of our approach can be used to establish more appropriate event classes for the Permit log from the

BPI Challenge 2020 [7]. This log consists of 7,065 cases and 86,581 events, divided over 51 event classes

(according to the event label, i.e., the concept:name attribute). This relatively large number of event classes

is problematic when aiming to gain insights about the recorded business process. Particularly, any process

model derived on its basis will automatically exceed the recommended maximum of 50 nodes in a process

model [32] and quickly reach a spaghetti-like structure.

However, an assessment of the event labels and the semantic components identified in them, reveals that

the labels in the log are polluted by superfluous information, resulting in an unnecessarily high number of
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different event classes. Specifically, the majority of event labels mixes up information about the conducted

activity, which should indeed be contained in a label, with information on the actor that performs the activity,

which should rather be captured in a dedicated actorrole attribute. Typical examples of this situation are

labels such as “declaration approved by budget owner ” and “declaration approved by administration”.

Recognizing this situation, we can use the semantic components identified by our approach to establish

refined event labels, which consist of only the information from the action and object roles, e.g., “declaration

approved ”, while deferring the actor information to a actorrole attribute. This operation yields an event

log in which the number of event labels has been greatly reduced, from 51 to just 21. In this way, we have

consolidated different pieces of semantic process information in dedicated places, i.e., activity information

in the label and actor information in a separate attribute, whereas, when used as the new event class,

the refined event labels allow for the discovery of smaller and hence more understandable process models.

Finally, it is important to point out that this transformation does not lead to any loss of information, given

that the old labels are not overwritten, whereas it is, as always, also possible to define event classes as

combinations of the (refined) event labels plus the actorrole attribute.

5.2. Object-centric Process Analysis

In this application case, we demonstrate how the semantic information identifed by our approach can

be used to obtain an object-centric view on a process, which helps to provide clearer insights into processes

that deal with various kinds of business objects. For this case, we again consider the Permit log [7].

After applying our approach, we observe that the log contains six different business objects (indicated as

object): permit, trip, request for payment, payment, reminder, and declaration. Such information was not

initially available in the log, given that these business objects were identified in the event labels themselves

(see also the previous application case). Yet, after having identified them, we can investigate the execution of

the process in both an inter-object and intra-object manner, which provides novel insights that the original

log could not reveal.

To illustrate this potential, consider the directly-follows graph shown in Figure 5, which we obtained by

selecting all events related to declarations, i.e., with object = ‘declaration’, and using the identified actions

to establish the event class. The figure clearly reveals how these objects are handled in the process. Mostly,

declarations are submitted, approved, and then final approved. Interestingly, though, we also see 112 cases

in which a declaration was definitely approved, yet rejected afterwards. Furthermore, we see 140 cases, in

which a declaration was resubmitted after it was already definitely approved.

It is important to stress that such insights would not be possible from the original log, given that, in

reality, the events related to declarations may be interspersed with events related to other business objects.

Furthermore, by employing different filters and event classes, this object-centric view can be used as a

basis for a wide range of other insights, e.g., to reveal how documents are handed over between different
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Figure 5: Example for object-centric analysis. The directly-follows graph shows the actions applied to the object declaration

in the log (includes 100% activities, 50% paths).

employees or to reveal the inter-relations between business objects. Besides using the annotated object-

centic information directly, it can also serve as a starting point to transform existing classical event logs into

object-centric ones [33], which can in turn be used for object-centric process mining [34].

5.3. Semantics-aware Event Abstraction

In this third case, we demonstrate how the identified components and categorized actions can be used for

meaningful event abstraction. Event abstraction is an established way of reducing complexity in event logs by

grouping together related event classes into higher-level activities [35]. In recent work [36], we proposed the

GECCO approach for this task, which is an abstraction approach that allows users to impose requirements

on the characteristics of resulting higher-level activities and the corresponding log. The semantic components

identified in the work at hand provide a highly suitable complement to GECCO, given that they allow us

to establish requirements involving specific semantic information.

To demonstrate this potential, we apply our approach on the Loan Application log from the BPI Challenge

2017 [5]. Although this event log only contains 24 event labels, the complexity of this process when visualized

in the form of, e.g., a directly-follows graph is considerable, resulting in a graph with 160 different edges.

Aiming for meaningful abstraction, we observe that the process primarily relates to actions performed for

two main types of business objects: applications and offers. Moreover, while various actions are applied to

these objects, our categorization step recognizes that these primarily relate to create, modify, and decide

actions. We use these insights to establish two abstraction requirements that we can impose when using

GECCO: (1) grouped event classes should refer to the same business object (object) and (2) they should

refer to the same type of action. We then name the obtained high-level activities as a combination of their
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action type and business object, resulting in the abstracted directly-follows graph of Figure 6. The graph

contains the 80% most frequent edges, while omitting event classes that do not refer to either of the main

types of business objects.

Create Application
31,509

Decide Application
102,815

Create Offer
39,105

Modify Offer
133,032

Decide Offer
35,996

Modify Application
96,672

31,509

9,492 12,744
9,1
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31,631

62
,72

4

62
,45

6

31,778

37,560
33,829

15,910

10,018

55
,10

5

Figure 6: The directly-follows graph abstracted to show the actions types applied to the main business objects in the log, if

any (includes 100% activities, 80% paths).

Having obtained this abstracted view on the process reveals clear dependencies between action types

within and across the two business objects. For instance, we find that applications are first created and

processed (modified). Moreover, a decision about an application, i.e., its acceptance, is necessary before

an offer can be created. Further, there can be multiple iterations between offer and application. After

modifying the offer, the application can be modified before the offer is modified again. Finally, the majority

of cases end with a decision, either about an offer or about the application. Another common end of the

process is a final modification of the offer. By looking into the original activities, this corresponds to sending

a notification about an offer.

5.4. Analysis of Automation Degree

Finally, we use the resource categorizations provided by the final step of our approach to assess the

automation degree and impact of system resources for the Purchase Order event log, part of the BPI

Challenge 2019 [6]. The event log contains 251,734 cases, 1,595,923 event, and 628 unique resources.

By applying the resource categorization step of our approach, we discover that the events in the log

originate from 608 human resources and 20 system resources, primarily captured in the log’s User attribute.
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We can leverage this categorization, stored in a resource:type event attribute, to analyze the automation

degree of the Purchase Order process. At the event level, we find that about 79% of the events in the

log are performed by employees, whereas the other 21% are performed in an automated manner, i.e., by a

system. When considering full traces, we recognize that just 2,338 cases (0.9%) are entirely performed by

systems, showing that only a fraction of cases can be handled in an automated manner. By contrast, we

find that 162,505 (64.9%) do not involve any automatically executed steps. Both insights, thus, hint at clear

opportunities for further automation, e.g., through the application of robotic process automation (RPA)

technology.

6. Related Work

Our work relates to streams of research focused on the analysis of event and activity labels, semantic

annotations of process information, and semantic role labeling in NLP.

Event and activity label analysis. Various approaches strive to either disambiguate or consolidate la-

bels in event logs. Lu et al. [37] propose an approach to detect duplicate event labels, i.e., labels that are

associated with events that occur in different contexts. By refining such duplicates, the quality of subse-

quently applied process discovery algorithms can be improved. By contrast, Sadeghianasl et al. [38, 39]

aim to detect the opposite case, i.e., situations in which different labels are used to refer to behaviorally

equivalent events. They achieve this through context-aware metrics [38] and crowdsource-based gamifica-

tion [39]. Other approaches strive for the semantic analysis of labels, such as work by Deokar and Tao [40],

which group together event classes with semantically similar labels, as well as the label parsing approach by

Leopold et al. [20] against which we compared our work in the evaluation. Wynn et al. aim to improve event

log quality by relabeling activities based on proposed quality metrics. To this end, they suggest standard

NLP techniques, such as POS Tagging and Lemmatization, based on the computed quality of a log [41].

Semantic annotation of process information. Various works are complementary to ours in that they

also strive to annotate event data or process models with different kinds of semantic information. For

instance, work by Tsoury et al. [42] strives to augment logs with additional information derived from database

records and transaction logs. Works by Leopold et al. focus on the categorization of process activities,

achieved by mapping process model components to an existing process categorization [43] and by categorizing

activities according to their degree of automation [21].

Role labeling in NLP. Beyond the scope of process analysis, our work also relates to semantic annotation

applied in various other contexts. Most prominently, semantic role labeling is a widely recognized task in

NLP [44, 45], which labels spans of words in sentences that correspond to semantic roles. The task’s goal

is to answer questions like Who is doing what, where and to whom? While early work in this area mostly

applied feature engineering methods [46], recently deep learning-based techniques have been successfully
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applied, e.g., [47, 48]. In the context of web mining, semantic annotation focuses on assigning semantic

concepts to columns of web tables [49], while in the medical domain it is e.g. used to extract the symptoms

and their status from clinical conversations [50].

7. Conclusion

In this paper, we proposed an approach for the automatic semantic annotation of event data. Namely,

our approach identifies up to eight semantic component types per event, covering business objects, actions,

actors, and other resources, without imposing any assumptions on the structure of an event log’s attributes.

It then further categorizes the identified action and resource components into pre-defined categories, enabling

new analysis opportunities that consider the meaning of events.

We demonstrated our approach’s efficacy through evaluation experiments using a wide range of real-life

event logs. The results show that our approach accurately identifies the targeted semantic components

from textual attributes, whereas our attribute classification techniques were also shown to yield good results

when dealing with the information contained in non-textual attributes. In both cases, we showed that our

techniques outperform existing state-of-the-art work. Furthermore, our approach performs well in assigning

identified semantic components to predefined categories. Finally, we highlighted the potential of our work

by illustrating some of its benefits in four application cases based on real-life data. Particularly, we showed

how our approach can be used to refine and consolidate event classes in the presence of polluted labels,

as well as to obtain object-centric insights about a process. Moreover, we showed that by categorizing

action components, we can abstract an event log to analyze higher-level dependencies in the process, while

a detailed analysis of the automation degree of a process is enabled by categorizing resource components.

In future work, our approach itself could be extended by incorporating additional semantic component

types or component categories, given relevant use cases and data. Furthermore, the accuracy of the ap-

proach may be improved by incorporating additional semantic technologies in its annotation techniques,

such as using large-scale knowledge graphs for better categorization. Nevertheless, we see the biggest future

potential in terms of the semantics-aware process mining techniques and use cases that our work enables, of

which the demonstrated use for meaningful event abstraction and our proposed semantic anomaly detection

approach [4] are just a starting point.

Reproducibility: The implementation, dataset, and gold standards employed in our work are all available

through the repository linked in Section 4.
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