
SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Sketch2Process: End-to-end BPMN Sketch
Recognition Based on Neural Networks

Bernhard Schäfer, Han van der Aa, Henrik Leopold, and Heiner Stuckenschmidt

Abstract—Process models play an important role in various software engineering contexts. Among others, they are used to capture
business-related requirements and provide the basis for the development of process-oriented applications in low-code/no-code settings.
To support modelers in creating, checking, and maintaining process models, dedicated tools are available. While these tools are generally
considered as indispensable to capture process models for their later use, the initial version of a process model is often sketched on a
whiteboard or a piece of paper. This has been found to have great advantages, especially with respect to communication and
collaboration. It, however, also creates the need to subsequently transform the model sketch into a digital counterpart that can be further
processed by modeling and analysis tools. Therefore, to automate this task, various so-called sketch recognition approaches have been
defined in the past. Yet, these existing approaches are too limited for use in practice, since they, for instance, require sketches to be
created on a digital device or do not address the recognition of edges or textual labels. Against this background, we use this paper to
introduce Sketch2Process, the first end-to-end sketch recognition approach for process models captured using BPMN. Sketch2Process
uses a neural network-based architecture to recognize the shapes, edges, and textual labels of highly expressive process models,
covering 25 types of BPMN elements. To train and evaluate our approach, we created a dataset consisting of 704 hand-drawn and
manually annotated BPMN models. Our experiments demonstrate that our approach is highly accurate and consistently outperforms the
state of the art.

Index Terms—Requirements engineering, business process modeling, graphics recognition and interpretation.

✦

1 INTRODUCTION

Process models are key artifacts in various software
engineering contexts. For instance, they are a commonly
used means to capture business-related requirements [1], [2],
[3] and also provide the basis for the development of process-
oriented applications in low-code/no-code settings [4], [5],
such as solutions for workflow orchestration and Robotic
Process Automation (RPA).

To support modelers in creating, checking, and maintain-
ing process models, dedicated modeling tools are available.
Although these tools are generally considered as indispens-
able to capture process models for their later use, it is
important to note that the creation of conceptual models often
starts by sketching on a whiteboard or paper [6]. One of the
main reasons for this is that modeling tools do not provide
the means for effective communication and collaboration
that are required for creating these models [7]. In this regard,
drawing on a whiteboard or paper has been found to have
great advantages. They are not only ubiquitous and easy to
use [8], but also immediate [9]. This aspect of immediacy
is of great importance, since it allows people involved in
the model creation to continue their thought process or
conversation without interruption [9].

However, starting with a hand-drawn model introduces
the need to subsequently transform it into a digital coun-
terpart that can be further processed by modeling and
analysis tools [10]. If done manually, this transformation

• Bernhard Schäfer, Han van der Aa, and Heiner Stuckenschmidt are with
the Data and Web Science Group, University of Mannheim, Mannheim,
Germany.
E-mail: {bernhard | han | heiner}@informatik.uni-mannheim.de

• Henrik Leopold is with the Kühne Logistics University, Hamburg, Ger-
many.
E-mail: henrik.leopold@the-klu.org

takes considerable time and effort, creating undesirable
friction in the modeling process. This friction may also
drive users away from sketching initial model versions in
an analog manner, choosing instead to use collaborative
modeling tools [11], [12]. Such tools enable modelers to
jointly create models in a shared workspace, removing the
need to conduct a manual transformation from an analog to a
digital format. Nonetheless, these tools do not allow users to
freely sketch processes, since they require modelers to stick
to predefined constructs and functionality. They thus take
away the aforementioned mentioned benefits of drawing
models by hand.

Recognizing the benefits of hand-drawn models, as well
as the effort associated with their manual transformation
into digital counterparts, sketch recognition aims to automate
this transformation task. Sketch recognition approaches
have been defined for various diagrams, including UML
models [13], flowcharts [14], and different kinds of process
models [15], [16], [17]. Existing approaches, however, often
have limiting requirements and assumptions. Some require
sketches to be created on a digital device [13], [14], [15],
whereas others are limited to the recognition of shapes,
without being able to handle edges or textual labels [16], [17].

Against this background, we use this paper to introduce
the first end-to-end sketch recognition approach for process
models captured using the Business Process Model and
Notation (BPMN)1. BPMN, a standard maintained by the
Object Management Group (OMG)2, is a flow-like notation
that provides a rich set of graphical symbols, allowing users
to specify which tasks should be executed in a process, by

1. https://www.bpmn.org/
2. https://www.omg.org/

https://www.bpmn.org/
https://www.omg.org/

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

whom, using which data, and in which order. Our work
focuses on these models because, on the one hand, they are
commonly used by business users in software engineering
contexts [2], [3], [18] and closely resemble the notations used
by various low-code/no-code platforms [19], [20], such as
the RPA solutions by Microsoft3, Appian4, or Mendix5 (see
[21] for a comprehensive overview). On the other hand, our
choice is motivated by the conceptual complexity of the
recognition task for BPMN models, owing to the notation’s
large number and high similarity of node types, which
makes it more relevant to develop a tailored and accurate
recognition approach.

As such, the primary contribution of our work is
Sketch2Process, an approach that takes an image of
a hand-drawn BPMN model as input and automatically
transforms it into a BPMN XML file, compatible with
existing process modeling tools. Conceptually, we build on
a neural network-based architecture inspired by state-of-
the-art work from the area of flowchart recognition [22].
In this manner, Sketch2Process considerably improves
upon existing works in terms of both recognition quality and
scope. It provides comprehensive transformation of hand-
drawn BPMN models, including the proper handling of
textual labels that were previously ignored. As a secondary
contribution, we developed the hdBPMN dataset consisting of
704 hand-drawn and manually annotated BPMN models,
which we here use to train and evaluate our approach.
hdBPMN is publicly available and, therefore, can be used
as a basis for the development and comparison of further
transformation approaches. Experiments on this dataset
demonstrate that Sketch2Process is highly accurate and
consistently beats the state of the art.

The work presented in this manuscript represents a
considerable extension in both scope and quality of our
earlier work on Sketch2BPMN [23], a first approach for
the (partial) recognition of hand-drawn BPMN models. In
particular, we provide the following main extensions:

1) Aside from recognizing nodes and edges in hand-
drawn BPMN models, Sketch2Process also targets
the detection, recognition, and relation of textual la-
bels to their respective nodes and edges. This makes
Sketch2Process the first approach that provides end-
to-end recognition of hand-drawn BPMN models.

2) We fully revised the component for edge relation de-
tection by replacing Sketch2BPMN’s heuristic detection
technique with a neural network-based component. The
new detection component considerably outperforms the
previous version, particularly for the detection of more
challenging hand-drawn edges, such as message flows.

3) We improved the overall recognition quality of our
approach by incorporating a crop augmentation procedure
during its training. This procedure allows our approach
to handle model layouts not encountered in the training
set, leading to better generalization.

4) Finally, we substantially extended the hdBPMN dataset.
Specifically, we manually annotated all labels and

3. https://powerautomate.microsoft.com/en-us/
robotic-process-automation/

4. https://appian.com/platform/complete-automation/
robotic-process-automation-rpa.html

5. https://www.mendix.com/workflow/low-code-automation/

individual words in the hdBPMN dataset and also
increased the dataset size from 502 to 704 images.
Overall, the dataset now contains more than 70,000
annotated elements, versus 20,000 annotations in the
previous version.

The remainder is organized as follows. We provide
an overview of existing sketch recognition approaches in
requirements engineering in Section 2 and elaborate on the
challenges of sketch recognition for BPMN models in Sec-
tion 3. Section 4 presents our Sketch2Process approach.
In Section 5, we introduce the hdBPMN dataset, which is used
to evaluate our approach in Section 6. Finally, we discuss the
implications and limitations of our work in Section 7 and
conclude in Section 8.

2 RELATED WORK

Freely sketching by hand is a natural and powerful way
to convey information to others [24]. Given the advantages
of free-hand sketching, a range of sketch recognition ap-
proaches have been proposed [25], which aim to transform
such sketches into usable conceptual models. With early
approaches dating back to the sixties [26], today, sketch
recognition approaches are available for various types of
diagrams [15], [27], [28], user interfaces [29], [30], and
mechanical systems [31], [32].

Several of these approaches explicitly target the recog-
nition of sketched diagrams in the context of requirements
engineering, due to the wide-spread use of diagrams for
requirements elicitation and documentation. We provide an
overview of such works in Table 1. For each approach, we
show the targeted artifact(s) and its recognition scope with
respect to shapes, edges, and the labels of the diagram. For
the labels, we also indicate whether the respective approach
targets 1) textblock detection, i.e., identifies which parts of the
image contain text, 2) textblock handwriting recognition, i.e.,
converts the handwritten text contained in a textblock into
a digital counterpart, and 3) textblock relation detection, i.e.,
relates the textual label to a diagram shape or edge. In line
with convention, we differentiate between online and offline
sketch recognition in the remainder.
Online sketch recognition. Online approaches for sketch
recognition require a sequence of hand-drawn strokes as
input [14]. A stroke in this context is defined as a sequence
of points that occur between pen-down and pen-up events.
Typically, such input can only be provided by digital devices,
such as tablets or smart boards, which limits the application
of online sketch recognition approaches to these devices.

Existing approaches for online sketch recognition can be
subdivided into geometry-based, stroke-based, and gesture-
based approaches. In geometry-based approaches, higher-level
shapes are recognized as a particular combination of strokes,
using constraints to specify how strokes and subshapes fit
together [25]. While many geometry-based approaches only
target basic geometric shapes, such as circles, triangles, and
squares [24], [25], [33], Brieler and Minas [34] build on these
base approaches to recognize sketches of Petri nets and
Nassi–Shneiderman diagrams. Stroke-based approaches pursue
different strategies to group and classify the input stroke data
and, in this way, recognize the drawn shapes and diagrams.
For instance, the approach from Brieler and Minas [15] for

https://powerautomate.microsoft.com/en-us/robotic-process-automation/
https://powerautomate.microsoft.com/en-us/robotic-process-automation/
https://appian.com/platform/complete-automation/robotic-process-automation-rpa.html
https://appian.com/platform/complete-automation/robotic-process-automation-rpa.html
https://www.mendix.com/workflow/low-code-automation/

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

TABLE 1
Related Work

Category / Targeted artifact(s) Name Authors Shapes Edges Labels
TB-D* TB-HWR* TB-RD*

Online sketch recognition
Geometry-based approaches

Generic geometric shapes - Yu & Cai [24] Yes No No No No
Generic geometric shapes PaleoSketch Paulson & Hammond [33] Yes No No No No
Generic geometric shapes - Hammond & Paulson [25] Yes No No No No
Petri nets, Nassi–Shneiderman diagram DSketch Brieler & Minas [34] Yes Yes No No No

Stroke-based approaches
Petri nets, Nassi–Shneiderman diagram - Brieler & Minas [15] Yes Yes No No No
UML AgentSketch Casella et al. [13] Yes Yes No No No
UML - Deufemia et al. [35] Yes Yes No No No
Flowcharts, Finite automata - Bresler et al. [14] Yes Yes Yes No Yes
Flowcharts - Julca-Aguilar et al. [36] Yes Yes No No No

Gesture-based approaches
UML, UI interfaces SkApp Schmidt & Weber [29] Yes Yes No No No
UML SUMLOW Chen et al. [27] Yes Yes No Yes No

Offline sketch recognition
Stroke-based approaches

Flowcharts - Costagliola et al. [37] Yes Yes No No No
Flowcharts - Wu et al. [38] Yes Yes No No No
Flowcharts - Bresler et al. [39] Yes Yes Yes No No
EPC process models - Zapp et al. [17] Yes No No No No

Object-based approaches
Flowcharts - Julca-Aguilar and Hirata [28] Yes No Yes No No
Flowcharts, Finite automata Arrow R-CNN Schäfer et al. [22] Yes Yes Yes No No
BPMN models Sketch2BPMN Schäfer et al. [23] Yes Yes No No No
BPMN models, Flowcharts DiagramNet Schäfer et al. [16] Yes Yes No No No

*TB-D = Textblock detection, TB-HWR = Textblock handwriting recognition, TB-RD = Textblock relation detection.

Petri nets and Nassi–Shneiderman diagrams builds on a set
of, so-called, transformers. Each transformer tries to interpret
a given set of strokes in a different way (e.g. as a line, as an
arc, or as a circle) and hands over the result to an assembly
module, which identifies the drawn component based on the
transformer input. The approach from Deufemia et al. [35]
for UML class diagrams first segments the user’s strokes
and interprets them as primitive shapes before it exploits the
domain context to cluster them into respective symbols of
the target language. Similar approaches have been proposed
for flowcharts [14] and for flowcharts and finite automata
[36]. The main challenge for stroke-based approaches is that
the way users draw shapes varies with respect to many
dimensions including stroke order, stroke style, and stroke
number. Gesture-based recognition approaches are similar to
stroke-based approaches but additionally recognize definable
gestures. For instance, SkApp [29] allows users to specify
multi-touch gestures to efficiently create UML class diagrams
and user interfaces. Similarly, SUMLOW [27], an approach for
e-whiteboards, recognizes single and multi-stroke gestures
for the specification of different types of UML diagrams.

As for the scope of online sketch recognition approaches,
we can see that only two approaches address labels. First,
the approach by Bresler et al. [14] provides basic support for
textblock detection and textblock relation detection, though
textblock handwriting recognition is not addressed. The
detection of textblocks is accomplished with a text/non-text
stroke separation algorithm. In case text-related strokes are
located inside a shape, the stroke is related to the respective
shape, otherwise they are grouped into textblocks based on
spatiotemporal proximity and then assigned to the closest

arrow. Second, SUMLOW from Chen et al. [27] defines
gestures for handwriting recognition. However, since the
approach is based on the interaction between user and
e-whiteboard, there is no actual mechanism for textblock
detection or textblock relation detection.
Offline sketch recognition. In comparison to online ap-
proaches, offline sketch recognition just requires an image
as input, rather than depending on information on the
sequence of strokes used to obtain the sketch. This makes
offline recognition more widely applicable but also more
complex, given that less data is available as input. Existing
approaches for offline sketch recognition can be further
subdivided into stroke-based and object-based approaches.
Stroke-based offline approaches require that the strokes can
be reliably reconstructed from a given image. Based on the
reconstructed strokes, they then apply online recognition
methods. Respective approaches have been proposed for
flowcharts [37], [38], [39] and EPC process models [17]. It
is important to point out stroke-based offline approaches
are not applicable in the setting we address in this pa-
per. Effective methods for the reconstruction of strokes
from camera-based images of pen-and-paper drawings with
complex backgrounds are simply not available [40], [41].
More recent object-based approaches use deep learning object
detectors to detect diagram shapes, arrows, and textblocks in
an image through, so-called, bounding boxes. Julca-Aguilar
and Hirata [28] were the first to use the popular Faster R-
CNN [42] object detection network to recognize flowchart
elements. However, while object detectors can localize arrows
through bounding boxes, they are not able to recognize the
edges between shapes. Given this limitation, Schäfer et al.

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

proposed Arrow R-CNN [22], [43], which extends Faster R-
CNN with a heuristics-based edge recognition component.
Building on Arrow R-CNN, we proposed Sketch2BPMN [23]
and DiagramNet [16] in earlier work, both targeting BPMN
models. Sketch2BPMN [23] explicitly addresses the specifics
of hand-drawn BPMN models. It, however, builds on a rule-
based component for the identification of edges, which affects
both the performance as well as the flexibility of the ap-
proach. DiagramNet [16] attempts to recognize edges using a
learning-based approach. It, however, assumes that edges are
mostly located in the area between two shapes, which means
that it has difficulties recognizing edges that connect two
shapes with a detour. A related approach that is not included
in Table 1 is the BPMN-Redrawer approach [44] because
it originally only addresses the recognition of computer-
generated BPMN models. The approach consists of two off-
the-shelf networks from the Detectron2 library [45], which
are trained on a dataset of computer-generated BPMN model
images. However, given this architecture, the approach could
also be trained to recognize hand-drawn models.

As for the scope, it is again important to point out that
the recognition of labels is hardly considered. In fact, there
is no offline sketch recognition approach available that goes
beyond textblock detection. This is highly problematic, since
the overall conveyed semantics of all artifacts discussed
above heavily relies on labels [46]. From a practical point of
view, existing approaches are, therefore, only of limited use.

In summary, the review above shows that sketch recogni-
tion for requirements engineering is a highly active field of
research, in which Sketch2BPMN [23] and DiagramNet [16]
also specifically target the recognition of hand-drawn BPMN
models. However, these approaches leave substantial gaps in
terms of recognition quality and coverage, wholly omitting
the consideration of textual labels. As described in Section 1,
Sketch2Process addresses the limitations of the state of
the art by:

1) addressing all three aspects of label recognition, making
it the first approach that provides end-to-end recognition
of hand-drawn BPMN models from images,

2) incorporating a neural network-based edge relation
detection component that outperforms previous works
considerably, especially for complex edges, and

3) improving the overall recognition quality through a crop
augmentation procedure, which allows our approach to
handle model layouts not encountered during training,
leading to better generalization.

In this manner, Sketch2Process thus considerably im-
proves upon the state of the art in terms of both scope and
accuracy. As such, our approach is well-equipped to tackle
the challenges described next.

3 CHALLENGES OF HAND-DRAWN BPMN MODEL
RECOGNITION

This section illustrates the challenges associated with the
recognition of hand-drawn BPMN models. We discuss
challenges specifically related to shapes, edges, and labels,
as well as general challenges that occur when dealing with
images of physical drawings. We will use to the exemplary
drawing in Fig. 1, stemming from our hdBPMN dataset, to
illustrate the challenges where applicable.

Shape recognition challenges. Shape recognition targets
the identification of the nodes in a BPMN model, such as
activities, events, gateways, resource pools, and data objects.
From a recognition perspective, shapes are defined through
a bounding box, capturing the location of the shape in the
drawing, and a shape type, capturing its type. Compared
to the recognition of other types of conceptual models (see
Section 2), BPMN models have a considerably higher number
of different node types, which increases the complexity of
the recognition task.

The recognition of shapes and their types in hand-drawn
diagrams can be highly complex due to a variety of chal-
lenges. From a conceptual point of view, shape recognition
in BPMN is complex because of the high similarity between
certain types. Clear examples of this are events, which are
depicted as circles, where the circle’s line determines whether
it is a start (single line), intermediate (double), or end (bold)
event of a certain type. Similarly, activities, sub-processes,
pools, and lanes are all depicted as rectangles, where the
specific node type follows from the node’s context, e.g., a
lane encompassing several activities, or subtle differences,
e.g., a small plus symbol in a square indicates that a node
represents a sub-process.

While challenging in itself, differentiating among such
similar node types becomes more complex due to the
characteristics of hand-drawn models, such as drawn lines
being incomplete, curved (when they should be straight),
or interrupted, such as e.g., seen for issues s1 and s2 in
Fig. 1. Furthermore, shapes in general are drawn in a broad
range of styles, especially more complex ones such as events,
databases, and certain gateways. This is, for instance, evi-
denced by the examples of intermediate (throwing) message
events depicted in Fig. 2.

Edge recognition challenges. Edges in BPMN models
indicate connections between nodes. Three edge types exist,
which have different drawing styles and are used to con-
nected different node types. Solid edges indicate the control
flow of a process by connecting nodes such as activities,
events, and gateways, as e.g., seen in Fig. 1 to indicate
that the Examine claim activity occurs after Register claim.
Dashed edges capture the message flow across organizational
boundaries, as seen by the Customer sending a claim to the
Insurer in the example. Finally, dotted edges capture data
associations, showing the creation or retrieval of data, such as
Register claim storing information in the Claim DB.

Each edge is defined through a sequence of waypoints
(indicating the path of the edge), the edge type, and the
source and target shape that the edge connects. Properly
recognizing edges and their characteristics in an automated
manner is complex, though. This complexity, for instance,
results from edges commonly crossing each other or inter-
secting with other model elements, as e.g., seen for issue
e1 in Fig. 1, where just a single dash appears before the
edge intersects with the Insurer pool. Such edge interruptions
make it hard for a recognition approach to identify which
drawn lines belong to the same edge and which lines are
actually separate ones.

Furthermore, drawn edges are often not properly con-
nected to model nodes, as e.g., seen for issue e2 in

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Depicted shape recognition issues:
s1) Shape drawn incompletely;
s2) Shape drawn using curved and interrupted lines.

Depicted edge recognition issues
e1) Edge interrupted by other model element;
e2) Edge not connected to corresponding nodes;
e3) Data association drawn using dashes rather than

dots.
Depicted label recognition issues

l1) Rotated pool and lane labels;
l2) Textblock words that appear disconnected.

Depicted general issues:
g1) Additional lines due to paper type;
g2) Punch-holes in paper obscuring the model;
g3) Contents on other side of paper bleeding through;
g4) Crossed out part of the drawing.

Fig. 1. Example of a hand-drawn BPMN model with various highlighted recognition challenges.

Fig. 2. Variations of intermediate throwing message events.

Fig. 3. Multiple
edge candidates

Fig. 1, which makes it harder to recog-
nize the source and target of an edge.
This recognition is particularly complex
when there are multiple candidate shapes,
such as seen in Fig. 3, where two pool
boundaries and a task are very close to
the startpoint of a message flow. Finally,
the differentiation of message flows and
data associations can be difficult since they
are often drawn in a similar or even equal
manner. For example, in Fig. 1 we observe that also data
associations are drawn using dashes, rather than dots (see
issue e3).

Label recognition challenges. Labels are associated with
shapes and edges in BPMN models. Some types, e.g.,
activities, require a label, whereas for others, e.g., control-
flow edges, labels are optional. Each label, in contrast, should
be associated with a specific shape or edge. As described
in Section 2, label recognition can be decomposed into a
sequence of three steps.

Textblock detection strives to locate the labels in BPMN
models through bounding boxes. These boxes are referred to
as textblocks in diagram recognition [14], [39]. The primary
challenge here is to appropriately recognize which pieces of
text in a diagram belong together, i.e., which form a single
textblock. This can be highly complex, since it may be hard
to discern which words actually belong together, for instance
because they are apart from each other in the drawing (see
e.g., issue l2) or even separated by (parts of) model shapes.
The exception to this are activity labels, where we know that
the label consists of the words located within the activity
bounding box. Therefore, activity labels do not need to be
detected through dedicated textblocks.

Textblock handwriting recognition aims to recognize the
exact text that is contained within a textblock, i.e., to interpret
the handwritten text. While handwriting recognition (HWR)
methods for handwritten documents have been developed
for decades, HWR for hand-drawn diagrams is largely
unexplored and much more challenging [41], as textblocks
can be rotated (see issue l1), in front of complex backgrounds,
and with overlapping model element strokes.

Fig. 4. Label candidates

Finally, textblock relation
detection is concerned with
finding the shape or edge
that the textblock labels.
This is challenging since
textblocks may be in close
proximity to multiple shape
or edge candidates, as, e.g., in Fig. 4, making it hard to
recognize the appropriate relation between textblock and
model element.

General challenges. The complexity of detecting shapes,
edges, and labels due to the aforementioned issues is
amplified by various general challenges related to sketch
recognition for hand-drawn models, such as:

• The paper on which a hand-drawn model was drawn
may be lined, squared, or dotted. For instance, the graph
paper in Fig. 1 adds numerous additional lines to the
drawing, which may appear similar to lines used to
denote model elements, such as resource pools (consider
the thicker line denoted by issue g1).

• The image might contain additional contents that are
visually similar to model elements. For example, Fig. 1
has punched holes (g2), which look similar to events,
and visible model elements from the back side of the
paper (g3).

• Drawing implements, such as pencils, may affect the
clarity, consistency, and thickness of drawn lines, which
can negatively affect the interpretability of a sketch.
While Fig. 1 was drawn using a clear pen, a pencil
would yield lines that look very similar to the lines that
are already part of the paper (e.g., as indicated by g1).

• When hand-drawn models are captured using a camera,

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Object detection Label recognition

Text

Text

Edge recognition

BPMN 2.0 XML

Hand-drawn image

SF SF SF

SF

MF

SF

MF

Upload photo
of process

Recognize
diagram

Us
er

Receive XML

Send generated XML

XML

Sk
etc

h2
BP

MN

SF: Sequence flow MF: Message flow

Task

Task

Te
xt

Text

Text

Text

Te
xt

Task

Task

Te
xt

Text

Te
xt

Fig. 5. Overview of our approach: Given an image, we first detect shapes, arrows, and textblocks as objects (object detection). Then, we identify the
drawn arrow path and the shapes that each arrow connects (edge recognition). Next, we decode the textual content within each textblock and identify
the shape or edge that each textblock labels (label recognition). Finally, we generate a BPMN 2.0 XML file.

rather than a dedicated scanner, additional quality issues
may be introduced [40]. This includes images that are
rotated or blurry, as well as those that include content
beyond the paper or actually cut part of it off (e.g., the
right-hand side of Fig. 1).

• Finally, it is important to recognize that establishing
BPMN models is notoriously difficult [47], which means
that it is not uncommon for modelers to make mis-
takes [48]. On the one hand, this can result in parts of a
drawing being crossed out (issue g4), on the other hand,
there is no guarantee that the final drawing is free of
errors, which means that a recognition approach cannot
depend on the syntactic correctness of the drawing.

In the next section, we propose our approach that aims to
address the aforementioned challenges in order to accurately
detect hand-drawn BPMN models.

4 THE SKETCH2PROCESS APPROACH

This section introduces Sketch2Process, our approach for
recognizing a hand-drawn BPMN model from an image.
As visualized in Fig. 5, Sketch2Process consists of three
main steps: object detection, edge recognition, and label
recognition. The object detection step aims to detect all objects
(shapes, arrows, and textblocks) that are part of the input
image, characterizing each object as a bounding box and
a predicted object class. While this step completes the
recognition of shapes in the drawing, detected arrow objects
are further processed in the edge recognition step. In this
step, we identify the source and target shapes that each
arrow connects, along with the path that the drawn arrow
follows. Afterwards, the label recognition step decodes the
textual content of each textblock and assigns it as a label to
a corresponding shape or edge. Finally, Sketch2Process
generates and returns a BPMN 2.0 XML file that captures
the detected BPMN model. In the following, we provide
details on the individual approach steps (Sections 4.1 to 4.3)
and the subsequent output generation (Section 4.4). Finally,
given that we employ three neural networks throughout our
approach, we show how these networks are connected and
jointly trained in Section 4.5.

4.1 Object Detection

In this first step, our approach aims to detect all objects
(shapes, arrows, and textblocks) contained in a provided
image. The input to this step is the entire input image, which

Fig. 6. Object detection output: the network has detected shape (blue),
arrow (orange), and textblock (brown) objects.

is resized so that the longer side is equal to 1,333 pixels, i.e.,
the standard format required by the Faster R-CNN network
that we use here. The output of this step are the detected
objects, which are captured as sets of shapes S, arrow objects
A, and textblocks T . Each of these objects is represented as
a tuple (b, c, s), with b as its bounding box, i.e., a rectangle
encompassing the predicted area of the drawn object, c as
the object’s predicted class, and s as the classification score
of this prediction. Fig. 6 shows the outcome of this step.

To operationalize the object detection step, we use the
Faster R-CNN [42] network and adapt its training configura-
tion to the details of our use case, as detailed below.

Faster R-CNN. Faster R-CNN is a popular neural network
approach to detect objects in an image in the form of
the previously defined (b, c, s) tuples. Faster R-CNN owes
its popularity not only to its high level of accuracy, but
also to its extensibility. It has been extended to address
various computer vision tasks beyond object detection, such
as human keypoint detection [49] and visual relationship
detection [50]. Inspired by these extensions, we also use
Faster R-CNN as our object detection network, and extend it
with edge and label recognition network components.

Faster R-CNN operates on RGB images, representing
them as three-dimensional arrays, of which the size of the
first two dimensions corresponds to the image width and
height (in pixels). The third dimension consists of three
channels, where each channel represents the color intensity
of a pixel for the three primary colors: red, green, and blue.
Faster R-CNN detects objects using the image features feat, a

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 7. Object proposals: Top 100 out of 984 proposals ranked by their
objectness score.

learned three-dimensional representation of the image that
is generated by its backbone network. The image features
have a lower width and height than the original image, but a
much higher number of channels. Rather than just capturing
the intensity of primary colors, the channels of the image
features correspond to various patterns that are learned by
the network to detect and distinguish different object classes.
For example, a channel can correspond to a specific stroke
pattern, such as an arrowhead or a diagonal line segment,
indicating for each channel pixel if this pattern can be found
in the corresponding image region.

Given the image features feat, Faster R-CNN detects
objects with a two-stage approach. The first stage generates
a large set of (class-agnostic) object proposals, where each
proposal is defined by a bounding box and a so-called
objectness score.

Fig. 7 illustrates some of the predicted proposals for our
running example. In the second stage of Faster R-CNN, a box-
head network classifies each proposal and predicts a refined
bounding box location. For this classification, the second
stage predicts a score distribution over a set of predefined
(foreground) object classes and a negative background class,
with the sum of all scores for a given proposal equal to 1.
Given a proposal’s bounding box, the box-head network uses
the RoIAlign [49] mechanism to cut out the part of the image
features that corresponds to the proposal’s image region, and
then normalizes its size. The network uses these (smaller)
image features to predict a refined bounding box b and the
object class scores.
Detected objects. Finally, we turn a proposal into an object
(b, c, s) by setting c as the most likely object class and s as the
corresponding score. During inference, Faster R-CNN returns
a set of objects, which we then divide into the aforementioned
(disjoint) sets of shapes S, arrow objects A, and textblocks
T , based on their predicted object classes. Note that with
respect to shapes, set S only includes those objects with a
classification score s equal to or above a score threshold for
shapes, τs (we use 0.5 as a default and test further values in
our evaluation experiments).

As can be seen in the output of Fig. 6, the objection
detector aims to detect bounding boxes that as closely
encompass shapes and textblocks as possible. For example,
the bounding boxes of the Check Recommendation activity and
Costumer [sic] textblock leave little space between the box
and the actually drawn element.

By contrast, for arrow objects in A, the object detector is
trained to establish bounding boxes so that the box connects

the actual source and target shapes of the arrow, rather than
just encompassing the arrow’s drawn path. We describe the
ground truth used for this purpose in Section 4.5. As, e.g.,
seen for the sequence flow arrows surrounding the XOR
choices in Fig. 6, this can result in a bounding box that is
considerably larger than the drawn arrow. By detecting arrow
objects in this manner, it is considerably easier to turn them
into edges that connect shapes, as done next.

4.2 Edge Recognition
In this step, our approach aims to recognize the BPMN edges
indicated by the drawn arrows detected in the previous step.
The input for this step consists of the detected shapes S and
arrow objects A, and the image features feat, capturing the
representation learned by Faster R-CNN. For each arrow ob-
ject a ∈ A, our approach strives to recognize the two shapes
that the edge connects and the edge’s drawn arrow path.
This is captured in the form of a tuple e = (a, src, tgt, s,K),
where src, tgt ∈ S are the source and target shapes that the
arrow connects, s its score, and K the drawn path of the
arrow, represented as a sequence of keypoints. The output of
this step, then, is a set of recognized edges E.

As visualized in Fig. 8, we decompose edge recognition
into three stages. First, edge candidate generation produces a
set of edge candidates for every detected arrow a ∈ A. Each
edge candidate src

a−→ tgt relates an arrow a to a pair of
possible source and target shapes in its proximity. Second,
we use a trained edge relation network to process each edge
candidate src

a−→ tgt and predict the likelihood s that arrow
a indeed connects src and tgt, as well as the arrow path K
that was drawn to connect src and tgt. Lastly, given the set of
edge candidates detected for all arrows EC , the edge inference
procedure determines the final set of edges E ⊆ EC . This
procedure involves finding the most likely edge candidate for
each arrow, and eliminating duplicate edges. In the following
we introduce each stage in detail.
Edge candidate generation. Given an arrow a ∈ A, we first
identify all potential pairs of source and target shapes that
the arrow might connect. To that end, we take all shapes that
are considered to be in proximity to the arrow’s bounding
box. Although the object detector already aims to connect an
arrow’s bounding box to its source and target shapes (see
Section 4.1), we still need to account for minor prediction
inaccuracies that could result in an arrow’s bounding box
not being fully connected to its corresponding shapes.

Therefore, we determine if an arrow a and a shape s
are in proximity to each other by expanding the arrow’s
bounding box a.b in a manner relative to its width and
height. Specifically, we pad each side of a.b by an arrow
padding percentage pada of the box’s weight and height,
respectively.6 We refer to this extended arrow bounding box
as the (context-enriched) arrow region, a.r. Fig. 9 shows an
example, with the arrow’s bounding box in green and the
arrow region in red. Based on the experiments reported on
in Section 6.2, we found that a padding of pada = 10% is
best suited for this purpose.

The set of candidate shapes for an arrow a then includes
all shapes that overlap with the arrow region, i.e., it contains

6. To account for overly small or large arrows, we enforce a minimum
padding value of 15px and a maximum of 100px.

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Edge relation scoring

Relation
score s

Semantic module

Visual module
Edge

relation
network

One-hot
encoding

Spatial module

task
startMessageEvent
messageFlow

Region
feature
map

Semantic
features

Arrow
keypoints K

Faster
R-CNN

Input Image

Detected objects

Edge
candidate
generation

Edge candidates

Predicted boxes

Arrow region

Predicted classes

RoIAlign

Image feature map Binary
mask

encoding

For each
edge can.

Binary
masks

Edge
inference

Recognized edges

Fig. 8. Edge recognition: Given the objects detected by Faster R-CNN, edge candidate generation produces a set of edge candidates for every arrow.
For each edge candidate src

a−→ tgt, the edge relation scoring procedure predicts the relation score and arrow keypoints from the features extracted
by three modules. Finally, the edge inference procedure identifies the most likely edge candidate for each arrow and eliminates duplicate edges.

Fig. 9. Edge candidate generation: Given an arrow (green), each shape
that intersects with the arrow region (red) is considered a candidate. After,
we create O(n2) edge candidates (blue arrows) for the arrow and its n
candidate shapes.

any shape s ∈ S of which its bounding box s.b intersects
with the arrow’s region a.r. For instance, in Fig. 9, the arrow
region overlaps with the bounding boxes of all shapes, thus
resulting in four shape candidates for the arrow. There are
two exceptions to this procedure, related to the specifics
of collaboration shapes in BPMN. First, we only consider
pool shapes as candidates for arrows classified as message
flow, as the other edge types do not connect to pools in
BPMN. Second, we do not consider lane shapes, given that
no edge type connects to these shapes at all. Removing
invalid collaboration shape candidates greatly reduces the
total number of candidates to evaluate, as, in the example
of sequence flows, we would otherwise create a candidate
shape for both the lane and pool that the arrow belongs to.

Given n candidate shapes, we create n ∗ (n− 1) directed
edge candidates of the form src

a−→ tgt, with src ̸= tgt, i.e.,
we consider all pair-wise combinations as potential source
and target shapes for arrow a, as illustrated in Fig. 9. We
intentionally do not apply any heuristics to further prune the
set of shape pair candidates. For example, in Fig. 9, it seems
unlikely that the predicted arrow bounding box connects
the two leftmost shapes. However, in some cases arrows are
drawn in such a way that they connect two shapes with a
large detour. Instead of applying heuristics to detect such
scenarios, we, therefore, opt for a learning-based approach
that can exploit these spatial bounding box correlations to
decide if an arrow connects a shape pair, as detailed in the
second stage below.

While the number of edge candidates is quadratic with
respect to the number of shape candidates, this is generally
not problematic in practice. In particular, we observe that the

majority of arrows (e.g., 71% in the training split of hdBPMN)
have two candidate shapes, which results in only two edge
candidates, one per direction. This is, e.g., seen for the two
short sequence flow arrows in Fig. 9.

Edge relation scoring. In the second stage, we use an edge
relation network to predict the likelihood that an edge
candidate src a−→ tgt indeed connects shape src to tgt, and to
predict the drawn path of the arrow (captured as a sequence
of keypoints K). As shown in Fig. 8, the network is provided
an edge candidate as input, comprising the bounding boxes
and class predictions of the three objects, and the arrow
region a.r. As depicted, the edge relation scoring procedure
uses three modules to analyze different kinds of features.
This modular approach is inspired by existing works [51],
[52], where relationships between objects in images are also
detected using spatial, semantic, and a visual modules. In
the following, we describe the three modules in detail, and
explain how the edge relation network predicts the edge
relation score and keypoints given the encoded features.

Spatial module. The spatial module encodes spatial features
for each edge candidate, i.e., the (relative) locations of the
bounding boxes of the arrow and the two associated shapes.
For each predicted box of the three objects, the spatial module
generates a 28×28 binary mask that indicates the location of
the box within the arrow region a.r, as illustrated in Fig. 8.
Each binary mask is initialized with zeros and then filled with
ones for each bounding box pixel that is located within a.r.
Specifically, we first compute the intersection bounding box
of each shape and a.r. Next, we normalize the intersection
boxes by dividing their x and y coordinates by the width
and height, respectively, of a.r. Then, we multiply each
coordinate by 28 and obtain boxes in the range [0, 28], which
we finally convert into binary masks.

The binary masks instruct the network which task it is
supposed to solve, i.e., they indicate the source and target
shape between which the network should try to recognize
an edge. In addition, the spatial features can be used by
the network to assess the likelihood that arrow a connects
the source and target shapes, src and tgt. For instance,
spatial features capture that corresponding source and target
shapes are typically located on opposite sides of an arrow’s
bounding box, as seen for the example in Fig. 8. However, to

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Relation score s

Arrow keypoints K

28x28x3
CNN

28x28x259
269

FC

28x28x256

+
13

+
256

Spatial
features

Visual
features

Semantic
features

7x7x256

GAP FC
256 256 FC

5

FC
1S

Fig. 10. Edge relation network : The concatenated visual and spatial features are processed by a convolutional neural network (CNN). Next, the
feature vector obtained from the global average pooling (GAP) layer is fused with the semantic features. After two fully-connected layers (FCs), a
network branch with a sigmoid function (S) predicts the edge relation score s, and a second branch predicts the arrow keypoints K.

actually recognize an edge, the network also needs the visual
features of the arrow region. These features are generated by
the visual module, as we describe next.

Visual module. The visual module generates a learned
28×28×256 visual feature representation of the arrow re-
gion a.r. These visual features can be used to assess the
likelihood that an arrow connects to particular shapes, e.g.,
by considering the proximity and direction of a drawn arrow,
whereas they are also used to identify the keypoints in the
drawing, i.e., an arrow’s start, end, and notable points in
between. As discussed in Section 4.1, Faster R-CNN uses
the RoIAlign mechanism to cut out the part of the image
features that corresponds to the bounding box of an object
proposal. Fig. 8 shows that the visual module uses the same
mechanism to extract the features for a.r.

As discussed in the previous section, the network needs
both spatial and visual features to solve the edge recognition
task. Given just the visual features, the network lacks
information about the shape pair it should evaluate. With
both features, the network can learn to figure out if there
is an arrow whose tail is in proximity to the source shape,
whose head is in proximity to the target shape, and whose
bounding box equals the provided arrow bounding box. Both
the spatial and visual module rely on the bounding boxes
of the edge candidate objects, but do not take into account
the predicted classes. The next section therefore presents the
semantic module, which leverages the predicted classes.

Semantic module. The semantic module provides the network
with an encoded representation of the predicted classes of
an edge. The network can use these features to learn class-
specific modeling rules and conventions, e.g., that control-
flow edges connect activities, events, and gateways, whereas
data associations involve at least one data element. Given
the large number of shape classes, many combinations of
source and target shape classes have only a few training
samples, and we observed that this leads to overfitting
during training. Therefore, instead of directly using the
predicted shape classes, we map the 21 shape classes into
five more general shape groups: activity, event, gateway,
collaboration, and data elements. From a process modeling
perspective this is reasonable, as the majority of modeling
rules are applied on shape group level. For example, the rule
that a data association always connects a data store or data
object can be simplified to a rule on data element level.

The predicted arrow class and the mapped shape groups
are converted into vectors using one-hot encodings, which

results in a vector of size 3 for the arrow, and two vectors
of size 5 for the shapes. Finally, the three vectors are
concatenated into a semantic feature vector of size 13.

Edge relation network. Given the input stemming from the
three aforementioned modules, we use a neural network to
predict the edge relation score and arrow path, as illustrated
in Fig. 10. The architecture of our network largely follows
our earlier work [16], which is in turn based on a network
designed to predict relationships between form elements in
a small document image dataset [52]. We first combine the
visual and spatial features by concatenating the three binary
masks as additional channels to the visual features, and
obtain a 28×28×259 feature representation. The combined
visual and spatial features are processed by a convolutional
neural network (CNN). We use the same CNN architecture
as in our earlier work [16], which consists of six depth-wise
separable convolutional layers [53]. The spatial resolution
of the features is downsampled twice by a factor of two,
using strided convolutions in the third and last depth-wise
convolution. This results in features of size 7×7×256. Next,
we convert the three-dimensional features to a vector using
global average pooling (GAP), which computes the mean
over each of the 256 channels. We then concatenate the
semantic vector, leading to an intermediate vector of size
269. We subsequently integrate these semantic features by
applying two fully-connected layers (FCs), resulting in a final
feature vector of size 256.

Given the final feature vector, the network predicts two
outputs. First, a binary classification layer with a sigmoid
function predicts the edge relation score s. A second linear
layer predicts the arrow path as a sequence of arrow
keypoints K, where each (x, y) ∈ K represents a point
within the image. Following our earlier work [16], we choose
|K| = 5, and encode the arrow keypoint coordinates relative
to the arrow region. The first and last keypoints in K indicate
the arrow tail and head positions, and the three intermediate
points capture the drawn path. The number of intermediate
keypoints required to describe an arrow vary, e.g., an elbow
arrow can be described with just one intermediate keypoint.
Therefore, we remove superfluous intermediate keypoints in
the last step of our approach, as we describe in Section 4.4.

Given the edge relation score s and the arrow keypoints
K, we obtain a tuple e = (a, src, tgt, l,K) ∈ EC for each
edge candidate. The next section details how we use the set
of edge tuples EC to determine the final set of edges.

Edge inference. The edge inference procedure determines

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Fig. 11. Textblock handwriting recognition: For each textblock (blue), the
label is obtained by detecting the reading order of its contained words
(green), except for notation words (yellow).

the final set of edges E ⊂ EC . For each arrow a, we choose
the edge candidate e with the highest edge score e.s. In
other words, we reduce the number of edge candidates to
the number of arrows by only keeping the most likely edge
per arrow. Next, we aggregate the edge score e.s with the
object detector score e.a.s by taking the minimum of both,
i.e., we set e.s = min(e.s, e.a.s).

Next, we remove all edges whose aggregated score is
lower than a threshold τe (we use 0.5 as a default and
test further values in our evaluation experiments), which
results in E′

C ⊂ EC . Last, we identify edges with the same
connection, i.e., edges e1, e2 ∈ E′

C with e1.src = e2.src and
e1.tgt = e2.tgt. We resolve these duplicates by only keeping
the edge with the higher aggregated score e.s. As a result,
we obtain the final set of edges E.

4.3 Label Recognition

In this step, our approach aims to recognize the BPMN
labels indicated by the previously detected textblocks T
(Section 4.1). The input for this step consists of the sets of
shapes S, edges E, and textblocks T , as well as the image
features feat. The output of this step is a set of labels L,
where each label l = (t, tgt, s, txt) ∈ L relates a textblock t,
to a target shape or edge tgt ∈ S ∪E. Further, s represents
the consolidated label score, and txt the textual content.

To achieve this, we decompose label recognition into two
main parts. First, textblock handwriting recognition decodes
the textual content within each textblock. Second, textblock
relation detection strives to identify the shape or edge that each
textblock labels, and, to eliminate duplicate textblocks that
both relate to the same shape or edge. Besides the textblocks
in T , our approach also decodes the textual content within
the activities that are part of S. Therefore, we create a pseudo
textblock for each activity. The pseudo textblock receives the
same bounding box as its associated activity shape, but does
not participate in textblock relation detection since its target
shape is already known. We refer to the set of regular and
pseudo textblocks as T ′.

Below, we introduce the two parts to obtain L in detail.

Textblock handwriting recognition. Given a textblock t ∈ T ′,
the textblock handwriting recognition procedure tries to
decode the textual content txt within the textblock. We de-
compose textblock handwriting recognition into two stages.
First, in image word recognition, we use an off-the-shelf OCR
service to recognize all words in an image. Second, the textual
content decoding procedure identifies the words that belong to
each textblock, and combines the words into a word sequence
that represents the textual content of the textblock.

Image word recognition. In this stage, we try to identify all
handwritten word objects w = (b, d, txt) ∈ W within a
given image. Each word w is defined by a bounding box b,
the degree of its rotation angle d, and the word’s textual
content txt. To accomplish this, we leverage an off-the-
shelf OCR service that supports handwritten text. Given
a raw image as input, the OCR service returns a set of
text lines, where each line consists of a sequence of words.
As words can be arbitrarily rotated, the word bounding
boxes also indicate the angle d. Since OCR services are
commonly optimized towards handwritten documents, we
observe that the returned text lines often combine lines of
multiple textblocks, e.g., when two textblocks are next to
each other. In Fig. 11, the service might recognize the text
line “interview expertise”, even though both words belong
to different textblocks. We therefore discard the text line
information and only keep the returned words W .

Next, we describe our approach for identifying the word
sequences that represent the textual content of each textblock.

Textual content decoding. Given the textblocks O′
T and words

W , we propose a procedure that decodes the textual content
of each textblock. To this end, we first identify the words
W t ⊂ W that belong to each textblock t, and, then, combine
the words W t to obtain the textual content txt.

To identify the words that belong to a textblock, we
first compute the intersection over area (IoA) between all
words and textblocks in the image. The IoA quantifies to
what fraction of a word w is contained in a textblock t,
and is defined as the overlap area of w.b and t.b divided
by the area of w.b. We match each word to the textblock
with the highest IoA, while only keeping words whose
textblock IoA exceeds 50%. We use this threshold to account
for minor word and textblock localization errors. In Fig. 11,
the green boxes illustrate the words that have been assigned
to their enclosing textblock. Further, the red boxes show
that the OCR service returns many (false positive) words
that actually are part of drawn shapes or edges. Among
others, we frequently observe recognized “X” characters
for exclusive gateway symbols, or multiple returned “-”
or “I” characters for horizontal and vertical arrows. These
false positives are discarded by only keeping words within
textblocks. However, we also observe false positive words
located within textblocks that often correspond to notational
elements of BPMN, as illustrated by the yellow box in Fig. 11.
We try to eliminate these with a filter list of common notation
words, which includes recognized words for parallel task
(e.g., “III”, “111”) and collapsed sub-process markers (e.g.,
“+”). Applying both the matching and filtering procedure
yields the final set of words W t for each textblock t.

In the second stage, a reading order detection algorithm
decodes the textual content txt of each textblock t. Given the
words W t, the algorithm uses the bounding box and rotation
angle d of each word to identify which words form a line,
and in which order the lines should be read. The algorithm
details can be found in the supplementary material.

Textblock relation detection. Similar to edge recognition
(Section 4.2), we formulate textblock relation detection as a
relationship detection problem and decompose it into three
stages. First, relation candidate generation produces a set of
shape and edge candidates for every textblock t ∈ T . Second,

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

relation scoring predicts the score for each candidate pair,
where a candidate pair consists of a textblock and a related
shape or edge. Last, the relation inference procedure tries to
find the most likely shape or edge for each textblock, and to
eliminate duplicate labels, i.e., multiple textblocks that have
been related to the same shape or edge.

Relation candidate generation. Given a textblock t, we first
identify all shapes and edges that the textblock might label.
In edge candidate generation (cf. Section 4.2), the set of
candidates includes all shapes that overlap with the arrow
region. Here, the arrow region corresponds to the arrow
bounding box extended proportionally to its width and
height. We follow a similar procedure to generate textblock
relation candidates, but also account for the following
specifics of BPMN labels. First, we observe a large variance
in textblock bounding box sizes, since the textual content can
range from single digit to multi-line text phrases. Therefore,
we do not pad each textblock relative to its dimensions.
Instead, we compute the median size of all textblocks in the
image, which we refer to as M . Here, the size of a textblock
is defined as the mean of its width and height. To obtain the
textblock region, we then pad the side of each textblock by a
factor padt ∗M . Based on our experimental results described
in Section 6.2, we set padt = 1.

In order to reduce the number of false positive candidates
to evaluate, we also leverage two patterns regarding the
positions of textblocks relative to the shape or edge that they
label. First, we observe that edge bounding boxes often do
not closely capture the drawn path of the arrow, especially
for diagonal or elbow arrows. For example, even though the
drawn path of the sequence flow in the center of Fig. 1 is far
away from the “Not Okay” textblock, their two bounding
box are in proximity. Therefore, we only consider an edge as
relation target if its drawn path, identified by its keypoints K ,
intersects the textblock region. Second, we observe that pool
and lane labels are commonly located near the boundary
of the detected shape, as illustrated in Fig. 6. Therefore, we
only consider a pool or lane as relation target if its border
intersects the (extended) textblock region. This way, we avoid
creating a candidate for every textblock that actually labels a
shape or edge within the pool.

Fig. 12. Relation candidate
generation

Fig. 12 shows an exem-
plary textblock in an image,
along with the related candi-
date shapes (blue) and edges
(orange) that intersect with the
textblock region (red). As indi-
cated, we do not consider ac-
tivity shapes as relation targets,
since we know the relation tar-
gets of the (pseudo) textblocks
that we created for each activity.
Further, we exclude data association arrows, as not a single
such arrow is labeled in the hdBPMN dataset. In the next
step, we use a network to evaluate each textblock relation
candidate (t, tgt).

Relation scoring. In this second stage, we use a textblock rela-
tion network to determine the score of a relation candidate
(t, tgt), i.e., the likelihood that textblock t labels a shape
or edge, tgt. As in edge recognition, the network consists

of three modules, and outputs a relation score. The main
difference is that the textblock relation network operates on
object pairs instead of triplets. As a consequence, the spatial
module generates two instead of three binary masks. Further,
since the source object of the textblock relation is always a
textblock, the semantic module only encodes the predicted
class of one object, namely the target shape or edge. Finally,
the visual module extracts the features from the textblock
region using RoIAlign, and thus works in the same way as
with edge recognition. The network details can be found in
the supplementary material.

Relation inference. The relation inference procedure deter-
mines the final set of textblock relations, and as part of
this, also eliminates textblocks that have been identified as
duplicates. This procedure is, again, performed in a similar
manner as its corresponding part in the edge recognition
step. For each textblock t, we choose the relation candidate
(t, tgt) with the highest relation score s. We then aggregate
the relation and the object detector score by taking their
minimum, and remove all textblocks whose aggregated score
is lower than a threshold τl (we use 0.5 as a default and
test further values in our evaluation experiments). Last, we
identify textblock duplicates, i.e., multiple textblocks that
have been matched to the same shape or edge, and resolve
these cases by only keeping the textblock with the highest
score.

4.4 Approach Output

The last step in our approach takes the final shapes S, edges
E and labels L to create a process model in the BPMN 2.0
XML format. The XML format consists of two main schemata:
the actual process model and the BPMN DI schema, which
defines the shape and label bounding boxes and the way-
points of edges. For each predicted shape, edge, and label, we
create a respective element in the XML file. When creating a
BPMN DI edge element for each e ∈ E, we follow the typical
convention and define the first and last waypoint as the
points that intersect with the edge’s source (e.src) and target
(e.tgt) shapes, respectively. To that end, we shift the first and
last predicted keypoint of e.K to the nearest point on the
bounding box boundary of the connecting shapes, except for
gateways, where we connect the keypoint to the closest of the
four diamond corner points. For the intermediate keypoints,
we remove superfluous points with the Douglas-Peucker
line-simplification algorithm [54]. Concretely, we remove
every point where the distance between the original and
induced simplified path is less than 5% of the total arrow
length, resulting in a smoother representation as the final
output of Sketch2Process.

4.5 Training

To operationalize Sketch2Process, we need to train and
validate all neural network components on a dataset with
an accompanying ground truth, split into a training and
validation set. In this section, we describe the format of this
ground truth, the overall training procedure, and details on
our employed image augmentation pipeline.

Ground truth. Given an image containing a hand-drawn
BPMN model, our approach uses a ground-truth annotation

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Faster
R-CNN

Object
proposals

Augmented
image

Edge
relation
network

Textblock
relation
network

64 sampled
edge candidates

64 sampled
relation cand.

ℒ!

ℒ"

ℒ#

+

Image features 𝑓𝑒𝑎𝑡

Edge
candidate
generation

Relation
candidate
generation

Image
augmentation

Mini-batch
image

Image
loss ℒ

Fig. 13. Training overview : Given the augmented image, Faster R-CNN produces a large set of object proposals. Edge candidate generation identifies
all proposals that sufficiently overlap with a ground-truth shape or edge to produce the set of edge candidates. It then samples 64 edge candidates,
for which the edge loss Le is computed by comparing the edge relation network outputs to their ground-truth counterparts. The textblock relation loss
Lt is computed on 64 relation candidates using a similar procedure. Finally, the image loss L combines the losses of all networks.

that captures the shapes, edges, and labels contained in it.
The formats for shapes and labels are straightforward and
follow directly from the annotation procedure. Specifically,
each ground-truth shape is a tuple (c, b), with c as the shape’s
class and b its bounding box, whereas each ground-truth label
is a tuple (txt, tgt, b), with txt as the label’s text, tgt its target
shape or edge, and b its bounding box.

The ground truth of edges is slightly more intricate.
Particularly, each ground-truth edge is a tuple (src, tgt,K, b),
where src and tgt are the source and target shapes that
the edge connects, K a sequence of keypoints (x and y
coordinates, corresponding to BPMN waypoints) that are
used to capture the edge’s drawn path, and b the edge’s
bounding box. The first and last keypoints of K , respectively,
correspond to the tail and head of the edge, whereas
additional keypoints may be used to indicate an edge’s
bending points. Here, it is important to note that the tail
and head keypoints should correspond to the points where
the edge intersects or is supposed to intersect with its source
and target shapes, rather than to the actually drawn start
and endpoints of the edge. In this manner, we account for
incompletely drawn edges that do not connect with their
corresponding shapes (see issue e2 in Fig. 1). Then, the object
detector trained on these annotations will strive to predict
where an arrow bounding box should have ended (or started)
if the edge had been drawn properly, rather than predicting
the point where the edge ends (or starts) in the drawing
(see also Section 4.1). Finally, an edge’s bounding box b is
automatically computed as the smallest box that contains all
keypoints in K .

Training procedure. In the context of deep learning, which
encompasses the neural networks we employ, the goal of
model training is to find network parameters (i.e., weights)
that maximize the performance on the validation set. We
follow the de facto standard in deep learning and train the
networks with stochastic gradient descent (SGD) [55]. SGD is
an iterative method, where, at each step, k examples (images
in our case) are randomly sampled from the training set.
Here, k is referred to as the batch size, and the set of sampled
examples is called a mini-batch. During each SGD iteration,
a loss function quantifies the difference between the ground
truth and the predicted outputs of the neural networks. We
apply the loss function per image and obtain a mini-batch

loss by averaging over the k image losses. Although we
defer the technical details to the supplementary material, the
intuition of how we compute an image loss is as follows.

As depicted in Fig. 13, we first apply an image augmen-
tation pipeline (described below) and obtain a randomly
augmented version of the input image. As mentioned in
Section 4.1, Faster R-CNN uses the (augmented) image to
produce the image features feat. Given these features, it
generates a set of object proposals in the first stage. In the
second stage, a box-head network uses the proposals and
image features to predict the detected objects. Following the
standard training procedure of this object detector [42], we
compute the aggregated Faster R-CNN loss Lf by comparing
both the proposals and the detected objects against the
ground-truth objects. Concretely, this means that Faster R-
CNN uses a ground truth consisting of all shapes, as well the
bounding boxes and classes of edges and labels (representing
arrow and textblock objects, as described in Section 4.1).

As Fig. 13 illustrates, we use both the object proposals
and the image features feat to train our edge and textblock
relation networks, which follows related work that extends
Faster R-CNN [49]. To this end, we randomly sample 64 edge
candidates (for edge recognition) and 64 relation candidates
(for label recognition) from the object proposals. We then
compute an edge loss Le, which consists of a relation loss and
a keypoint loss. For the relation loss, we use the ground-truth
information on both shapes and edges to assess if an edge
candidate is considered true positive or not, which results in
a binary ground-truth relation score. We then compare the
predicted and ground-truth relation score using binary cross
entropy. For the keypoint loss, we compute the mean squared
error between the predicted and ground-truth keypoints K
of an edge (though the latter are resampled in an equidistant
manner). The label relation loss Ll is calculated in the same
manner as for edge relations, except that we are using the
entire ground truth, as textblocks can be used to label both
shapes and edges. Finally, we compute the image loss, L =
Lf +Le +Ll, as a weighted combination of the losses of the
three networks.

Image augmentation pipeline. During training, we have to
account for the particularities of the hdBPMN dataset in terms
of its size (hundreds rather than many thousands of images)
and diversity with respect to the means used to create and

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

digitize the hand-drawn models, such as the type of paper
and drawing implement (see also Section 5.3).

Therefore, given a mini-batch image, we apply a ran-
domly selected set of augmentation methods that are specifi-
cally suited to the data at hand. A code listing capturing the
exact pipeline we use for this, based on the Albumentations
library [56], is provided in the supplementary material,
whereas we here focus on a description of the augmentation
methods and their relevance.

In particular, we employ augmentation methods that ran-
domly rotate, flip, and scale training images, as well as add
Gaussian noise. These methods have been shown to work
well for smaller datasets used in flowchart recognition [22].
On top of those, we also employ methods that are particularly
aimed at the camera-based images in our dataset, which we
introduced in a previous work [23]. This involves altering
varying properties to reflect different kinds of camera-based
images, for which we randomly change the brightness and
contrast of the image, and shift the hue, saturation, and value
color scale.

Finally, to improve generalization, we further introduce
a new crop augmentation in this work, which cuts out a
random part of the diagram and then enlarges the crop to
the scale of the original diagram. Concretely, we crop an
image patch whose scale compared to the original image is
between 0.2 and 1.0, and whose ratio is between 0.5 and 1.5.
Then, we keep all objects from the ground truth where at
least 70% of the bounding box is located within the cropped
image. To avoid having empty (cropped) images, we reapply
the entire augmentation pipeline until the augmented image
contains at least 3 objects. Overall, we observe that random
cropping improves our recognition results, as during training
the object detector sees variations of the same image that
have been (1) stretched in horizontal or vertical direction and
(2) where only a subset of the diagram symbols are visible.

Fig. 14 shows some augmented images obtained by
applying our proposed pipeline on the running example.

5 THE HDBPMN DATA SET

This section discusses the collection, annotation, character-
istics, and splits of hdBPMN, the dataset we established for
our work. The images and BPMN annotations are publicly
available at: https://github.com/dwslab/hdBPMN.

5.1 Collection Procedure
We collected 704 images of hand-drawn BPMN models from
107 participants, all students at the University of Mannheim.
Each image corresponds to a solution that was submitted
by a student for a graded assignment in an exercise sheet
or exam. The obtained models stem from 11 modeling tasks,
10 of which involved the establishment of a BPMN model
on the basis of a textual process description, while the other
involved the conversion of a Petri net into a BPMN model.
Students were asked to draw their models on paper and
embed a scan or photo of their drawing in a PDF, with the
only constraint that the models should be readable.7

Note that, aside from splitting pages that covered mul-
tiple modeling tasks, we deliberately did not crop images,

7. The modeling tasks and instructions are available in our repository.

Fig. 14. Image Augmentation Example: Our augmentation pipeline
produces different variations of the same input image

Fig. 15. Example of an annotated sketch in the BPMN image annotator.
Shapes are sized and positioned to match their hand-drawn counterparts,
while edges are modeled using waypoints to resemble the drawn arrows.

resulting in the occasional inclusion of background objects.
Finally, we used an image editor to conceal personal details
(e.g., names and student IDs). The resulting images were
assigned names that follow a taskID_participantID
convention to recognize drawings by the same participant.

5.2 Annotation
To train and evaluate our BPMN recognition approach, we
annotated the hand-drawn shapes and edges in each image
using the format described in Section 4.5. To this end, we
developed an image annotation tool based on the open-
source bpmn-js BPMN viewer and editor,8 which we have
made publicly available.9 Fig. 15 depicts the annotation tool
in action. The bpmn-js editor prevents users from modeling
edges that are syntactically incorrect, e.g., an end event with an
outgoing sequence flow. Since we want to be able to annotate

8. https://github.com/bpmn-io/bpmn-js
9. https://github.com/dwslab/bpmn-image-annotator

https://github.com/dwslab/hdBPMN
https://github.com/bpmn-io/bpmn-js
https://github.com/dwslab/bpmn-image-annotator

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 2
BPMN elements in the 704 annotated images

Type Group Elements and their frequencies

Shape

Activity task (4,094), subprocess (collapsed) (133),
subprocess (expanded) (7), call activity (15)

Event start (424), intermediate throw (7), end (936),
message start (508), message interm. catch (507),
message interm. throw (291), message end (199),
timer start (86), timer intermediate catch (289)

Gateway exclusive (1,347), parallel (661) inclusive (3),
event-based (171)

Resource pool (1,103), lane (688)
Data ele. data object (887), data store (219)

Edge sequence flow (9,893), message flow (1,822),
data association (1,773), annotation assoc. (170)

Label textblock (12,501), word (32,009), text anno. (176)

such incorrect edges in the images, if they are present, we
disabled the bpmn-js correctness rules in our annotation
tool. Upon completion, the annotation is exported as a BPMN
2.0 XML file, which links the shapes, edges, and labels of the
BPMN model to their corresponding locations in the image.

5.3 Dataset Characteristics

The 704 annotated images contain more than 70,000 an-
notated elements. As shown in Table 2, the models in
the dataset are highly expressive, spanning 25 types of
BPMN elements, including 4 types of activity shapes, 9
types of events, 4 types of gateways, and 4 types of edges.
Largely owing to the different modeling tasks from which
they stem, the individual BPMN models differ in terms of
their size, complexity, and expressiveness (i.e., number of
types covered). The models resulting from the 11 different
modeling tasks have up to 15 activities and 26 events, 0 to
10 gateways, 0 to 8 resources, and 0 to 15 data elements.
Some tasks result in simpler models (e.g., task1: 11.0 shapes
and 11.9 edges on average) and others in more complex
ones (e.g., task3: 25.8 shapes and 27.3 edges). Note that the
running example depicted in, e.g., Fig. 1, represents a task of
intermediate complexity.

Aside from the complexity of a particular process, the
recognition difficulty of an image is affected by various
other aspects, mainly corresponding to the general challenges
highlighted in Section 3, such as the use of different paper
types (blank, lined, or squared) and drawing implements
(pen versus pencil), image-capturing issues (such as back-
ground objects, cut-off parts, and blurriness), the inclusion
of crossed-out parts, and the presence of modeling errors.

As a result, the 704 images in the publicly-available
hdBPMN dataset thus depict BPMN models that span a broad
range of BPMN elements and have a high degree of diversity.
Fig. 16 visualizes this by showcasing some of the different
manners in which various kinds of shapes were drawn.

5.4 Dataset Splits

Following related hand-drawn diagram datasets [14], [57],
we split up the dataset into publicly available training,
validation, and test parts. Each participant in the dataset
contributed between one and nine diagrams. While the

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 16. Examples of hand-drawn events (start 16a, intermediate 16b,
end 16c, message start 16d, message end 16e, timer start 16f, timer
interm. 16g), gateways (exclusive 16h, parallel 16i), and data objects 16j.

variability of factors such as writing style, writing medium
and image capturing method is high between participants,
there are substantial similarities between the diagrams of one
participant. Therefore, we split the dataset by participants,
such that the participants in the training, validation, and
test set are disjoint. Specifically, we created a random
60%/20%/20% split over the participants, and assigned each
diagram to the respective part. The resulting training/valida-
tion/test set contain 432/144/128 diagrams from 65/21/21
participants, respectively.

6 EVALUATION

To demonstrate the capability of our approach, we trained
and optimized it using the training and validation set of
hdBPMN, and conducted an evaluation using its test set. The
evaluation results clearly demonstrate that our approach can
reliably recognize hand-drawn BPMN models from images
and, hence, remove undesirable friction in the modeling
workflow.

6.1 Evaluation Setup
Below we elaborate on the details of our employed imple-
mentation and parameter settings, as well as the metrics and
baselines used to evaluate our approach.

Implementation. Our neural network implementation is
based on the Detectron2 [45] framework, which provides
an extensible Faster R-CNN implementation based on Py-
Torch [58]. For OCR, we use the Microsoft Azure OCR
service,10 version v3.2. The service is asynchronous, i.e.,
we submit the image via a processing request, and then
periodically check if the results are available. In order to
optimize the overall runtime of our approach, we perform
network inference while waiting for the OCR results.

Our code is available for research purposes upon re-
quest.11 Readers are invited to try out their own sketches

10. https://docs.microsoft.com/en-us/azure/cognitive-services/
computer-vision/overview-ocr

11. For proprietary reasons, requests for the source code of the
implementation should be submitted to bernhard.schaefer@sap.com.

https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

using our public demo:
http://sketch2bpmn.informatik.uni-mannheim.de/.

Parameter settings. Sketch2Process has several param-
eters, for which we analyze the effect of different choices.
During inference, we use three score thresholds, one for
shapes (τs), one for edges (τe), and one for labels (τl), to
decide which elements to keep. For each score threshold,
we explored choices in the range from 0.05 to 0.95. In
addition, both our edge and label recognition components
have a region size parameter, which we consider the most
important parameter of the respective components, as they
are used to identify elements in proximity during candidate
generation, and to extract the visual features in the scoring
procedures. For the arrow region size, we explored arrow
padding percentages pada in the range from 0% to 50%, with
a step size of 10%, and also evaluated 5% when we found
that 10% performs best. For the textblock region size, we
explored textblock padding factors padt in the range from
0.0 to 2.0, with a step size of 0.25.

Besides the mentioned parameters, Detectron2 has several
training configurations, for which we apply the settings from
previous works [16], [22]. Faster R-CNN can be equipped
with different backbone networks. We use the ResNet-50-
FPN [59] backbone throughout the experiments, which is
relatively fast and provides a good speed-accuracy trade-
off. For training, we largely follow the default Detectron2
configuration for training Faster R-CNN with a ResNet-50-
FPN backbone. We use stochastic gradient descent with a
batch size of 4, and a learning rate of 0.005. We train the
model for 90k iterations, which means that the model sees
360k augmented images (90k batches of size 4). This takes
about 32 hours on a Tesla V100 GPU with 16GB memory.
During training, we multiply the learning rate after 50k and
70k iterations by a factor of 0.4. Here, we follow our previous
work [16], where we found that the default factor of 0.1
decreases the learning rate too much. We initialize the model
weights with models pretrained on the COCO dataset, which
we obtain from the Detectron2 model zoo. Although the
COCO dataset consists of images from a different domain
than our target one, i.e., images of everyday scenes, we
observed minor improvements with this transfer learning
strategy in our previous works.

Finally, another important part of the training procedure
is the image augmentation pipeline. To understand its
impact on the overall results, we conducted an ablation
study in which we compare a model trained using our
full augmentation pipeline to two additional models: one
with no augmentation at all, and one with just the default
augmentations from the Detectron2 library (random resizing
and horizontal flipping).

Metrics. To evaluate our approach, we compare a process
model extracted by our approach to the one in the manually
annotated image (see Section 5.2), i.e., the ground truth.

Object detection metrics. To quantify the object detection perfor-
mance, we follow related work in diagram recognition [14],
[38], [39]. A detected shape, edge, or textblock is considered
a true positive if it has the correct class and its bounding
box overlaps sufficiently with its ground-truth counterpart.
Particularly, following other work [38], we consider this
overlap sufficient if the bounding boxes have an overlap

that exceeds an IoU threshold of 50%, which accounts for
annotation inaccuracies in the ground-truth bounding boxes.
To quantify object detection performance, we then use this
notion of true positives to match the ground truth to the
predicted objects and compute the standard precision, recall,
and F1 scores. For infrequent shape classes there can be zero
predicted objects, in which case the recall is zero. As this
leads to a division by zero in the calculation of the precision
score, we handle this edge case by reporting n/a for both
precision and F1 scores. Similarly, we report a recall of n/a
for classes that appear in the training, but not in the test set.

As the object detection step completes the recognition
of shapes, we compute the macro shape F1 score as the
mean F1 over all shape classes. Similarly, the micro shape F1

score is computed as the F1 over all shape predictions. This
means that the micro score weights each class according to
its relative frequency, and thus the score is biased towards
more frequent classes.
Edge recognition metrics. To quantify the performance for edge
recognition, we follow related work by determining if our
approach is able to relate detected arrow objects to the correct
(i.e., ground-truth) source and target shapes [14], [39]. We,
again, compute precision, recall, and F1 scores for this, where
we consider an edge to be a true positive if both the source
and target shapes are correctly identified.

Note that this means that edge recognition is affected by
object detection accuracy for arrows, as well as for shapes:
if an arrow object was not correctly detected, we cannot
relate it to any shapes, whereas if a shape was not correctly
detected, we cannot relate any edges to it, either.12

Label recognition metrics. We consider label recognition per-
formance with respect to its two parts: textblock relation
detection, for which we assess how well our approach relates
textblocks to their corresponding shapes and edges, and
textblock handwriting recognition, for which we evaluate
the actual textual content detected in these textblocks.

For textblock relation detection, we follow the same eval-
uation procedure as for edge recognition, i.e., a label is a
true positive if its textblock has been correctly detected and
the associated shape or edge has been correctly identified.
Note that, our conceptual contributions focus on this part
of label recognition, whereas the rest primarily depends
on an employed OCR service. Therefore, the overall label
recognition performance of our approach that we report only
includes these non-textual aspects.

For textblock handwriting recognition, we assess its two
steps. We evaluate the image word recognition step by com-
paring the OCR performance to the ground-truth words
annotated in an image. We consider a predicted word a true
positive if its IoU score exceeds 50%, allowing us to report
on precision, recall, and F1 scores for the OCR service. In
addition, we compare the predicted and ground-truth texts
of the true positive words using the character error rate
(CER), a common metric to evaluate HWR methods [60]. The
CER is defined as the Levenshtein distance at character level
between the prediction and ground truth, normalized by
the ground-truth length. Prior to computing the CER, we
lowercase the texts and replace line breaks with whitespaces,

12. Note that an edge is still considered correct if its associated shapes
are incorrectly classified.

http://sketch2bpmn.informatik.uni-mannheim.de/

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 3
Overall approach results

Shape Edge Label
Approach Micro F1 Macro F1 Micro F1 Macro F1 F1

BPMN-Redrawer 89.2 73.7 63.1 47.5 —
Arrow R-CNN [22] 94.4 86.5 87.7 82.9 —
Sketch2BPMN [23] 94.8 87.3 90.7 86.2 —
DiagramNet [16] 95.6 88.5 85.5 78.8 —
Sketch2Process 95.8 88.3 93.0 90.5 92.6

as we observe inconsistent annotations for both. Finally, for
the textual content decoding step, we assess how accurately
our approach assigns words to the textblocks (and thus to
labels). We evaluate this based on the ground-truth words,
reflecting the accuracy of the decoding step in isolation, and
based on the actually detected words, reflecting the end-to-
end performance of the textblock handwriting recognition
procedure.
Baselines. To demonstrate the efficacy of our approach,
we compare its performance to related works. To this
end, we train and evaluate the following systems on the
hdBPMN dataset: BPMN-Redrawer [44], Arrow R-CNN [22],
Sketch2BPMN [23], and DiagramNet [16] (see also Section 2).
For the BPMN-Redrawer comparison, we use the training
configurations provided in the open source implementation.
For Arrow R-CNN, we use its default image augmentation
methods, which are targeted at diagrams drawn on a
white background. We also compare to the Sketch2BPMN
approach, which extended Arrow R-CNN with additional
augmentation methods and an improved rule-based edge
relation procedure. Last, we compare to the DiagramNet [16]
approach. DiagramNet does not predict arrow bounding
boxes. Instead, the arrow bounding box are generated as
the smallest bounding box that contains all predicted arrow
keypoints. In the paper, the edge recognition evaluation met-
ric considers neither arrow bounding boxes nor keypoints,
and instead only considers if an arrow has been matched to
the correct source and target shape. Our hypothesis is that,
while DiagramNet is comparable to our approach in edge
relation detection performance, it produces less accurate
keypoints and bounding boxes. To verify this hypothesis, we
compare our approach to DiagramNet using both evaluation
procedures, the one proposed in our work, and the one used
to evaluate DiagramNet originally [16].

6.2 Results
This section presents the results of our evaluation for the
hdBPMN test set, first in terms of overall results, before
taking a detailed look at the results per BPMN element class.
In addition, we present a sensitivity analysis of the major
parameters and the measured runtime of Sketch2Process
and its major components.
Overall results and baselines. The overall results are
presented in Table 3. As the cells with missing label F1 scores
indicate, our approach is the first work that addresses the
recognition of all three diagram components. The results
reveal that, for shape recognition, our approach is on par
with DiagramNet, and outperforms all other approaches,
especially on macro F1. Note that micro and macro measures

TABLE 4
Object detection results per class obtained for the test set

Group Class Prec. Rec. F1 Count

Activity

Task 97.8 99.6 98.7 763
Subprocess (collapsed) 96.2 80.6 87.7 31
Subprocess (expanded) n/a 0.0 n/a 3
Call Activity 100.0 100.0 100.0 1

Event

Start Event 94.4 97.1 95.8 70
Intermediate Event n/a n/a n/a 0
End Event 97.4 97.4 97.4 190
Message Start Event 93.9 86.8 90.2 106
Message Int. Catch E. 84.0 94.3 88.9 106
Message Int. Throw E. 79.6 70.9 75.0 55
Message End Event 81.1 76.9 78.9 39
Timer Start Event 100.0 93.3 96.6 15
Timer Intermediate E. 93.1 94.7 93.9 57

Gateway

Exclusive Gateway 97.6 98.0 97.8 247
Parallel Gateway 96.1 96.8 96.4 126
Inclusive Gateway n/a 0.0 n/a 1
Event-based Gateway 91.9 94.4 93.2 36

Collab. Pool 96.6 99.0 97.8 203
Lane 91.9 94.6 93.2 111

Data Data Object 98.9 97.3 98.1 185
Data Store 100.0 94.3 97.1 35

Arrow
Sequence Flow 97.6 95.6 96.6 1,887
Message Flow 94.4 89.3 91.8 346
Data Association 96.7 86.9 91.5 367

Text Textblock 96.8 94.0 95.4 1,538

Overall Macro avg. 94.3 84.8 89.3 6,518
Micro avg. 95.9 95.1 95.5 6,518

differ, because certain classes (e.g., Tasks) are much more com-
mon and easier to recognize than others (e.g., specific kinds
of events). However, the overall trends are consistent across
the two. For edge recognition, our approach considerably
outperforms all other approaches, achieving both a micro and
a macro F1 score above 90. The rather low performance of
the BPMN-Redrawer approach highlights that, especially for
the recognition of hand-drawn edges, a dedicated network
architecture is required.

As mentioned above, we also compared our edge recog-
nition performance against DiagramNet [16] using the true
positive definition from that work. Here, we observe that
our approach has the highest macro F1 (85.4), followed by
DiagramNet (83.8) and Sketch2BPMN (80.8). These results
indicate that, while DiagramNet underperforms all other
approaches in edge recognition with our bounding box-based
evaluation, it performs much better when only considering
whether an edge actually exists between two shapes.

Regarding label recognition, we observe that our ap-
proach achieves an F1 score of 92.6 (as indicated in Section 6.1,
this corresponds to performance on textblock relation detec-
tion). Given that, to our knowledge, we are the first approach
that addresses label recognition, we do not have prior work
to compare to.

Object detection. Table 4 provides detailed insights into the
performance of our object detector, by depicting the results
obtained per shape, arrow and text class. The table shows that
our approach correctly recognizes the vast majority of objects,
achieving an F1 score of at least 90 for all arrow, text, and 14
out of 21 shape classes. For some shape types, the number of

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

TABLE 5
Edge recognition results per class obtained for the test set

Class Prec. Rec. F1 Count

Sequence Flow 95.9 93.5 94.7 1,887
Message Flow 91.0 85.3 88.1 346
Data Association 93.9 84.2 88.8 367

Macro avg. 93.6 87.7 90.5 2,600
Micro avg. 95.0 91.1 93.0 2,600

data points is too low (in both the training and the test set),
to sufficiently cover the spectrum of factors such as drawing
styles and, therefore, to provide reliable evaluation results.

A post-hoc analysis of the results reveals that the most
difficult task for our object detector is the correct classification
of certain kinds of events. This comes as no surprise, though,
since the difference between some of the eight kinds of events
may only be due to marginal differences, such as a change
in line thickness (start events), as well as different kinds of
tiny envelopes (message events) and clocks (timer events).
Especially in light of the diverse shapes in our dataset, as
highlighted in Fig. 16, identifying such differences in hand-
drawn models can already be highly complex for humans,
let alone for an automated approach that lacks sufficient
training examples for some of the rarer classes.
Edge recognition. The edge recognition results in Table 5
again demonstrate the overall strong performance of our
approach, as well as that sequence flows (F1 of 94.7) are
easier to recognize than message flows (88.1) and data
associations (88.8). To some extent, this can be attributed
to the commonality of sequence flows and the fact that the
latter two classes use dashed rather than continuous lines.
However, it is also highly interesting to consider the different
role of these edges from a process modeling perspective.
Particularly, message flows connect (elements in) different
pools, which are often placed relatively far from each other.
This results in longer edges, which may also cross more
nodes, and are, therefore, harder to analyze for an automated
approach. For example, we observe that the median arrow
path length is more than twice as high for message flows
(447 pixels) as for sequence flows (152). For data associations,
it is important to consider that elements related to the data
perspective are often drawn last [61, p.177], whereas they also
often are connected to multiple shapes, scattered throughout
a model. These two factors thus commonly result in data
associations that cross other edges or even shapes, which
complicates their recognition.

By comparing the arrow object detection results in Table 4
with the edge recognition results in Table 5, we can quantify
the effectiveness of our edge relation detection procedure.
Concretely, the difference between the object detection and
the edge recognition measures are arrows that were correctly
detected, but where either the source or target shape was
not correctly identified. Here, we observe that the F1 delta
is lowest for sequence flows (-1.9), and increases slightly
for data associations (-2.7) and message flows (-3.7). For
comparison, we also computed these differences for our rule-
based approach in Sketch2BPMN [23]. Here, we find that the
F1 delta is much higher for sequence flows (-3.5) and message
flows (-10.4), and slightly lower for data associations (-2.5).

TABLE 6
Textblock handwriting recognition results obtained for the test set

Recognition task Mean CER

Image word recognition 5.5
Textual content decoding (GT Words) 0.5
Textual content decoding (OCR Words) 8.8

TABLE 7
Textblock relation detection results per group obtained for the test set

Predicted objects Ground-truth objects
Group Prec. Rec. F1 Prec. Rec. F1 Count

Event 97.2 96.1 96.6 99.2 98.7 99.0 536
Gateway n/a 0.0 n/a n/a 0.0 n/a 3
Data element 98.1 94.5 96.3 100.0 98.6 99.3 220
Collaboration 93.8 87.8 90.7 100.0 98.7 99.4 312
Edge 92.4 83.3 87.6 97.5 92.7 95.1 467

Macro avg. 95.4 90.4 92.8 99.2 97.2 98.2 1,538
Micro avg. 95.3 90.1 92.6 99.0 96.7 97.8 1,538

Overall, this shows the effectiveness of our improved edge
recognition method, especially for complex arrows such as
message flows.

Label recognition. In the following, we report the evaluation
results of both parts of our label recognition procedure.

Textblock relation detection. Table 7 shows how well our
approach is able to relate textblocks to corresponding shapes
and edges, for each of the element groups. The table shows
that event labels (F1 of 96.6) and data element labels (F1 of
96.3) are easier to detect and relate than collaboration labels
(F1 of 90.7) and edge labels (F1 of 87.6). Since we do not
(need to) detect activity labels through dedicated textblocks,
we do not report results for activities.

To assess the accuracy of the relation detector indepen-
dent of object detection errors, we also evaluate it using
the ground-truth objects. Here, the table shows near perfect
results for four out of five category groups, which demon-
strates the effectiveness of our textblock relation detector.
Overall, the recognition of edge labels is the most difficult
task for our approach, which can be attributed to the fact that
there are often multiple arrows in proximity to a textblock.
For collaboration shapes (pools and lanes), the near-perfect
results when using the ground-truth objects indicate that the
errors are largely due to textblock and collaboration object
detection errors. Here, a post-hoc analysis shows that the
most difficult task is the detection of nested lanes and their
labels, where the bounding boxes of parent and child lane
are very similar (IoU of up to 97%).

Textblock handwriting recognition. Turning to the textual con-
tent within the detected textblocks, we assess both steps of
the handwriting recognition part:

For the image word recognition step, the OCR service
achieves a precision of 69.6% and a recall of 90.0% when
it comes to detecting words in images (irrespective of their
textual content). The low precision is largely due to single-
character, false positive “words” that actually correspond
to parts of drawn shapes or edges (e.g., “X” characters
stemming from exclusive gateway symbols and dashes from
dashed arrows), as mentioned in Section 4.3. Such false

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

0 0.25 0.5 0.75 1
Shape score threshold s

50
60
70
80
90

100

Shape Micro F1
Shape Macro F1

0 0.25 0.5 0.75 1
Edge score threshold e

Edge Micro F1
Edge Macro F1

0 0.25 0.5 0.75 1
Label score threshold l

Label F1

Fig. 17. Score threshold analyses conducted on the validation set

0% 10% 20% 30% 40% 50%
Arrow pad percentage pada

50
60
70
80
90

100

Edge Micro F1
Edge Macro F1

0.0 0.5 1.0 1.5 2.0
Textblock pad factor padt

50
60
70
80
90

100

Text F1

Fig. 18. Region size analyses conducted on the validation set

positives are not an issue for our approach, though, since
they are eliminated during the textual content decoding step,
given that they are not located within a textblock. For the true
positive words identified by the OCR service, we observe a
mean CER of 5.5%, as shown in Table 6.

For the textual content decoding step, the mean CER of
0.5% obtained when using the ground-truth words (GT
words) shows that this step is very accurate in isolation. This
means that if the OCR service would be perfect, the labels
of the detected textblocks would be near-perfect as well. In
terms of end-to-end performance of textblock handwriting
recognition, we observe a CER of 8.8% when using the
actually detected OCR words as input for textual content
decoding. On top of character recognition errors made by
the OCR service in true positive words (captured in the
5.5% CER for image word recognition), the 8.8% CER is also
caused by words that the OCR service failed to detect, i.e.,
false negatives.

In summary, the vast majority of errors that happen dur-
ing textblock handwriting recognition directly or indirectly
stem from errors of the OCR service. It is, furthermore, worth
highlighting that this does not imply that major corrections
to the generated models are required. For instance, in the
running example (cf. Fig. 15), only 18 of the 31 shapes and
edges actually have labels, and among those, the median edit
distance is 1, which means that only minor edits are required
to fix the labels in the recognized model.

Sensitivity analysis. As mentioned, we analyze the sensitiv-
ity of the main parameters of Sketch2Process, including
the settings for the different score thresholds, the arrow and
textblock region sizes, and the image augmentation methods.

Score thresholds. Fig. 17 shows the results for the score
thresholds τs, τe, and τl, of which we apply each in one
component. We find that each threshold obtains similar
results in the range from 0.4 to 0.7, where the difference
between the highest and lowest F1 score is at most 0.6. The
performance only degrades substantially when using a very
small or a very large threshold. This shows that our approach

TABLE 8
Image augmentation ablation study conducted on the validation set

Shape Edge Label
Augmentation Mi. F1 Ma. F1 Mi. F1 Ma. F1 F1

No augmentation 92.2 81.8 86.1 78.2 86.0
Detectron2 (resize & hor. flip) 94.2 85.3 89.3 83.1 88.5
Sketch2Process (ours) 95.7 87.9 92.8 88.0 90.6

0 200 400 600 800 1000 1200
Milliseconds

OCR submit
OCR response time
Network inference

Textual content decoding
Output generation

End2End

Fig. 19. Median runtime measures obtained for the validation set

is very robust to minor score threshold changes. Given the
analysis, we decided to simply set all three thresholds to 0.5.
Region sizes. Fig. 18 shows the results for the region size
configurations. For the arrow pad percentage pada, we
observe that the edge F1 scores are substantially lower when
applying only the minimum padding, are almost identical
in the range from 10% to 30%, and then slightly drop at 40%
and 50%. As the number of edge candidates increases with
the arrow region size, which leads to increased inference
time, we use pada = 10% in our approach. Regarding the
textblock region size, we observe that the results for the
pad factor padt are very similar in the range from 0.75 to
2.0, with an F1 between 90.5 and 91.1. As expected, the F1

drops substantially when using no padding (padt = 0), as
the majority of textblocks (53% in the training set) do not
intersect with the shape or edge that they label. Similar to
the arrow region size, the number of relation candidates
increases with the textblock region size. We therefore employ
padt = 1.0 for our approach.
Image augmentation. The results of our ablation study in
Table 8 show the benefits of using image augmentation.
Compared to using no augmentation, the performance of
our approach consistently improves when using the default
object detection augmentations provided by the Detectron2
library (random resizing and horizontal flipping), leading to
F1-score increases between 2.0 and 4.9. A further performance
improvement of the same magnitude can be observed with
the full Sketch2Process image augmentation pipeline,
leading to further F1-score improvements between 1.5 and
4.9. Notably, the recognition of the challenging edge cate-
gories (message flow and data association) benefits most
from augmentation, which leads to the large edge macro
F1-score improvements (from 78.2 to 88.0).
Runtime. Finally, Fig. 19 shows the median runtime of
the Sketch2Process components. Given an image to be
processed, we first send the image to the OCR service
(220 ms). We find that the time until the OCR results are
available (1,125 ms) always exceeds the network inference
time. Therefore, while waiting for the OCR results, we
compute the results of all networks, i.e., the object detection,

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

edge relation detection, and textblock relation detection
networks, which on average takes 308 ms on a Tesla V100
GPU. After network inference, we periodically check for the
OCR results, which takes 695 ms on average. Once the OCR
results are available, we run the textual content decoding
procedure (17 ms) to identify the textual content of each
textblock, and create the final BPMN XML as described in
Section 4.4 (17 ms). On average, our approach processes an
image in 1.3 seconds, most of which is spent on waiting for
the OCR results.

7 DISCUSSION

In this section, we reflect on the implications, for research
and practice, and limitations of our work.

Implications. As for implications for research, the architecture
and design of our approach may inform other research
on sketch recognition addressing conceptual models. It
is important to note that BPMN 2.0 is one of the most
symbol-rich and complex modeling notations used for formal
system specifications. Given the accuracy of our approach
on BPMN models, we are, therefore, confident that the
conceptual ideas presented in this paper can be transferred
to also recognize hand-drawn models of other notations,
such as UML. As for implications for practice, our approach
allows organizations to benefit from the advantages of hand-
drawn models, such as freedom and easy collaboration,
without suffering from the consequences associated with
the manual transformation. Our evaluation showed that our
approach is highly accurate and, hence, only minor edits
are required to fix the automatically recognized model. As a
result, our approach may help organizations to establish a
novel and more efficient approach to requirements elicitation
and collection that starts on a whiteboard or even on a
piece of paper. It is also worth noticing that our approach
is highly accurate on computer-generated BPMN models
and outperforms the existing state-of-the-art approach for
this task [44]13. Hence, our approach can also be used to
support standardization efforts where BPMN models have
been created with various tools and / or are only available
as picture-based versions.

Limitations. Naturally, our work is subject to a number
of limitations. First, it is important to highlight that the
presented evaluation results should be considered in light of
the characteristics of the hdBPMN dataset. Since the dataset
was established using more than 100 different participants,
spans models of varying size and complexity, and overall has
images that differ a lot in terms of their characteristics and
quality (cf., Section 5.3), we are confident that our results have
a high external validity. Nevertheless, in practice, one may
still encounter models that are, e.g., larger, more complex, or
contain certain symbols less or more frequently.

Second, our label recognition component partially de-
pends on the quality of the employed OCR service, which
can lead to errors when dealing with handwriting (as seen
in Section 6.2). However, this is not a critical issue for the
conceptual validity or practical usefulness of our approach.
Specifically, our work is independent of a particular service,

13. The details on the respective experiments are provided in the
supplementary material.

which means that the employed OCR service can be replaced
with improved versions in the future. Furthermore, the
mistakes from this component can be quickly fixed manually
or through a post-processing step that, for instance, builds
on a dictionary.

Third, we would like to highlight that the successful
application of our approach to other types of conceptual
models requires retraining our approach on a respective
dataset. While this is not a limitation per se, we recognize that
the creation and manual annotation of such a dataset comes
with considerable effort. However, this is a one-time effort,
which, given the advantages of automatically recognizing
model sketches, can be considered a good investment in
many scenarios.

8 CONCLUSION

In this paper, we addressed the problem of sketch recog-
nition of hand-drawn BPMN models. Given that existing
solutions for this problem left considerable room for im-
provement in terms of scope and recognition quality, we
presented Sketch2Process, the first approach for compre-
hensive, end-to-end sketch recognition of BPMN models.
Sketch2Process takes an image of a hand-drawn BPMN
model as input and automatically transforms it into a format
compatible with existing process modeling tools. For its
training and evaluation, we created the hdBPMN dataset,
consisting of 704 hand-drawn and manually annotated
BPMN models. Experiments conducted on this dataset
demonstrated that Sketch2Process is highly accurate and
consistently outperforms the state of the art.

We identify several directions for future work. First, the
application of OCR to hand-drawn BPMN models revealed
the limitations of existing off-the-shelf OCR services. In
future work it would, therefore, be interesting to investigate
how OCR solutions can be improved with respect to the pecu-
liarities of labels in hand-drawn BPMN models, such as text
that is not written horizontally, but in arbitrary angles. Sec-
ond, it is interesting to explore how well Sketch2Process
can be adapted to other requirements modeling notations
such, as UML. While this certainly requires a retraining, the
question is how big a respective data set needs to be and
to what extent generic aspects (e.g., edge relations) can be
learned and transferred from the hdBPMN dataset. Finally, it
is important to investigate the use of Sketch2Process in
practice, striving to identify ways in which sketch recognition
can further support tasks such as the efficient elicitation of
requirements.

REFERENCES

[1] C. Ouyang, M. Dumas, W. M. V. D. Aalst, A. H. T. Hofstede, and
J. Mendling, “From business process models to process-oriented
software systems,” ACM transactions on software engineering and
methodology (TOSEM), vol. 19, no. 1, pp. 1–37, 2009.

[2] H. Leopold, J. Mendling, and A. Polyvyanyy, “Supporting process
model validation through natural language generation,” IEEE
Transactions on Software Engineering, vol. 40, no. 8, pp. 818–840,
2014.

[3] D. van der Linden, I. Hadar, and A. Zamansky, “What practitioners
really want: requirements for visual notations in conceptual
modeling,” Software & Systems Modeling, vol. 18, no. 3, pp. 1813–
1831, 2019.

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[4] R. Waszkowski, “Low-code platform for automating business
processes in manufacturing,” IFAC-PapersOnLine, vol. 52, no. 10,
pp. 376–381, 2019.

[5] P. Vincent, K. Iijima, M. Driver, J. Wong, and Y. Natis, “Magic
quadrant for enterprise low-code application platforms,” Gartner
report, 2019.

[6] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software
design models in software development practice: An empirical
investigation,” Journal of Systems and Software, vol. 95, pp. 176–193,
2014.

[7] O. Badreddin, R. Khandoker, A. Forward, and T. Lethbridge, “The
evolution of software design practices over a decade: A long term
study of practitioners.” J. Object Technol., vol. 20, no. 2, pp. 1–1,
2021.

[8] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s Go to the
Whiteboard: How and Why Software Developers Use Drawings,”
in SIGCHI, 2007, pp. 557–566.

[9] J. Walny, S. Carpendale, N. Henry Riche, G. Venolia, and P. Fawcett,
“Visual thinking in action: Visualizations as used on whiteboards,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2508–2517, 2011.

[10] C. Bartelt, M. Vogel, and T. Warnecke, “Collaborative creativity:
From hand drawn sketches to formal domain specific models and
back again.” in MoRoCo@ ECSCW, 2013, pp. 25–32.

[11] P. Antunes, D. Simões, L. Carriço, and J. A. Pino, “An end-user
approach to business process modeling,” Journal of Network and
Computer Applications, vol. 36, no. 6, pp. 1466–1479, 2013.

[12] R. Brown, J. Recker, and S. West, “Using virtual worlds for collab-
orative business process modeling,” Business Process Management
Journal, 2011.

[13] G. Casella, V. Deufemia, V. Mascardi, G. Costagliola, and
M. Martelli, “An agent-based framework for sketched symbol
interpretation,” Journal of Visual Languages & Computing, vol. 19,
no. 2, pp. 225–257, 2008.

[14] M. Bresler, D. Průša, and V. Hlaváč, “Online recognition of sketched
arrow-connected diagrams,” Int. Journal on Document Analysis and
Recognition, vol. 19, no. 3, pp. 253–267, 2016.

[15] F. Brieler and M. Minas, “Recognition and processing of hand-
drawn diagrams using syntactic and semantic analysis,” in Working
conf. on Advanced visual interfaces, 2008, pp. 181–188.

[16] B. Schäfer and H. Stuckenschmidt, “DiagramNet: Hand-Drawn
Diagram Recognition Using Visual Arrow-Relation Detection,” in
Int. Conf. on Document Analysis and Recognition, 2021, pp. 614–630.

[17] M. Zapp, P. Fettke, and P. Loos, “Towards a Software Prototype
Supporting Automatic Recognition of Sketched Business Process
Models,” Wirtschaftsinformatik 2017, 2017.

[18] C. Gonzalez Moyano, L. Pufahl, I. Weber, and J. Mendling, “Uses of
business process modeling in agile software development projects,”
Information and Software Technology, vol. 152, p. 107028, 2022.

[19] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Support-
ing the understanding and comparison of low-code development
platforms,” in 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 2020, pp. 171–178.

[20] U. Frank, P. Maier, and A. Bock, “Low code platforms: promises,
concepts and prospects. a comparative study of ten systems,” ICB-
Research Report, Tech. Rep., 2021.

[21] J. Wong, K. Iijima, A. Leow, A. Jain, and P. Vincent, “Magic quadrant
for enterprise low-code application platforms,” Gartner report, 2021.

[22] B. Schäfer, M. Keuper, and H. Stuckenschmidt, “Arrow R-CNN
for handwritten diagram recognition,” Int. Journal on Document
Analysis and Recognition, Feb. 2021.

[23] B. Schäfer, H. van der Aa, H. Leopold, and H. Stuckenschmidt,
“Sketch2BPMN: Automatic recognition of hand-drawn BPMN
models,” in Int. Conf. on Advanced Information Systems Engineering.
Springer, 2021, pp. 344–360.

[24] B. Yu and S. Cai, “A domain-independent system for sketch
recognition,” in Int. conf. on Computer graphics and interactive
techniques in Australasia and South East Asia, 2003, pp. 141–146.

[25] T. A. Hammond and R. Davis, “Recognizing interspersed sketches
quickly,” Graphics Interface 2009 (GI ’09), 2009.

[26] T. E. Johnson, “Sketchpad iii: a computer program for drawing in
three dimensions,” in Spring joint computer conf., 1963, pp. 347–353.

[27] Q. Chen, J. Grundy, and J. Hosking, “Sumlow: early design-stage
sketching of uml diagrams on an e-whiteboard,” Software: Practice
and Experience, vol. 38, no. 9, pp. 961–994, 2008.

[28] F. D. Julca-Aguilar and N. S. T. Hirata, “Symbol Detection in Online
Handwritten Graphics Using Faster R-CNN,” in IAPR Int. Workshop
on Document Analysis Systems, Apr. 2018, pp. 151–156.

[29] M. Schmidt and G. Weber, “Recognition of multi-touch drawn
sketches,” in Int. Conf. on Human-Computer Interaction. Springer,
2013, pp. 479–490.

[30] A. Coyette, S. Schimke, J. Vanderdonckt, and C. Vielhauer, “Train-
able sketch recognizer for graphical user interface design,” in IFIP
Conf. on Human-Computer Interaction. Springer, 2007, pp. 124–135.

[31] T. Kurtoglu and T. F. Stahovich, “Interpreting schematic sketches
using physical reasoning,” in AAAI Spring Symposium on Sketch
Understanding, vol. 7885, 2002.

[32] O. Bergig, N. Hagbi, J. El-Sana, and M. Billinghurst, “In-place 3d
sketching for authoring and augmenting mechanical systems,” in
Int. Symposium on Mixed and Augmented Reality. IEEE, 2009, pp.
87–94.

[33] B. Paulson and T. Hammond, “Paleosketch: accurate primitive
sketch recognition and beautification,” in Int. conf. on Intelligent user
interfaces, 2008, pp. 1–10.

[34] F. Brieler and M. Minas, “A model-based recognition engine for
sketched diagrams,” Journal of Visual Languages & Computing, vol. 21,
no. 2, pp. 81–97, 2010.

[35] V. Deufemia, M. Risi, and G. Tortora, “Hand-drawn diagram
recognition with hierarchical parsing: An experimental evalua-
tion,” in Information systems: crossroads for organization, management,
accounting and engineering. Springer, 2012, pp. 217–225.

[36] F. Julca-Aguilar, H. Mouchère, C. Viard-Gaudin, and N. S. T. Hirata,
“A general framework for the recognition of online handwritten
graphics,” Int. Journal on Document Analysis and Recognition, 2020.

[37] G. Costagliola, M. De Rosa, and V. Fuccella, “Local context-based
recognition of sketched diagrams,” Journal of Visual Languages &
Computing, vol. 25, no. 6, pp. 955–962, 2014.

[38] J. Wu, C. Wang, L. Zhang, and Y. Rui, “Offline Sketch Parsing via
Shapeness Estimation,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2015.

[39] M. Bresler, D. Průša, and V. Hlaváč, “Recognizing Off-Line
Flowcharts by Reconstructing Strokes and Using On-Line Recogni-
tion Techniques,” in ICFHR, 2016, pp. 48–53.

[40] D. Doermann, Jian Liang, and Huiping Li, “Progress in camera-
based document image analysis,” in Int. Conf. on Document Analysis
and Recognition, 2003, pp. 606–616 vol.1.

[41] S. Bhowmik, R. Sarkar, M. Nasipuri, and D. Doermann, “Text and
non-text separation in offline document images: A survey,” Int.
Journal on Document Analysis and Recognition, vol. 21, no. 1-2, pp.
1–20, Jun. 2018.

[42] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” in
Conf. on Neural Information Processing Systems (NeurIPS), 2015, pp.
91–99.

[43] B. Schäfer and H. Stuckenschmidt, “Arrow R-CNN for Flowchart
Recognition,” in 2019 Int. Conf. on Document Analysis and Recognition
Workshops, 2019.

[44] A. Antinori, R. Coltrinari, F. Corradini, F. Fornari, B. Re, and
M. Scarpetta, “Bpmn-redrawer: from images to bpmn models,”
in BPM (Demos), 2022.

[45] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[46] F. Pittke, H. Leopold, and J. Mendling, “Automatic detection
and resolution of lexical ambiguity in process models,” IEEE
Transactions on Software Engineering, vol. 41, no. 6, pp. 526–544,
2015.

[47] S. Chakraborty, S. Sarker, and S. Sarker, “An exploration into the
process of requirements elicitation: A grounded approach,” Journal
of the association for information systems, vol. 11, no. 4, p. 1, 2010.

[48] H. Leopold, J. Mendling, and O. Günther, “Learning from quality
issues of bpmn models from industry,” IEEE software, vol. 33, no. 4,
pp. 26–33, 2015.

[49] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Int. Conf. on Computer Vision (ICCV), 2017, pp. 2961–2969.

[50] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, “Graph R-CNN for
Scene Graph Generation,” in Proceedings of the European Conf. on
Computer Vision (ECCV), 2018, pp. 670–685.

[51] J. Zhang, K. J. Shih, A. Elgammal, A. Tao, and B. Catanzaro,
“Graphical contrastive losses for scene graph parsing,” in Conf.
on Computer Vision and Pattern Recognition (CVPR), June 2019.

https://github.com/facebookresearch/detectron2

SUBMITTED TO: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[52] B. Davis, B. Morse, S. Cohen, B. Price, and C. Tensmeyer, “Deep
Visual Template-Free Form Parsing,” in Int. Conf. on Document
Analysis and Recognition, Sep. 2019, pp. 134–141.

[53] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv:1704.04861 [cs], Apr. 2017.

[54] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature,” Cartographica, vol. 10, no. 2, pp. 112–122, Dec. 1973.

[55] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[56] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov,
M. Druzhinin, and A. A. Kalinin, “Albumentations: Fast and
Flexible Image Augmentations,” Information, vol. 11, no. 2, p. 125,
2020.

[57] P. Gervais, T. Deselaers, E. Aksan, and O. Hilliges, “The DIDI
dataset: Digital Ink Diagram data,” arXiv:2002.09303 [cs], 2020.

[58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style,
High-Performance Deep Learning Library,” in Advances in Neural
Information Processing Systems 32, 2019, pp. 8024–8035.

[59] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature Pyramid Networks for Object Detection,” in Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2117–
2125.

[60] J. A. Sánchez, V. Romero, A. H. Toselli, M. Villegas, and E. Vidal,
“ICDAR2017 Competition on Handwritten Text Recognition on the
READ Dataset,” in ICDAR, 2017, pp. 1383–1388.

[61] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals
of Business Process Management, 2nd ed. Springer, 2018.

Bernhard Schäfer Bernhard Schäfer is currently
pursuing the Ph.D. degree with the Data and Web
Science Group at the University of Mannheim in
cooperation with SAP SE. He obtained his MSc
degree in business informatics from the University
of Mannheim in 2014. Before joining SAP SE, he
worked as a data science consultant for inovex
GmbH, Karlsruhe, Germany. His research inter-
ests include graphics recognition, data science,
and artificial intelligence.

Han van der Aa Han van der Aa is a junior
professor in the Data and Web Science Group
at the University of Mannheim, Germany. Be-
fore that, he was an Alexander von Humboldt
Fellow, working as a postdoctoral researcher
in the Department of Computer Science at the
Hum-boldt-Universität zu Berlin. He obtained a
PhD from the Vrije Universiteit Amsterdam in
2018. His research interests include business
process modeling, process mining, natural lan-
guage processing, and complex event processing.

His research has been published in renowned journals such as IEEE
Transactions on Knowledge and Data Engineering, Decision Support
Systems, and Information Systems, and at international conferences
including BPM, CAiSE, SIGMOD, and IEEE ICDE.

Henrik Leopold Henrik Leopold is an Associate
Professor at the Kühne Logistics University (KLU)
and a Senior Researcher at Hasso Plattner Insti-
tute (HPI) at the Digital Engineering Faculty, Uni-
versity of Potsdam. He obtained his PhD degree
in Information Systems from the Humboldt Uni-
versity Berlin, Germany. For his doctoral thesis,
he received the German TARGION Award for the
best dissertation in the field of strategic informa-
tion management. Before joining KLU/HPI, Henrik
held positions at the Vrije Universiteit Amsterdam

as well as WU Vienna. His research is mainly concerned with leveraging
technology from the field of artificial intelligence to develop techniques
for process mining, process analysis, and process automation. Henrik
has published over 100 scientific contributions, among others, in IEEE
Transactions on Software Engineering, IEEE Transactions on Knowledge
and Data Engineering, ACM Transactions on Management Information
Systems, Decision Support Systems, and Information Systems.

Heiner Stuckenschmidt Heiner Stuckenschmidt
is a Full Professor in the Data and Web Science
Group at the University of Mannheim, Germany.
He received the Ph.D. degree from Vrije Uni-
versiteit Amsterdam in 2003, where he was a
Post-Doctoral Researcher with the Artificial In-
telligence Department. His group is performing
fundamental and applied research in knowledge
representation formalisms with a focus on reason-
ing techniques for information extraction and inte-
gration as well as machine learning for advanced

decision making. He has published over 200 papers, including about 50
papers in international journals and over 100 papers in international peer
reviewed conferences in computer science.

	Introduction
	Related Work
	Challenges of Hand-drawn BPMN Model Recognition
	The Sketch2Process Approach
	Object Detection
	Edge Recognition
	Label Recognition
	Approach Output
	Training

	The hdBPMN Data set
	Collection Procedure
	Annotation
	Dataset Characteristics
	Dataset Splits

	Evaluation
	Evaluation Setup
	Results

	Discussion
	Conclusion
	References
	Biographies
	Bernhard Schäfer
	Han van der Aa
	Henrik Leopold
	Heiner Stuckenschmidt

