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Abstract

Timely identifying flight diversions is a crucial aspect of e�cient multi-modal transportation.

When an airplane diverts, logistics providers must promptly adapt their transportation plans in

order to ensure proper delivery despite such an unexpected event. In practice, the di↵erent parties

in a logistics chain do not exchange real-time information related to flights. This calls for a

means to detect diversions that just requires publicly available data, thus being independent of the

communication between di↵erent parties. The dependence on public data results in a challenge

to detect anomalous behavior without knowing the planned flight trajectory. Our work addresses

this challenge by introducing a prediction model that just requires information on an airplane’s

position, velocity, and intended destination. This information is used to distinguish between regular

and anomalous behavior. When an airplane displays anomalous behavior for an extended period

of time, the model predicts a diversion. A quantitative evaluation shows that this approach is

able to detect diverting airplanes with excellent precision and recall even without knowing planned

trajectories as required by related research. By utilizing the proposed prediction model, logistics

companies gain a significant amount of response time for these cases.
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1. Introduction

The growth of inter-continental trade has led to a notable increase in multi-modal transport.

Multi-modal transport involves at least two modes of transportation on two consecutive trans-

portation legs, which have to be synchronized. This is, for instance, the case when air freight cargo

is unloaded at airports in order to be distributed into the hinterland by trucks, or sea ship cargo

being redistributed at sea ports. Because multi-modal transport faces increasing challenges in

terms of e�ciency, describing and planning such sequential dependencies is a common concern [1].

The desire for e�ciency is on the one hand driven by lean or just-in-time production systems,

which require timely delivery. On the other hand, e�ciency is demanded from an environmental

perspective in order to avoid unnecessary CO2 emissions. A crucial problem in this context is that

di↵erent parties involved in a transportation chain hardly exchange real-time information related

to individual deliveries [2]. This makes it di�cult for a receiving party to respond in a timely way

to unexpected events that occur earlier on in the transportation.

The impact of such unexpected events is especially prominent in supply chains that involve

cargo airplanes. In case an airplane has to land in an airport that is not the intended destination

(i.e. the flight is diverted), re-planning and adaptation mechanisms must be triggered so that other

parties involved in the chain can continue with the delivery of the cargo. For instance, it may be

required to cancel the transport orders for the planned airport and to provide transport capacities

at the diverted airport. The resultant impact on a company’s ability to deliver goods in time, the

utilization of trucks, and the additional costs it incurs, can be mitigated by timely responding to

diversions. To enable parties to do so, diversions need to be detected as early as possible. Although

there exist approaches that achieve this (e.g. [3, 4]), these typically depend on information about

the planned flight trajectory in order to detect a diversion. However, such information is often not

readily available in practice [2], especially for logistics service providers. Therefore, it is desirable

to identify anomalous flight behavior without depending on such information completeness.

In this paper, we address the problem of alerting receiving parties, e.g. trucking companies,

in case a delivering airplane is diverted. Based on real scenarios and hence, keeping the decision

making problem as realistic as possible as suggested in [5] from the standpoint of logistics service
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providers, we make use of event data that is semi-publicly available. More specifically, our con-

tribution is a prediction model that detects flight trajectory anomalies based on minimal input

data. We implemented the model as a prototype and tested it on a sample of flights yielding a

high predictive accuracy. The prediction model provides considerable gains in response time. It

is therefore suited to be integrated in decision systems that support operations of logistics service

providers, in contrast to traditional model-based decision support [6].

The remainder of the paper is structured as follows. Section 2 discusses the background of our

research by describing a real-world scenario and by considering related work. Section 3 defines our

prediction model, which builds on feature extraction and the classification of regular and anomalous

airplane behavior. Section 4 presents the evaluation of this framework with a focus on e↵ectiveness

and response time gain. Finally, Section 5 presents the conclusions of this work.

2. Background

Our research is motivated by the need to monitor air transportation in scenarios where only a

limited amount of flight information is available and by the lack of support for detecting en-route

diversions under these circumstances. In this section, we first describe a freight transportation

scenario from the EU-FP7 GET Service project1 to motivate the problem we tackle. Subsequently,

we identify the research gap by considering existing work related to the problem.

2.1. Scenario

This section describes a real-world transport scenario that demonstrates the importance of

prompt and accurate prediction of diverting airplanes. In this multi-modal transport scenario,

goods are transported from John F. Kennedy International airport (New York, USA) to a plant

located in Utrecht (The Netherlands) [2]. It consists of two transportation legs. The first leg

comprises air transportation from New York to Amsterdam Airport Schiphol. At the airport, the

goods are transferred to trucks that have been sent by a logistics service provider to pick up the

cargo. In the second leg, the trucks transport the goods to the destination plant in Utrecht.

1http://getservice-project.eu/
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In this scenario, the goal of the logistics service provider is to deliver the goods on time to

Utrecht, i.e. in conformance with service level objectives that have been agreed upon with the

client [7]. A crucial factor impacting a logistics provider’s ability to meet its service level objectives

is whether or not an airplane arrives on time at its connection point. However, it is possible that

this does not happen, because the airplane has to divert and land at a di↵erent airport. Such

diversions can occur, for instance, due to adverse weather conditions or technical di�culties. In

order to be able to still meet its service level objectives, a logistics service provider must respond

in a timely and e�cient manner to such events.

Although diversions are relatively rare, their impact on the logistic chain is significant. To

recognize the impact of a diversion on costs and CO2 emissions, it must be considered that the

freight of an airplane is, on average, loaded onto 30 trucks.2 If the airplane diverts to a di↵erent

destination airport, the logistics service provider has to cancel (or reroute) the trucks that have

been sent to the Schiphol airport, and in parallel arrange for new transportation means to pick

up the cargo in Eindhoven. Therefore, this requires a rerouting of up to 60 trucks for a single

airplane. Optimization of scheduling around such unexpected events is therefore recognized as one

of the most important fleet management decisions [8]. In order for these corrective actions to be

e↵ective, it is crucial that the logistics service provider becomes aware of the airplane diversion

as soon as possible [9]. Unfortunately, the communication between logistics service providers and

cargo airlines is in practice not as prompt as required [2]. In fact, logistics service providers do

not receive real-time information and are generally even only notified once an airplane has already

landed at another airport. These delayed diversion notifications threaten the ability of logistics

service providers to meet their service objectives.

In order to reduce the impact of diversions in practical settings, we thus face the challenge to

automatically detect flight diversions by only making use of data from public data services. As

such, logistics service providers can respond to diversion in a timely manner, independent of the

quality of communication with other parties involved in the logistics chain.

2According to a major logistics service provider that we have collaborated with in this research project.
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2.2. Related Work

In order to address the aforementioned challenges we are especially interested in prior research

that relates to flight monitoring for anomalous trajectory detection. To the best of our knowledge,

our research work is the first that addresses the issue of predicting the diversions of flights. We also

remark here that our approach operates under the requirements that trajectories are not known

a priori, and that there is no limited geographical area that is specifically meant to be put under

analysis. Previous techniques have challenged related issues in the area of monitoring aircraft

routes based on flight data. The approaches in this context di↵er in the goal they pursue, which

is di↵erent to ours. Their operating conditions also change in terms of information they require

about planned flight trajectories, the circumscription of the geographical area in scope, and the

number of factors used to detect anomalous behavior. Nevertheless, they provide useful insight in

the general scope of the automated detection of anomalies in flight transportation data.

The techniques that consider the expected flight routes typically represent such information

by means of waypoints, namely sets of coordinates through which airplanes pass as intermediate

junction points of a segmented trajectory. For example, Krozel [3] describes a set of methods to

detect and measure to which extent the actual route di↵ers from the filed flight plan assuming that

information about the due waypoints is available, and reasons about the causes of such discrep-

ancies. Periodic updates of the position of the aircraft including its location, altitude, and speed

are analysed to such extent. In our approach, we aim at predicting diversions, rather than sig-

nalling aircrafts that are not within normal navigation performance error limits. Nevertheless, we

also make use of location, altitude, and speed values as representative quantities to be monitored.

Reynolds and Hansman [4] introduce a model-based framework for flight conformance monitoring

based on Fault Detection and Isolation techniques. To do so, the flight data are compared with a

model consisting of aircraft positions, velocity, and acceleration, supplemented with future condi-

tions to be compliant with, in terms of planned trajectory, destination and target states towards

the next waypoint. They validate their model-based conformance checking with simulated flight

tracks. Although we do not assume to have any predefined flight model at hand, we also pro-

pose a technique that does not analyse the registered values singularly, but rather considers their
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di↵erence-based evolution over the time.

The approaches that do not rely on a planned route typically stick to a limited geographic

area. Gariel et al. [10] present a tool called AirTrajectoryMiner aimed at monitoring the health

of the airspace. A healthy airspace is defined as the condition in which all airplanes fly according

to the plan. The tool clusters registered flight trajectories as two-dimensional projections within

a geographical area around an airport, so as to distinguish those flights that traverse the area

following the procedures from those that may disturb the landing operations of other flights.

The technique is unsupervised, because it does not require training flight data to be pre-labeled.

Guo et al. [11, 12] extend the work of Gariel et al. by including the speed of the airplane in

the representation of the routes, which demonstrates to be more e↵ective for the detection of

abnormal (i.e., infrequently observed) trajectories in a given airspace. Although our approach seeks

flights that are going to land in unexpected airports rather than considering their compliance with

standard routes in the geographical area around a specific airport, we also propose a technique that

does not require segments of the registered routes to be pre-labeled as adhering to normal behavior

or not. We also include the bi-dimensional representation of positions and speed in the features

that we monitor for detecting anomalous flights. Smart et al. [13] aim at detecting anomalies in

the descent phase of the flights landing in a specific airport. They introduce a two-phase approach

based on the use of one-class Support Vector Machine (SVM) [14] classifiers, which have proven to

work better than other methods such as K-means clustering for that purpose [15]. In particular,

a number of di↵erent SVMs is trained, each on an altitude range at which the aircraft is flying in

proximity of the airport before landing. For each altitude level (hence, for each SVM), di↵erent

variables are passed as an input to the related SVM, based on the parameters that the crew would

be focusing on to fly the aircraft safely. They thus include aircraft-specific metrics such as the

degrees of the flap setting. In common with this technique, we share the adoption of the one-class

SVM in the implementation of the automated classification of flight intervals in our approach.

In the domain of air transportation, a way to mitigate the risk of flight diversions is to design

proper flight trajectories, since the probability of flight diversion may also be influenced by the

route taken by the airplane. For instance, some routes may go through areas which are likely to be
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a↵ected by thunderstorms. Consequently, great e↵ort has been made to develop approaches for the

computation of appropriate flight trajectories [16, 17, 18]. These approaches consider a number of

di↵erent factors. For instance, Besada et al. [16] present several formal languages for the definition

of static information, including the flight plan, which involves the initial and final waypoints as well

as the so-called flight intent, i.e., the expected behavior, and potential optimization criteria. Other

approaches also incorporate weather information in the generation of flight trajectories, sometimes

focused only on the terminal airspace, and sometimes extended to en-route flight areas [19, 20, 21].

Flight trajectories are also monitored for purposes other than flight diversion detection. For

instance, there are specific-purpose approaches focused on collision avoidance [22, 23, 24, 25].

Collision avoidance is a form of conflict resolution that requires sophisticated decision making

support [26]. Sislak et al. [27] present an approach to detect conflicts between the trajectories of

two flights and two di↵erent conflict-resolution algorithms based on high-level flight-plan variations

using evasion maneuvers. Landry et al. [23] present a methodology to model and analyze airport

surface constraints in order to avoid collisions. Other trajectory monitoring research focuses on

the detection of specific types of deviations. For instance, Timar et al. [25] assess the occurrence

conditions and operational impact of S-turns. These patterns often occur in congested airspaces

(i.e., cluttered environments) when an airplane has to employ maneuvers to delay its arrival at the

destination airport. Applying it to our goal, detecting such movements could be an indication of

landing intents in an airport di↵erent than the expected one.

In general, flight-track monitoring and anomalous flight behavior detection build on techniques

that take position data as input to detect behavioral anomalies, like has been done in various other

contexts [28]. Approaches coming from di↵erent areas than flight transport exhibit characteristics

that are helpful to the purpose of automated flight diversion detection. Examples include techniques

for video surveillance [29, 30, 31, 32], transportation monitoring [33, 34], travel time analysis [35],

and road tra�c anomaly trajectory detection [36, 37, 38, 39, 40, 41]. These approaches often

use GPS [34, 35] and Automatic Identification System (AIS) data [33] for monitoring purposes,

and SVMs [31] for the detection of anomalies. They usually target a limited geographic area,

which is split up into grid cells, such that a trajectory can be expressed as an ordered sequence
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of traversed cells. The dimensionality and complexity of the classification problem are thereby

reduced. Still, they depend on fine-granular grids of the local area of interest. In our setting,

this would essentially require the definition of grids between waypoints. This is highly unpractical,

given that there are over 100,000 relevant flight routes. In summary, prior approaches show features

that are interesting for our goal, namely: (i) The reliability on GPS and AIS data for monitoring

purposes; (ii) the variety of factors used for computing trajectories and checking conformance,

including latitude, longitude, altitude and speed in the case of air tra�c monitoring; and (iii) the

use of multi-dimensional decision models or classifiers for anomalous behaviour detection, such as

SVMs, against other classification methods.

3. Prediction Model

This section describes the proposed prediction model for the automated detection of diverting

airplanes. During a flight, an airplane transmits updates on its position, velocity, and altitude.

We refer to these updates as flight track events. Whenever our model receives a flight track events,

it predicts whether the airplane is diverting or whether it is still heading towards it intended

destination. To make this prediction, the model performs three subsequent steps, as illustrated

in Figure 1. Given the receipt of a flight track event, the prediction model first combines the

received information with the information from the previously received event. By combining the

information from these two events, our model extracts a set of features that characterizes the

airplane’s behavior during the time interval in-between the two events. The second step uses a

one-class classifier to determine whether the behavior in that time interval should be considered

as normal or anomalous. In the third and final step, we augment the classification of the behavior

with the classifications of the airplane’s prior intervals. If the level of anomalous behavior in the

flight history surpasses a certain threshold, our model predicts a diversion. In the next sections,

we describe the model’s input and its individual steps in detail.

3.1. Flight Tracking

During a flight, an airplane transmits information that can be collected by a range of receiving

devices. We refer to the gathering of positional data of an airplane throughout its flight as flight
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Figure 1: Overview of the prediction model for diversion detection

tracking. The information acquired by the flight tracking consists of a series of events, i.e., instan-

taneous information related to a specific point in time. Events describe the characteristics of the

reported fact by means of the so-called event attributes. In the case of flight tracking, the event

attributes includes flight number, speed, altitude, and geographical position.

Flight events are made (semi)-publicly available through several dedicated data providers such

as Flightstats3 and FlightRadar244. Independent of the source from which it is obtained, the

flight event e describing the status of an airplane at time ⌧ as described by the following triple of

attributes:

e = hp, h, vi, with p = hlat , loni

p = hlat , loni represents a point in the geosphere identified by latitude lat and longitude lon, which,

together with height h, describes the position of the airplane. Velocity v indicates the speed at

which the airplane is flying. Flight events are received as sequences, with irregular time periods

between subsequent updates. To capture the temporal dimension, all events are labeled with the

time at which they are reported, namely ⌧ . Therefore, when referring to specific occurred events,

we will consider them as functions of ⌧ , e(⌧). By extension, we will consider their attributes as

functions of time, too, i.e. p(⌧), h(⌧), v(⌧). These sequences of flight events are the input that the

prediction model will utilize.

3http://www.flightstats.com/
4http://www.flightradar24.com/
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3.2. Feature Extraction

In the first step of the prediction model, we convert information from received flight track

events into features that characterize the behavior of an airplane during a time interval. It is

crucial to the applicability of our prediction model that these features can be computed based on a

limited amount of information. We therefore derive the features based solely on information in the

flight track event, i.e. time, position, altitude, and velocity, and on the locations of the origin and

destination airports. The flight track events obtained from providers of public flight data, together

with the geographic locations of the origin and destination airports, are used to derive features that

characterize an airplane’s behavior during a certain time interval. By extracting these features,

we abstract from information that relate to a single point in time. Owing to this, features do not

depend on the route that the airplane is following. This enables the prediction model to work for

any flight trajectory, even if a flight between those two airports has never been observed before.

To this extent, we follow the general framework described in [42]. According to it, event

attributes are hierarchically divided into (i) constrained, (ii) monitorable, and (iii) free attributes,

where the first class is a sub-class of the second one, and in turn the second class is a sub-class of

the third one. In our context, the constrained class describes the geographical position p(⌧), given

by a latitude-longitude pair. This attribute is constrained, because the obligatory expected initial

and final values are set for it: respectively, the locations of the origin and destination airports. The

second class, monitorable attributes, is represented in our case by flight speed v(⌧) and altitude

h(⌧). These are monitored during the flight tracking, yet no constraint is assumed that define

their initial and final value in our model. Such restrictions are indeed known by pilots and airline

companies, but kept reserved and hence not known by external logistics service providers. Therefore

we consider constraints on such attributes out of scope for our abstraction of data. Constrained

and monitorable attributes are an input source for the discriminative classifier that determines

whether the flight is showing an anomalous behavior. In our context, the class of free attributes

refers to attributes such as the flight identifier. This attribute is used to pre-filter the stream of

events in order to distinguish to which flight the current event belongs. Although flight codes

respect normative assignments and flight identifiers can coincide with them, such knowledge goes
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beyond the scope of our abstraction.

Given these attribute classes, the approach of [42] defines three main classes of features, namely

(i) progress from start, (ii) progress to end, and (iii) interval progress. Each feature represents the

dynamic evolution of a single event attribute along a time interval I⌧ > 0, defined by time instants

⌧ and ⌧

0 (⌧ 0 = ⌧ + I⌧ ).

Progress from start and progress to end describe how further (resp., closer) an attribute’s value

gets to its initial (resp., final) expected value, by comparing the distance at the end of the time

interval w.r.t. the beginning of the time interval. 5 Such variation is scaled by the di↵erence between

the initial value and the final one. Progress from start and progress to end can thus be derived only

from constrained attributes, because their final and initial expected values are undefined for the

other event-attribute classes. Interval progress is defined for monitorable attributes, as it considers

the variation of the attribute value at time ⌧ 0 and ⌧ , scaled by the average of gathered values along

the time interval. Hence, it considers the trend of the attribute under analyisis, locally to the given

time interval, thus disregarding any initial or final value. In the context of our research, we have

adapted the concepts expressed so far, defining the following features.

Distance completed (progress from start): an approximation of the fraction of the total distance

from the origin airport that has been completed during interval I⌧ . Equation 1 is used

to compute the completed distance �

cmpl
d (I⌧ ), where ��(p0, p00) represents the great circle

distance �� between two positions p0 and p

00. pO and pD respectively denote the coordinates

of the origin and destination airports.

�

cmpl
d (I⌧ ) =

��(p(⌧ 0), pO)���(p(⌧), pO)

��(pO, pD)
(1)

Distance gained (progress to end): the fraction of the total distance gained towards the desti-

5The assumption made in [42] is that such features are defined for attributes whose domains can be mapped to,
or constitute, metric spaces. As it can be inferred, this assumption applies for all the monitorable and constrained
attributes in our context, as we deal with speed and altitude (numeric values for which the distance metric can be the
arithmetic di↵erence, respecting the triangle inequality) and geographical positions (for which the geodesic distance
is defined).
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nation airport in an interval I⌧ , formulated as �gaind (I⌧ ) in Equation (2).

�

gain
d (I⌧ ) =

��(p(⌧), pD)���(p(⌧ 0), pD)

��(pO, pD)
(2)

Velocity deviation (interval progress): average speed (v) deviation over an interval I⌧ , formu-

lated as �v(I⌧ ) in Equation (3).

�v(I⌧ ) = 2⇥ v(⌧ 0)� v(⌧)

v(⌧) + v(⌧ 0)
(3)

Altitude deviation (interval progress): average altitude (h) deviation over an interval I⌧ , for-

mulated as �h(I⌧ ) in Equation (4).

�h(I⌧ ) = 2⇥ h(⌧ 0)� h(⌧)

h(⌧) + h(⌧ 0)
(4)

The aforementioned features describe the behavior of an airplane during a certain time interval.

We lastly introduce a feature that captures the flight-phase in which an interval occurs:

Phase: an approximation of the fraction of the total distance from origin to destination airport

that has been completed after interval I⌧ .

�

ph
d (I⌧ ) = 1� ��(p(⌧ 0), pD)

��(pO, pD)
(5)

In order to detect diversions, it is important to distinguish abnormal from regular behavior

during an interval. What constitutes regular behavior, however, depends on the phase of the

flight in which an interval occurs. This is because airplanes behave di↵erently in di↵erent phases.

Consider for example the velocity deviations �v(I⌧ ) plotted in Figure 2 against the phase �

ph
d (I⌧ ).

The continuous line depicts the behavior of a regular flight. At the start of the flight, the changes

are the highest, as the airplane is ascending and gaining speed. In mid-flight, the velocity of an

airplane is relatively stable. However, when an airplane nears its destination, it reduces its speed

in order to prepare for the descend and landing. This results in large negative velocity deviations.
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Figure 2: Velocity deviations for a regular and diverted flight plotted against the phase of the flight

By contrast, a diverted flight, depicted by the dashed line, shows highly di↵erent behavior.

After a similar first half of the flight in comparison to the regular flight, the flight trajectory shows

large decreases in speed around the point �phd (I⌧ ) = 0.6. This indicates that the airplane is greatly

reducing its speed, as if to prepare for landing, while it is still far away from its destination airport.

The combination of a such exceptional values of �v(I⌧ ) with a low value for �phd (I⌧ ) thus indicates

that an airplane is landing at a di↵erent airport, i.e., a diversion. Similar di↵erences between

regular and diverting flights can also occur for other features. For instance, an airplane that is

landing at a di↵erent airport will also show large fluctuations in altitude at a significant distance

from its destination airport. The classification approach presented in Section 3.3 exploits these

di↵erences in behavioral features between regular and diverting flights in order to detect anomalous

behavior.

3.3. Detecting Anomalous Behavior

Diverting airplanes exhibit behavior that is distinct from the behavior of non-diverting flights,

because they are no longer traveling towards their intended destination. To identify diversions, it

is thus vital to distinguish abnormal from regular behavior. In order to distinguish between regular

and anomalous behavior during flight intervals, we make use of a classifier. We train the classifier

to categorize intervals based on vectors of behavioral features, as described in Section 3.2.

With optimal data availability, a two-class classifier would be trained for this purpose. This

requires a data set in which both classes, regular and anomalous flight behavior, are well-represented

in and characterized by the available training data [43]. While it is relatively straightforward

13



to obtain the necessary data for regular flight intervals, obtaining su�cient data on anomalous

flight intervals is a di�cult endeavor. On the one hand, this di�culty follows from the relative

infrequency with which diverted flights occur. Compared to non-diverting flights, diverting flights

are a rare occurrence, which complicates the collection of data on these flights. On the other hand,

even once data on diverting flights is obtained, it is cumbersome to identify which intervals of

its flight trajectory should be classified as anomalous. This di�culty arises because an airplane

that ends up diverting, generally starts o↵ with behavior identical to that of non-diverting flights,

i.e. the intervals in the first part of the trajectory are also regular for these flights. The airplane’s

anomalous behavior only manifests itself later on. Determining where exactly a trajectory switches

from normal to abnormal is a fuzzy and laborious endeavor. To address this problem, we instead

obtain a data set consisting of flight intervals obtained from just non-diverting flights. We use this

data set to train a one-class classifier, which described the regular behavior during a flight. In

particular, we make use of one-class SVMs for this task.

SVMs are the most commonly used classifiers for one-class classification problems [43]. Our

choice for an SVM to tackle the classification task at hand is furthermore fueled by their suitabil-

ity to handle high-dimensional, non-linear classification problems [31]. These characteristics are

particularly relevant due to the complex patterns that must be identified to discriminate between

anomalous and regular behavior. To enable the discovery of these non-linear relations, we train

an SVM based on the Gaussian kernel. We furthermore have to account for the presence of noise

and anomalous behavior in the training data. Though the training set only contains data obtained

from non-diverting flights, this set can still contain anomalous flight intervals. Such intervals result

from abnormal behavior during an otherwise normal flight, which may be caused by, e.g. weather

conditions or due to e↵orts necessary to avoid collisions. To account for these outliers in the train-

ing data, we make use of ⌫-SVMs [44]. These adaptations of regular SVMs allow us to specify the

(expected) level of noise in the data using a parameter ⌫.

To train the classifier for the task at hand, we have to optimize for three parameters: interval-

length L, and SVM parameters ⌫ and �. Interval-length L describes the time range in which

positional updates are gathered, and consequently the amount of behavior captured in a single
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feature vector. Selecting a low L can result in a classifier that is sensitive to noise, but better

captures short maneuvers. By contrast, while a high value for L likely yields a more robust

classifier, it also a↵ects the time it takes before a diversion prediction can be made. A too high

L thus decreases the response time gained with our approach. The SVM ⌫ and �, respectively,

capture the expected level of noise and the extend to which the decision hyperplane is fit to the

training data. By fine-tuning ⌫, the support vectors are adjusted to the proper level of noise,

whereas � must be chosen in line with the characteristics of the data set. Selecting appropriate

values for these parameters is paramount to the quality of the classification results and, hence, to

the predictive accuracy of our prediction model. The interested reader is referred to Appendix A

for a detailed description of one-class SVMs and the relevant parameters. The combination of

best ⌫ and � parameters may depend on the chosen length of interval L, too. Therefore, the

optimization process of ⌫ and � has to be conducted according to the chosen value of L.

3.4. Predicting Diversions

Information on a flight trajectory is received as a number of sequential flight track events.

These are first converted into feature vectors, covering the evolution of flight data over given

time intervals. The one-class classifier, described in the previous section, classifies each of these

feature vectors as regular or anomalous. The first two steps of our prediction model thus represent

any (partial) flight trajectory as a sequence of binary classifications. In its final step, our model

converts this sequence into a prediction on whether or not a flight is diverting. Specifically, the

model predicts a diversion when the number of consecutive anomalous flight intervals reaches a

threshold t. Aside from its simplicity, this metric is intuitive because it is robust and memoryless.

Robustness is relevant because airplanes may exhibit anomalous behavior for brief periods of

time, without leading to a diversion. Such behavior may occur due to, e.g. weather conditions, or

collision avoidance. The metric t should account for this by not predicting a diversion at the first

appearance of anomalous behavior. Only when an airplane behaves abnormally for a prolonged

period of a time, a diversion should be predicted. Related to this, we select t as a memoryless

metric, because early anomalous behavior in a flight should not a↵ect predictions made later on.

When a flight has returned to a normal course, i.e. it has started exhibiting regular behavior
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again, prior anomalous behavior is no longer taken into account. Both objectives of robustness

and memorylessness are thus achieved by taking t as the number of consecutive anomalous flight

intervals.

The prediction represents the third and final step of our prediction model. In Section 4, we

present an evaluation that demonstrates the prediction accuracy and response time gains achieved

by using our model.

4. Evaluation

This section describes a quantitative evaluation of the proposed approach that demonstrates

the performance on real flight data. Gathered results stem from the usage of a prototypical

implementation of the prediction model described in this paper. It has been encoded in Java (for

the data treatment and import) and Python (for the core prediction model), with the aid of the

Scikit-learn library [45] providing the SVM algorithm. In Section 4.1 we present the setup for

tests that we conducted, along with information on the metrics adopted to assess the accuracy

of results. Section 4.2 provides an insight on the procedure that we followed to tune the model’s

parameters. Based on the criteria explained in Section 4.1 and the outcome of the optimization

procedure of Section 4.2, the best performing classifiers are used to classify new unprocessed flight

data. Section 4.3 and Section 4.4 describe the results achieved by the application of our technique

on such data. The former focuses on the accuracy of results. The latter provides insights into the

response time that can be gained using our prediction model. Section 4.5 concludes the section

with a discussion.

4.1. Setting and Benchmark

This section describes the data and metrics that are used to evaluate the performance of the

proposed approach. Available flight data is separated into three distinct datasets. The datasets

have been acquired from FlightRadar24 and FlightStats. They report flight data of a period

ranging from 10/07/2013 to 16/07/2013, and from 14/07/2013 to 11/08/2013, respectively. Data

from FlightStats stem from flights mainly along the United States of America. Flight events from

FlightRadar24 pertain flights taking o↵, or landing, in Europe – for the most part, following their
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Sreg Sdiv

Area S
reg1
tv S

reg2
tv S

reg3
tv S

reg4
tv S

reg5
tv S

reg6
test Sdiv1

v Sdiv2
test Total

EU 126 122 125 120 126 127 24 22 792

US 51 55 52 57 51 50 10 12 338

Overall 177 177 177 177 177 177 34 34 1130

Table 1: Flights used for training, validating and testing the SVM, separated on the basis both of
the flight area, i.e. Europe or USA, and the class they belong, i.e. regular (Sreg) or diverted (Sdiv).

routes within Europe. The interested reader is referred to Appendix B for a detailed description of

the flight data we analyzed. Out of the collected flight tracks, we have sampled 1,130 flight tracks

(792 over Europe, and 338 over the United States), out of which 1,062 were regular (746 EU, 316

US) and 68 diverted (46 EU, 22 US). These sets will be respectively identified with S

reg and S

div.

We have utilized the flight tracks to build three logical sets, respectively adopted to train, test and

validate the SVM adopted in our approach.

In the following, we refer to the set of flight tracks used to train the classifier as the training

set (St). Recall from Section 3.3 that the SVM is a one-class classifier that is trained on behavior

observed in regular flights. Therefore all trajectories in St relate to non-diverting flights. The

second dataset is the validation set (Sv) used to optimize the parameters of the classification

approach. Finally, the test set (Stest) is used to objectively assess the performance of the approach

with the optimal configuration found during the parameter optimization phase. Flight tracks in

Stest are not used during the training nor the validation phases in order to avoid any bias in the

assessment.

For the training and validation phase, we have adapted a K-fold cross-validation approach, with

K = 5 [46]. To do so, we have first shu✏ed EU and US flights, and then divided them as follows.

We have partitioned the set of 1,062 regular flight tracks (Sreg) in six non-overlapping subsets

consisting of 177 flights each – hereafter, S
reg1
tv , . . . , S

reg5
tv , S

reg6
test . The set of 68 diverted flight tracks

(Sdiv) has been sliced into two subsets of 34 flight tracks each – S

div1
v and S

div2
v . In the notation

adopted, the superscript of sets and subsets recalls whether comprised flight tracks are regular or

diverted, resp. reg or div. The subscript indicates whether the subsets are utilised for test (test),
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training and validation (tv), or validation only (v).

Out of the six subsets of regular flight tracks, five have been used for the training and validation

phase (hence, the “tv” subscript of S
reg1
tv , S

reg2
tv , . . . , S

reg5
tv ). Over five rounds, we have assigned the

combinations of four sets out of five to St, for the training phase – for one of the five rounds,

e.g., St = S

reg1
tv

S
S

reg3
tv

S
S

reg4
tv

S
S

reg5
tv . We included the remaining subset (S

reg2
tv in the example)

in the validation set, Sv. Di↵erently from the training phase, the validation phase takes into

account diverted flights too. Therefore we also included S

div1
v in Sv – in the example round,

Sv = S

reg2
tv

S
S

div1
v . The sixth set extracted from the collection of regular flights, S

reg6
test , has been

used for the test, along with the remaining half of diverted flight tracks, Sdiv2
test . Therefore, for all

trained machines, Stest = S

reg6
test

S
S

div2
test . Table 1 shows the distribution of flights over the United

States and over Europe in the aforementioned sets.

Precision (P), recall (R), and F-score (F) [47] are the classification metrics used to quantify the

performance of the approach and a given parameter configuration. These scores are, respectively,

formalized in Equations (6) to (8). In these equations, a true positive (tp) denotes a flight that

is correctly predicted to divert, whereas a false positive (fp) denotes a flight that does not divert,

yet is predicted to do so. A true negative (tn) and a false negative (fn), respectively, represent a

correct and an incorrect prediction for a non-diverting flight.

P =
tp

tp + fp
(6) R =

tp

tp + fn
(7) F = 2⇥ P · R

P +R (8)

Precision indicates the fraction of predicted diverting flights that truly divert. Recall denotes

the fraction of diverting flights that is predicted to divert. Finally, the F-score is the harmonic

mean of the precision and recall [48].

4.2. Parameter Optimization

Recall that the performance of the prediction approach depends on four parameters: interval-

length L, SVM parameters ⌫ and �, and threshold t. L represents the time interval between

consecutive positional queries. The SVM parameters ⌫ and �, respectively capture the level of

noise, and the desired similarity that intervals have to hold w.r.t. the training data in order to be
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L [min] t ⌫ � P R F

2 8 0.06 8.00 0.89 0.74 0.81

3 6 0.02 8.00 0.86 0.75 0.80

4 3 0.01 1.00 0.91 0.75 0.82

5 4 0.03 4.00 0.88 0.71 0.79

6 3 0.02 0.50 0.95 0.65 0.77

7 3 0.01 2.00 0.90 0.66 0.76

8 2 0.01 0.25 0.84 0.70 0.76

9 2 0.01 0.50 0.84 0.68 0.75

10 2 0.01 1.00 0.80 0.79 0.80

11 2 0.01 0.50 0.86 0.68 0.76

12 2 0.01 0.50 0.87 0.64 0.73

Table 2: Performance of best models gath-
ered with the coarse-grain grid-search, on
the basis of the analyzed time-interval
length
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Figure 3: F-score (bars) and time needed
to predict a diversion (line) in the validation
phase of the SVM, with respect to the interval
length

in turn classified as regular. Finally, t is the number of consecutive anomalous intervals that result

in a diversion prediction. We optimize these parameters by performing a two-phase grid search.

A grid search is an exhaustive search over a subset of possible values for each parameter. By

starting out with a wide and coarse grid it is possible to identify an appropriate search region [49].

Afterwards, a finer grid search on the identified search region is conducted. The values that we

selected for the coarse-grain grid search are:

L 2 {2, . . . , 12} minutes

t 2 {1, . . . , 10}

⌫ 2 {0.01, 0.02, . . . , 0.16}

� 2 {2�4
, 2�3

, . . . , 24}.

For every combination of the aforementioned parameters, we trained 5 SVMs on the five di↵erent

assignments of St, and validated them on the corresponding Sv. We thus assessed the predictions

made in terms of precision, recall and F-score. Assigned values correspond to the average of the 5

cross-validations. Thereafter, for every pair of hL, ti, we have selected the values for ⌫ and � that

let the SVM attain the best F-score. Table 2 shows the gathered results. Our final objective is
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to maximize the F-score, keeping the time needed for a diversion prediction (i.e., L · t) as low as

possible. Experiments show that the F-score is noticeably high (higher or equal to 0.8) if L 6 5 min.

The highest F-score is reached in correspondence with the minimum time-to-predict: indeed, when

L = 4, predictions are given after 12 minutes, with F = 0.82. Figure 3 shows how increasing

sizes for L not only allow for lower F-score but also require more time for prediction – both trends

impairing the results. A (partial) exception to the trend is reached at L = 10 (F = 0.8), although

the corresponding time to predict amounts to 20 minutes.

Based on the outcome of the coarse-grained search, we conducted a finer-grain grid search.

Values for L were the sequence of quarters of minutes from 2 to 5 minutes – hence, one value

assigned to L every 15 seconds. The values for ⌫, � and t were restricted to those between the

minimum and the maximum from the best performing combinations, as follows.

L 2 {8, . . . , 20} quarters of minutes

t 2 {2, . . . , 8}

⌫ 2 {0.01, 0.02, . . . , 0.14}

� 2 {20, 21, . . . , 24}.

Figure 4 graphically represents the accuracy of predictions made during the cross-validation.

More specifically, Figure 4a depicts the precision-recall graph. In the figure, crosses represent

the performances of all trained SVMs during the validation phase. For every interval length, the

parameters combinations yielding the highest F-score have been saved. Their precision, recall, and

F-score are depicted in Figure 4b. An empty circle, an empty square, and an empty diamond

respectively represent those ones that achieved the best precision, recall, and F-score. They are

reported both in Figure 4a and Figure 4b. Even after the fine-grain grid search, the best F-score

is still achieved at an interval-length of 4 minutes (L = 240 seconds, t = 3, � = 1, ⌫ = 0.01).

Considering the best set-ups in terms of F-score for each interval, the topmost precision and F-

score are attained having an interval length of 150 seconds and 225 seconds, respectively. Figure 4b

shows that the best achieved F-score values balance recall and precision, respectively having peaks

in the range of 195–255 seconds, and 120–175 seconds.
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L = 150, t = 7, γ = 4, ν = 0.06 ●

L = 225, t = 3, γ = 2, ν = 0.01
L = 240, t = 3, γ = 1, ν = 0.01
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(a) Precision-recall graph for the validation phase of the
SVM.
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(b) The trend of best F-score values gained in the val-
idation phase of the SVM with respect to the interval
length, and the corresponding precision and recall.

Figure 4: Accuracy of prediction gained in the validation phase of the framework.

4.3. E↵ectiveness

In order to assess the potential of the proposed prediction model, we applied it on test set

Stest. In particular, we have selected the best SVMs, ranked according to the F-score achieved

in the validation phase, according to the di↵erent values of L, the time interval. The trend of

resulting precision, recall and F-score is outlined in Table 3. Gathered test results are in line with

the validation phase, thus showing that the classifiers do not su↵er from overfitting with respect

to the training data. Indeed, the minimum and maximum F-score respectively amount to 0.76

and 0.82, as in the validation phase. The corresponding values for precision and recall float in

the range 0.78–0.96, and 0.68–0.79. The best set-up retrieved for the parameters optimization was

achieved with an interval length of 240 seconds. During the test phase, such set-up is ranked the

second with respect to the F-score, because its corresponding value is 0.81 whereas the set-up at

120 seconds reaches a value of 0.82. Nevertheless, the di↵erence remains limited to a negligible

amount (0.01).

In general terms, a higher recall may be more beneficial than a higher precision: deviations are
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L [sec] t ⌫ � Precision Recall F-score

120 8 0.06 8.00 0.91 0.74 0.82

135 7 0.06 4.00 0.81 0.72 0.76

150 7 0.06 4.00 0.83 0.69 0.76

165 4 0.02 2.00 0.81 0.74 0.77

180 6 0.02 8.00 0.83 0.75 0.78

195 4 0.02 4.00 0.81 0.74 0.77

210 4 0.03 4.00 0.83 0.76 0.79

L [sec] t ⌫ � Precision Recall F-score

225 3 0.01 2.00 0.78 0.79 0.78

240 3 0.01 1.00 0.88 0.75 0.81

255 3 0.01 2.00 0.80 0.75 0.77

270 4 0.01 2.00 0.96 0.68 0.79

285 4 0.07 1.00 0.85 0.71 0.77

300 4 0.03 4.00 0.93 0.71 0.80

Table 3: Performance of the best models on Stest, on the basis of best-ranked parameter combina-
tions for SVMs, gathered during the validation phase.

far less frequent than regular flights, therefore false alarms (i.e., the drawback of a non-optimal

precision) can be considered less damaging than overlooked deviations from the final destinations

(i.e., the drawback of a non-optimal recall). Indeed, one can inspect flight data and verify whether

the airplane is actually showing an unexpected behavior, once it is classified as diverting; on the

other hand, if all the other flights (i.e., the vast majority) had to be checked to search for possible

unreported anomalies, the approach would be of little to no avail.

4.4. Response Time Gain

We have shown that our prediction model is able to predict diverting flights with arguably high

precision and recall. Despite this achievement, it is important to note that diversion detection is

merely a means, rather than a goal, in the context of freight scenarios. The true goal of this model

is to enable logistic service providers to respond adequately to diverting airplanes. The contribution

of the prediction model for this lies in the response time gained by predicting diversions, instead of

awaiting the delayed communication from airlines. These gains, straightforwardly, enable logistic

service providers to react earlier to deviations, and thereby improve the impact of their corrective

actions.

The scenario description of Section 2.1 indicates that logistic service providers need to deal

with two separate issues in case of a flight deviation. Firstly, road transportation (e.g. trucks)

needs to be arranged to pick up the cargo that arrives at the new destination airport. This issue is
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crucial, since the quality and timeliness of this response a↵ects a logistic service provider’s ability

to meet its service level objectives. Secondly, however, a logistic service provider also has to deal

with trucks that have been assigned to pick up the cargo at the original destination airport. If a

diversion is not recognized in time, these trucks travel unnecessary distances, resulting in additional

costs and CO2 emission. Note that in some cases it is possible to tackle both issues with a single

response, namely by redirecting trucks assigned to the original destination to the new location.

Nevertheless, the two issues call for separate metrics:

Time-gain w.r.t. planned arrival time �planned
t : response time gained to cancel or redirect

road transportation assigned to pick up cargo at the original arrival airport. �planned
t is

computed as the di↵erence between the planned arrival time t

P
arr and the time at which a

diversion is predicted tdiv, i.e. �planned
t = tdiv � t

P
arr. Note that tdiv is the time at which an

event is received that results in a predicted diversion, i.e. the last event of the t-th consecutive

anomalous interval (e.g., the third one, assuming threshold t = 3).

Time-gain w.r.t. actual arrival time �actual
t : response time gained to arrange road trans-

portation to pick up cargo at the new arrival airport. �actual
t is computed as the dif-

ference between the actual arrival time (at the new destination airport) t

A
arr and tdiv, i.e.

�actual
t = tdiv � t

A
arr.

Using the configuration that performed best in terms of highest F-score in the validation phase

(L = 4 min, t = 3, ⌫ = 0.01, � = 1), our prediction model identified 55 diversions out of 68

diverted flights in S

div – 28 out of 34 in the validation phase, and 29 out of 34 in the test phase.

Table 4 shows the response time gains for these 55 flights. The approach is on average able to

predict a diversion 120 minutes before the originally scheduled landing time, and 62 minutes before

the actual landing occurs. This gives logistic service providers more than one hour to react to a

probable diversion. This is a significant gain in comparison to the case where logistic service

providers have to wait for a notification of the diversion, which often occurs up to two hours past

the actual landing time.
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Metric Average Median Minimum Maximum

�planned
t

02:00:54 01:01:53 �01:14:17 14:19:27

�actual
t

01:02:48 00:32:20 00:00:00 09:15:38

Table 4: Response time gains

4.5. Discussion

In this section, we discuss our approach using real-world examples from our experiments. Our

implemented prototype has been integrated with the GET Service project software platform for

smart monitoring and planning of logistic processes. It is also currently being evaluated by one of

the flight data providers. We examine here three selected prediction results, focusing on two exam-

ples of correctly predicted diversions and an undetected diversion. In the following, all registered

and scheduled times are adapted to the Coordinated Universal Time (UTC) standard.

Both flights in Figure 5 are scheduled to go from Munich, Germany, to London, UK. The regular

trajectory is respected in the case of Figure 5a. In the case of Figure 5b, instead, the flight diverts

and lands back in Munich. The scheduled take-o↵ and landing times are respectively 07:20 and the

landing time is 09:05. The expected flight-time thus amounts to 1 hour and 45 minutes. The non-

diverted flight takes approximately 1 hour and 40 minutes, as well as the diverted one. However,

the latter makes a U-turn towards the origin airport, as shown in Figure 5b. Using our approach,

we can predict the diversion before the actual landing of the airplane in an unexpected airport.

Specifically, the take-o↵ takes place at 07:42:57, hence with a delay of approximately 20 minutes,

and the landing at 09:22:35 . Using the SVM that gained the best F-score in the validation phase

(i.e., L = 4 min, t = 3, ⌫ = 0.01, � = 1), the diversion is predicted when the airplane is localized

at the coordinates highlighted by a circle and labeled as “Diversion predicted” in Figure 5b. The

correspoding event in the flight tracking is timestamped 08:48:03. As a consequence, the diversion

is predicted approximately 34 minutes ahead of the actual landing time, i.e., �actual
t = 34:32. If

we consider the delay of 20’ accumulated on the take-o↵ to be added also to the expected time

of arrival, as it usually happens in reality, the prediction is made 37 minutes before the expected

time of arrival, �planned
t = 36:57.

An example of correctly predicted diversion on a longer-haul flight is depicted in Figure 6. The
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Figure 5: Representation of a real case study from Munich to London

flight departs at 12:46:57 from Antalya, Turkey, in time with its scheduled departure at 12:45.

Its expected arrival is in Skellefte̊a, Sweden, after 4 hours and 10 minutes. The flight diverts in

Trondheim, Norway, at 18:34:22. Di↵erently from the previous case, no U-turn is drawn by the

trajectory of the airplane. Nevertheless, the diversion is predicted by our approach at 17:32:15,

approximately one hour before the actual landing: �actual
t = 62:07. Considering the ETA instead,

the prediction is made 1 hour and 23 minutes before the expected time of landing: �planned
t = 82:45.

Appendix B reports in detail the processed data and the analysis results for the aforementioned

example flights.

Figure 7 shows an example of one of the diverted flights that were not recognized as such by

our approach (i.e., false negatives) during the test phase. As shown in the figure, the airplane

takes o↵ at Geneva, and terminates its flight in London. However, it diverts to Stansted airport,

instead of landing at Gatwick. The reason for the missed diversion prediction may reside in the

rapid manoeuvres that the pilot does in proximity of the final destination: the irregular behavior

is detected during intervals of few minutes each. Indeed, the first anomaly is detected approx.

25 minutes before landing, and further single anomalous intervals are signalled in the following

12 and 8 minutes: not enough time to reach the third anomaly in a row, for time-intervals of 4

minutes. In fact, we recall here that the parameter setting for this evaluation is such that L = 4

and t = 3. As a consequence, 12 minutes are needed to make predictions. The detected consecutive

anomalies amounted at most to 2, i.e., not a su�cient number to classify the flight as diverted. This

suggests a further investigation towards better techniques to determine situations that show a high
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Figure 6: From Antalya to Skellefte̊a, diverted
in Trondheim.
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Figure 7: From Geneva to London Heathrow,
diverted at London Stansted.

possibility of diversion, independent of the reiteration of the irregular behavior. Nevertheless, it is

also worth to be noticed that even if the predictions were made immediately after the first diverting

manoeuvres, the time-gain w.r.t. the actual landing time would be negligible. Furthermore, the

distance separating the airports of Gatwick and Stansted is relatively short. Similar conditions

hold for five of the remaining false negatives, here omitted for the sake of space. In all such cases,

the anomalous behavior is shown at the end of the flight, for a time which is not su�cient to be

considered as a sign of probable diversion.

5. Conclusions

In this paper we tackle synchronization problems in multi-modal transport and the challenge

to timely react to unexpected behavior. Our contribution is a model for the prediction of flight

diversions based on the automated detection of anomalous behavior. In contrast to prior research,

our technique does not require information on planned flight paths, and still provides predictions of

diversions with high accuracy. We model the flight trajectory as a sequence of positional updates
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that describe flight’s location, altitude and velocity. Such data is transformed into relevant features

that characterize the behavior of an airplane during a time interval, which are processed by a one-

class classifier. We evaluated our technique on an extensive set of real-world data demonstrating

its accuracy in terms of the F-measure and a substantial time-to-prediction gain.

We plan to extend our work in several ways in the future. Firstly, we intend to expand the

approach such that it not only predicts the occurrence of diversions, but also computes to which

airport the airplane will most likely divert. Also, knowing how diversions can be predicted for

airplanes, we intend to investigate the prediction of breakdowns and diversions in other trans-

portation contexts, e.g. road, inland waterway or railway transportation, such that the model can

be used in any multi-modal logistics scenario.
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Figure A.8: Classification hyperplane separating two classes.

Appendix A. One-class Support Vector Machines

This appendix presents the details of the one-class Support Vector Machines (SVMs) used in our

prediction model to distinguish regular from anomalous flight behavior, as described in Section 3.3.

Support Vector Machines (SVMs) are a particular kind of classifiers. In machine learning,

classifiers aim to assign an unknown data object to one of several pre-defined categories. Classifiers

are inferred from (i.e. trained on) a labeled set of training examples. SVMs take a feature vector

~xi = (x1i , . . . , x
l
i) as input. SVMs classify these inputs on the basis of the position a data point has

in a numeric hyperspace, on which its features are mapped [50]. To achieve this, SVMs construct

a hyperplane around each class in the training data. The edge of this hyperplane constitutes a

decision boundary that characterizes the instances in the class. Figure A.8 illustrates this for a

linear classification problem. There, the dashed lines represent the hyperplanes that provide the

decision boundaries for the classes. The vectors on these decision boundaries are referred to as

support vectors, the namesake of SVMs.

Since support vectors, by definition, capture linear relations, a transformation step is required

to solve non-linear classification problems. These transformations map the input data in a higher-

dimensional feature space, where the problem does have a linear solution. Figure A.9 illustrates

this with an example. There, non-linear relations are converted into a linear problem by applying

a transformation based on a quadratic function. SVMs can use a broad spectrum of such kernel

functions to perform transformations. In this paper, we adopt the widely-employed Gaussian
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kernel, which is defined as follows:

k(~x, ~x0) = exp

⇢
�k~x� ~x

0k2

2�2

�
= exp

�
��k~x� ~x

0k2
 
. (A.1)

The parameter � = 1
2�2 plays an important role for SVMs based on the Gaussian kernel. Since

this parameter captures the standard deviation of the data, its value determines to what extend

the decision hyperplane is fit to the training data. As shown in Figure A.10, the higher the value

for �, the more the vectors overfit the data. Choosing a value for � in line with the characteristics

of the data set is therefore paramount to the success of an SVM using the Gaussian kernel.

The amount of noise in the training data set represents a second characteristic that a↵ects the

performance of an SVM. To account for the presence of noise, adaptations of SVMs exist that let a

fraction of data (i.e. the outliers) fall in the area between the support vectors and the hyperplane.

In this work we adopt the approach by Schölkopf et al. [44] to achieve this. Their technique, called

⌫-SVC, uses a parameter ⌫ 2 [0, 1] to represent the fraction of acceptable outliers in the training

data. For instance, with ⌫ = 0.1, at most 10% of the data will be treated as outliers. Figure A.11

demonstrates the impact of ⌫ on the classification performance. By fine-tuning ⌫, the support

vectors are adjusted to the proper level of noisiness, resulting in a better fitted classifier.

For classification tasks with two classes, e.g. regular and anomalous behavior, ideally a two-

class classifier is trained. However, this requires that both classes are well-represented in and

characterized by the available training data [43]. If this is not the case, a one-class classifier can

be trained instead. One-class classification, also referred to as anomaly detection, requires only

information on a single class, i.e. the target class. These classifiers are particularly useful when

plenty of data is available on the target class, while the other class is severely undersampled. A

one-class classifier describes the characteristics of this target class. Any new data object that does

not conform to these characteristics, is recognized as an anomaly. Due to the limited availability

of training data for anomalous behavior, in this work we make use of such one-class classification.
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Appendix B. Data sets

In this appendix, we provide a detailed view into the data treated by the implementation of our

prediction model. Flight tracking data was collected from Flightstats6 and FlightRadar247. As a

repository of historic flight data, flight events were extracted and stored in a period ranging from

14/07/2013 to 11/08/2013 (Flightstats) and from 10/07/2013 to 16/07/2013 (FlightRadar24). The

formats of flight track events were di↵erent, according to the platform: FlightRadar24 provided

JSON-formatted data (see Listing 1), whereas FlightStats events were recorded in XML documents

(Listing 2). Two data adapters were thus implemented to import both formats and unify the

heterogeneous information. The flight events of both flight tracking data comprised the following

attributes: (i) a unique flight identifier, (ii) an aircraft identifier, (iii) the flight code, (iv) the

time and date of the event, (v) the IATA/FAA codes of departure and arrival airports, (vi) the

geographical coordinates of the aircraft, (vii) the altitude of the aircraft, and (viii) the speed

of the aircraft. As a third source of information, we also accessed the open CSV databse of the

OpenFlights.org portal8, which provides the exact geographical coordinates of world-wide airports.

This allowed us to link the IATA/FAA codes of origin and destination airports of flight track

events with their actual position. Table B.5 lists the attributes of the unified flight events used as

a primary input for our prediction model.

To represent the progress of the flight, we have grouped consecutive flight track events within

a time interval, and extracted the following gains achieved during the interval (features – see

Section 3.2 in the paper): (i) the gain w.r.t. the distance remaining to the arrival airport, (ii) the

gain w.r.t. the distance from the departure airport, (iii) the gain in speed, (iv) the gain in altitude.

Tables B.6 and B.7 show how such features were extracted from the track of a diverted flight from

Munich to Heathrow, and from Antalya to Skellefte̊a, respectively. Both case studies are described

in the paper in Section 4.5. For the sake of readability, the aforementioned features are abbreviated

in the table as “Dist. left”, “Dist. gained”, “Di↵. speed” and “Di↵. alt.”, respectively. Time intervals

amount to 4 minutes in the example. A subset of the event attributes is also reported in the table

6http://www.flightstats.com/
7http://www.flightradar24.com/
8http://openflights.org/data.html
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for the last event in the interval. Extracted features are consecutively examined and detected

anomalies are collected. Once a number of subsequent anomalies lie above a given threshold (3, in

the example), a diversion is predicted. Tables B.6 and B.7 show the data analysed along with the

analysis results for the example flights. The events leading to the predictions of the diversions is

highlighted in the table.

Listing 1: A sample from FlightRadar24 data

{

"175603a": [

"aircraft_id ": "7380 a9",

"latitude ": 43.0913 , "longitude ": 17.1492 ,

"altitude ": 37000 ,

"speed": 468,

"timestamp ": 1373414405 ,

"origin ": "TLV", "destination ": "CDG",

"flight ": "LY323",

...

],

"171 e09e": [

"aircraft_id ": "a96c96",

"latitude ": 40.593 , "longitude ": -73.4894 ,

"altitude ": 4000,

"speed": 244,

"timestamp ": 1372636803 ,

"origin ": "SEA", "destination ": "JFK",

"flight ": "DL1154",

...

],

...

}
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Listing 2: A sample from FlightStats data

<?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>

<response ><!-- ... -->

<appendix >

<airports >

<airport >

<fs >JFK </fs ><iata >JFK </iata ><!-- ... -->

</airport >

<airport >

<fs >LHR </fs ><iata >LHR </iata ><!-- ... -->

</airport >

</airports >

</appendix >

<flightTracks >

<flightTrack >

<flightId >305226070 </ flightId ><!-- ... -->

<departureAirportFsCode >JFK </ departureAirportFsCode ><arrivalAirportFsCode >LHR </ arrivalAirportFsCode ><!-- ... -->

<positions >

<position >

<lon > -0.4185999929904938 </lon ><lat >51.46500015258789 </ lat >

<speedMph >181</ speedMph >

<altitudeFt >150 </ altitudeFt ><!-- ... -->

<date >2013 -08 -08 T05 :24:52.000Z</date >

</position >

<position >

<lon > -0.41609999537467957 </lon ><lat >51.46500015258789 </ lat >

<speedMph >181</ speedMph >

<altitudeFt >175 </ altitudeFt ><!-- ... -->

<date >2013 -08 -08 T05 :24:47.000Z</date >

</position >

<!-- ... -->

</flightTrack >

</flightTracks >

</response >

Listing 3: A sample from OpenFlights.org data

id ,name ,city ,country ,IATAFAA ,ICAO ,latitude ,longitude ,altitude ,timezone ,DST

...

346," Franz Josef Strauss",Munich ,Germany ,MUC ,EDDM ,48.353783 ,11.786086 ,1487 ,1 ,E

347,Nurnberg ,Nuernberg ,Germany ,NUE ,EDDN ,49.4987 ,11.066897 ,1046 ,1 ,E

348," Leipzig Halle",Leipzig ,Germany ,LEJ ,EDDP ,51.432447 ,12.241633 ,465 ,1 ,E

349, Saarbrucken ,Saarbruecken ,Germany ,SCN ,EDDR ,49.214553 ,7.109508 ,1058 ,1 ,E

350,Stuttgart ,Stuttgart ,Germany ,STR ,EDDS ,48.689878 ,9.221964 ,1276 ,1 ,E

351,Tegel ,Berlin ,Germany ,TXL ,EDDT ,52.559686 ,13.287711 ,122 ,1 ,E

352,Hannover ,Hannover ,Germany ,HAJ ,EDDV ,52.461056 ,9.685078 ,183 ,1 ,E

...
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Event attribute Description Units Example type

eventID Progressive number identifying the event 19473339

aircraftID Identifier of the aircraft 3958344

flightID Identifier of the flight 24936159

flightCode Concatenation of airline code and flight number LH2472

timestamp Occurrence time of this event 2013-07-14 07:51:02

departure IATA/FAA code and location of the origin airport <IATA code, deg, deg> <MUC, 48.353783, 11.786086>

arrival IATA/FAA code and location of the destination airport <IATA code, deg, deg> <LHR, 51.4775, -0.461389>

location Coordinates of the aircraft (resp., latitude and longitude) <deg, deg> <49.7942, 8.1168>

altitude Altitude of the aicraft Feet 36050

speed Ground speed of the aircraft knots 448

Table B.5: Flight events description

Event attributes Features Anomaly Diversion

Time Latitude Longitude Speed Alt. Dist. left Dist. gained Di↵. speed Di↵. alt. detection prediction

07:51:02 48.3635 11.7777 176 1700

07:55:22 48.5382 11.4731 332 9630

07:59:22 48.9083 11.2436 388 18680 0.0546 2.9743 · 10�7 1.8054 · 10�6 7.4204 · 10�6

08:03:22 49.3153 10.9882 416 25430 0.0828 3.2675 · 10�7 8.0839 · 10�7 3.5521 · 10�6

08:07:22 49.6306 10.4288 456 29330 0.1331 5.8422 · 10�7 1.0647 · 10�6 1.6532 · 10�6

08:12:03 49.9571 9.7260 420 35000 0.1944 7.1190 · 10�7 �9.5439 · 10�7 2.0469 · 10�6

08:16:03 50.0717 8.9818 464 36000 0.2550 7.0269 · 10�7 1.1553 · 10�6 3.2693 · 10�7

08:20:03 50.2063 8.2271 444 36000 0.3164 7.1259 · 10�7 �5.1129 · 10�7 0.0

08:24:03 50.3826 7.5117 452 36000 0.3749 6.7957 · 10�7 2.0725 · 10�7 0.0

08:28:03 50.5606 6.8086 432 36000 0.4321 6.6406 · 10�7 �5.2517 · 10�7 0.0

08:32:03 50.7191 6.1176 452 36000 0.4878 6.4605 · 10�7 5.2517 · 10�7 0.0

08:36:03 50.3427 5.9824 436 36000 0.4943 7.5422 · 10�8 �4.1824 · 10�7 0.0

08:40:03 50.1778 6.7147 444 36000 0.4349 �6.8914 · 10�7 2.1102 · 10�7 0.0 X

08:44:03 49.9892 7.4146 440 35980 0.3774 �6.6744 · 10�7 �1.0503 · 10�7 �6.4497 · 10�9 X

08:48:03 49.7942 8.1168 448 36050 0.3192 �6.7540 · 10�7 2.0912 · 10�7 2.2558 · 10�8 X X

08:52:03 49.5972 8.8057 444 35950 0.2616 �6.6842 · 10�7 �1.0409 · 10�7 �3.2239 · 10�8 X X

08:56:03 49.3920 9.5026 424 30150 0.2028 �6.8226 · 10�7 �5.3485 · 10�7 �2.0368 · 10�6 X X

09:00:03 49.1668 10.0852 408 25000 0.1524 �5.8495 · 10�7 �4.4639 · 10�7 �2.1676 · 10�6 X X

09:04:03 48.8666 10.6016 392 21480 0.1056 �5.4328 · 10�7 �4.6425 · 10�7 �1.7579 · 10�6 X X

09:08:13 48.5894 11.0697 352 13850 0.0627 �4.9831 · 10�7 �1.2481 · 10�6 �5.0136 · 10�6 X X

09:12:25 48.4356 11.6073 324 11000 0.0161 �5.4085 · 10�7 �9.6160 · 10�7 �2.6625 · 10�6 X X

09:16:25 48.4192 12.0722 228 4000 -0.0219 �4.4273 · 10�7 �4.0369 · 10�6 �1.0832 · 10�5 X X

Table B.6: Analysis of the diverted flight from Munich to Heathrow.
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(a) Input space

(b) Feature space

Figure A.9: An SVM with a non-linear decision boundary, with data and decision hyperplane
plotted in the feature space (A.9a) and in the quadratic kernel space (A.9b)
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(a) � = 2�3 (b) � = 1 (c) � = 23

(d) � = 26

Figure A.10: The e↵ect of parameter � on the decision hyperplane of an SVM with Gaussian kernel
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(a) ⌫ = 0.1

(b) ⌫ = 0.3

Figure A.11: Dealing with outliers using soft-margin SVMs and parameter ⌫
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Event attributes Features Anomaly Diversion

Time Latitude Longitude Speed Alt. Dist. left Dist. gained Di↵. speed Di↵. alt. detection prediction

16:26:19 36.8639 30.8093 180 1700

16:30:19 37.0355 30.9193 292 9680

16:34:49 37.4789 30.9488 404 18000 �0.0075 3.4034 · 10�08 3.7366 · 10�06 6.9796 · 10�06 X

16:38:49 37.9577 30.9818 448 24200 �0.0043 3.6646 · 10�08 1.1987 · 10�06 3.4103 · 10�06 X

16:43:44 38.5967 30.9638 448 29600 0.0063 1.2334 · 10�07 0.0 2.3313 · 10�06

16:47:49 39.0721 30.7334 452 32900 0.0359 3.4362 · 10�07 1.0317 · 10�07 1.2256 · 10�06

16:51:49 39.5435 30.5022 468 35250 0.0653 3.4107 · 10�07 4.0369 · 10�07 8.0043 · 10�07

16:55:49 40.0424 30.2528 452 36000 0.0966 3.6322 · 10�07 �4.0369 · 10�07 2.4434 · 10�07

16:59:49 40.509 30.0158 452 36000 0.1260 3.4090 · 10�07 0.0 0.0

17:03:49 40.9961 29.7648 468 36000 0.1567 3.5665 · 10�07 4.0369 · 10�07 0.0

17:07:49 41.4784 29.5121 472 36000 0.1872 3.5439 · 10�07 9.8777 · 10�08 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

19:12:15 56.3606 22.2014 452 36000 0.9199 2.6492 · 10�07 1.0317 · 10�07 0.0

19:16:15 56.8248 21.8382 456 36000 0.9464 3.0812 · 10�07 1.0225 · 10�07 0.0

19:20:15 57.2664 21.4743 444 36000 0.9724 3.0117 · 10�07 �3.0950 · 10�07 0.0

19:24:15 57.7369 21.0757 456 36000 0.9999 3.1993 · 10�07 3.0950 · 10�07 0.0 X

19:28:15 58.1878 20.6635 456 36000 0.9720 �3.2444 · 10�07 0.0 0.0 X

19:32:15 58.5864 20.0672 456 36000 0.9323 �4.6043 · 10�07 0.0 0.0 X X

19:36:15 58.9727 19.4734 448 36000 0.8937 �4.4832 · 10�07 �2.0542 · 10�07 0.0 X X

19:40:15 59.3615 18.8578 452 36000 0.8545 �4.5446 · 10�07 1.0316 · 10�07 0.0 X X

19:44:15 59.7473 18.2276 444 36000 0.8153 �4.5478 · 10�07 �2.0725 · 10�07 0.0 X X

19:48:15 60.1261 17.5894 448 36000 0.7765 �4.5019 · 10�07 1.0409 · 10�07 0.0 X X

19:52:15 60.5042 16.9319 448 36000 0.7375 �4.5334 · 10�07 0.0 0.0 X X

19:56:15 60.8755 16.2662 452 36000 0.6988 �4.4855 · 10�07 1.0316 · 10�07 0.0 X X

20:00:47 61.2186 15.6306 444 36000 0.6627 �4.1913 · 10�07 �2.0733 · 10�07 0.0 X X

20:04:47 61.6485 14.8065 452 36000 0.6170 �5.3020 · 10�07 2.0725 · 10�07 0.0 X X

20:08:47 62.021 14.0649 444 32450 0.5770 �4.6519 · 10�07 �2.0725 · 10�07 �1.2038 · 10�06 X X

20:12:47 62.3755 13.3361 456 26630 0.5385 �4.4649 · 10�07 3.0950 · 10�07 �2.2866 · 10�06 X X

20:16:47 62.697 12.6515 396 22450 0.5031 �4.1045 · 10�07 �1.6346 · 10�06 �1.9769 · 10�06 X X

20:20:47 62.9955 12.0668 372 14080 0.4741 �3.3722 · 10�07 �7.2539 · 10�07 �5.3186 · 10�06 X X

20:24:52 63.3423 11.7122 264 7800 0.4599 �1.6432 · 10�07 �3.9419 · 10�06 �6.6628 · 10�06 X X

20:28:52 63.4562 11.3417 172 3900 0.4408 �2.2170 · 10�07 �4.8980 · 10�06 �7.7375 · 10�06 X X

Table B.7: Analysis of the diverted flight from Antalya to Skellefte̊a.
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