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Efficient Process Conformance Checking on the
Basis of Uncertain Event-to-Activity Mappings

Han van der Aa, Henrik Leopold, Hajo A. Reijers

Abstract—Conformance checking enables organizations to automatically identify compliance violations based on the analysis of
observed event data. A crucial requirement for conformance-checking techniques is that observed events can be mapped to normative
process models used to specify allowed behavior. Without a mapping, it is not possible to determine if an observed event trace
conforms to the specification or not. A considerable problem in this regard is that establishing a mapping between events and process
model activities is an inherently uncertain task. Since the use of a particular mapping directly influences the conformance of an event
trace to a specification, this uncertainty represents a major issue for conformance checking. To overcome this issue, we introduce a
probabilistic conformance-checking technique that can deal with uncertain mappings. Our technique avoids the need to select a single
mapping by taking the entire spectrum of possible mappings into account. A quantitative evaluation demonstrates that our technique
can be applied on a considerable number of real-world processes where existing conformance-checking techniques fail.

Index Terms—Business process management, Business Process Monitoring
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1 INTRODUCTION

IN many organizational contexts, employees are required
to execute tasks of business processes in conformance

with certain rules. For example, employees of a bank must
check the credit history of a customer before granting a loan
or the ground staff at an airport must verify the identity of a
flight passenger before checking in the passenger’s luggage.
So-called conformance-checking techniques play an important
role in evaluating such rules [1]. They compare the actual
behavior of employees, as recorded by information systems,
to allowed process behavior that is specified in a norma-
tive process model [2]. In this way, conformance-checking
techniques can automatically identify non-compliant actions
and prevent potentially negative consequences such as de-
lays in the process execution or fines imposed by authorities.

A fundamental requirement for conformance checking
is that observed process behavior, commonly represented in
the form of an event log, can be related to the normative
process specification. This means that events in an event log
must be mapped to the activities of a process model [3].
Without knowing the relations between events and activ-
ities, it is not possible to determine if observed behavior
conforms to the allowed behavior specified by the pro-
cess model, which makes conformance checking impossible.
Typically, however, such a so-called event-to-activity mapping
is not readily available [4], [5]. Furthermore, manually
obtaining a mapping is often unfeasible because business
analysts rarely possess the necessary knowledge on the
details of a process implementation [6], whereas automated
mapping techniques suffer from the high uncertainty caused
by cryptic event names, non-compliant behavior, and noisy
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data [7]. As a result, existing mapping techniques (cf. [4],
[8], [9]) fail to provide a definite solution to the mapping
problem. Instead, they represent probabilistic methods that
aim to select the best mapping from a number of potential
ones, rather than providing a deterministic solution [10].
This comes with the considerable risk that the selected
mapping does not capture the true relations between the
events and activities. This can be particularly harmful in the
context of conformance checking: if the selected mapping
is incorrect, conformance-checking results based on this
mapping will be incorrect as well.

Recognizing that the problem of mapping uncertainty
compromises the successful application of conformance
checking in practice, we use this paper to follow up on a
proposal for a conformance-checking technique that can be
applied in spite of mapping uncertainty [11]. The core idea
of our technique is to take the entire spectrum of potential
event-to-activity mappings into account and store them in
a so-called behavioral space. In this way, we capture the
implications of the different mappings in a structured way.
Conformance checks based on this behavioral space, there-
fore, allow us to provide trustworthy conformance-checking
results that take all potential mappings into account. Fur-
thermore, by building on a hierarchical decomposition of
process models, we are also able to compute conformance-
checking results in a more efficient manner.

In comparison to [11], this paper provides several novel
contributions. First, while the approach from [11] only pro-
vided conformance insights at a process level, the approach
presented here is able to identify the specific parts of a
process where conformance issues arise. As a result, the
conformance-checking results are much more detailed and,
furthermore, provide the foundation for process improve-
ment endeavors. Second, we introduce a novel approach
to efficiently perform conformance checks. Whereas the
original approach required a full enumeration of all pos-
sible worlds implied by mapping uncertainty, we present
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a computation approach that improves the computational
efficiency of the approach by up to 70%. Third and finally,
this paper presents the results of various additional evalu-
ation experiments that demonstrate the applicability of our
approach to a variety of process model types.

The remainder of the paper is structured as follows. Sec-
tion 2 illustrates the problem of mapping uncertainty using
an example. Section 3 introduces basic definitions. Section 4
presents the conceptual basis for our conformance-checking
technique using behavioral spaces. Section 5 discusses how
to efficiently obtain conformance-checking results using our
approach. Section 6 presents the evaluation of our approach
with a set of 598 real-world and 650 synthetic process
models. Finally, Section 7 elaborates on related work, before
Section 8 concludes the paper.

2 PROBLEM ILLUSTRATION

In this section, we illustrate the problem of mapping uncer-
tainty in the context of conformance checking. The starting
point is an event log and a normative process model. The event
log consists of a number of event traces, each referring to
a single process execution. Since these event traces have
been recorded by an information system during the process
execution, the event log corresponds to the actual behavior.
The normative process model, by contrast, specifies the
allowed behavior of the process.

A crucial prerequisite for conformance checking is that
the events from the event log can be related to the activities
of the process model. To illustrate this requirement, consider
the process model M and an event log L from [12], corre-
sponding to a real-world order handling process, depicted
in Figure 1 and Table 1, respectively. The order handling
process starts when an order is received (A). An order
can be changed an arbitrary number of times (B), before
it is processed (C). Afterwards, the products are shipped
(D) and, in the meantime, an invoice will be sent (E),
followed by either a digital (F ) or physical notification (G)
to the customer. Once all the previous activities have been
completed, the order is archived (H), which completes the
process. Looking at the traces in the event log L, we realize
that there is only limited information that allows for us
to compare the traces in L to the activities in model M .
Without knowing that, for instance an event with the label
L SM corresponds to the activity “Send notification e-mail”,
it is impossible to understand which activities have occurred
in reality and, thus, whether or not traces from L conform to
M . Therefore, a so-called event-to-activity mapping is required
that clearly specifies the relations between the events from
the log and the activities of the process model.

At its heart, this problem of identifying event-to-activity
mappings represents an alignment problem, which is often
also referred to as a matching problem. In fact, the alignment
and integration of different representations of reality is a
long-standing problem in computer science. In particular,
it is the core problem in data integration [13]. However,
the problem of identifying matching data elements has
also been recognized in other domains. For example, there
are various techniques for matching ontologies [14], [15],
process models [16], [17], and also event data [18], [19].
One of the central challenges of alignment problems is to

TABLE 1
Event log L corresponding to process model M (from [12])

Trace ID Label sequence

τa 〈O CHK, O PRC, L SM, P SP, O ARC 〉
τb 〈O CHK, O RCO, O CHK, O PRC, P SP, P NOT,

L SM, O ARC 〉
τc 〈O CHK, O PRC, P SP, P NOT, L SM, O ARC 〉
τd 〈O CHK, O PRC, L SM, P NOT, P SP, O ARC 〉
τe 〈O CHK, O PRC, P SP, L SM, P NOT, O ARC 〉

identify relations with certainty. In the context of event-to-
activity mappings, factors such as cryptic event names (e.g.,
CDHDR, L SM), non-compliant behavior, and noisy data [7]
lead to a lack of reliable information that can be utilized to
accurately identify event-activity pairs. As a result, even the
state-of-the-art mapping technique by Baier et al. reports
a mapping accuracy of only 50.8% on real-world data [4],
which demonstrates that the mapping problem is highly
uncertain. As a result of this mapping uncertainty, event-to-
activity mapping techniques rather construct a number of
potential mappings without being able to determine with
certainty which mapping is correct.

The unique issue in the context of event-to-activity
mappings is that existing conformance-checking techniques
can only be performed on a single, certain event-to-activity
mapping. Therefore, in case of mapping uncertainty, these
techniques require the selection of a single mapping from
the set of potential mappings. This, however, comes with
the considerable risk that the selected mapping is incorrect
and that, consequently, conformance-checking results based
on the selected mapping are incorrect as well.

To illustrate the risks of selecting a single, possibly
incorrect, mapping, consider the trace τd from log L in
Table 1 and the process model M . By comparing the be-
havioral relations from the traces in L to the behavior of
model M , behavior-based mapping techniques such as [12],
[20] can identify two potential mapping relations for the
trace τd, which differ in their mapping of the P NOT
and P SP events . In this case, one mapping (referred to
as ∼1) will lead to the corresponding activity sequence1

σ1 = 〈a, c, d, e, f, h〉 and the other mapping (i.e., ∼2) to
σ2 = 〈a, c, d, f, e, h〉. The task sequence σ1 conforms to
model M , whereas σ2 does not, because in this sequence, a
notification e-mail is sent (event f ) before the invoice (event
e), instead of after. Since the conformance of these two
activity sequences differs for this scenario, the assessment
of whether or not τd conforms to the process model M
depends on the selection of a mapping relation. If ∼1 is
chosen, conformance-checking techniques will determine
that τd conforms to M , whereas the opposite holds if ∼2 is
selected. As a result, the conformance of τd fully depends on
the ability to select a correct mapping in a situation where it
is inherently uncertain what that mapping is.

This example illustrates that conformance-checking re-
sults based on the selection of a single, potentially incor-
rect mapping are not trustworthy. To provide a compre-

1. Note that we use lowercase letters to refer to execution instances
of an activity, i.e. a lowercase a denotes an instance of activity A being
executed.
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Fig. 1. Process model M of an order handling process (from [12])

hensive solution to this problem, this paper introduces a
conformance-checking technique that eliminates the need to
select a single, possibly incorrect mapping and circumvents
one of the central issues of alignment problems.

3 PRELIMINARIES

The inputs for conformance checking are a process model
and an event log. In the following we introduce formal
notions for both. Definition 1 first introduces a formalization
of a process model, adapted from [21]. It captures the
commonalities of widely-used process modeling languages
such as the Business Process Model and Notation (BPMN)
and Event-driven Process Chains (EPCs). The execution
semantics of such a process model are given by a translation
into a Petri net following common formalizations, cf. [22],
[23]. The process model depicted in Figure 1 corresponds to
this formal notion.

Definition 1 (Process Model) A process model is a tuple
M = (AM , E,G,N, F, t), where

• AM is a finite set of activities,
• E is a finite set of events,
• G is a finite set of gateways,
• N = AM ∪ E ∪G is a finite set of nodes,
• F ⊆ N × N is the flow relation, such that (N,F ) is a

connected graph,
• t : G → {and, xor} is a mapping that associates each

gateway with a type.2

In this paper, we decompose process models into single-
exit single-entry (SESE) fragments in order to perform con-
formance checks. A SESE fragment refers to any part of a
process model with exactly one entry and one exit node. The
theoretical notions of SESE fragments in the context of di-
rected graphs were developed by Hopcroft and Tarjan [25].
Vanhatalo et al. [26] and Polyvyanyy et al. [27] defined how
a respective SESE decomposition can be obtained for process
models. Definition 2 formally describes the notion of a SESE
fragment we build on in this paper.

Definition 2 (SESE Fragment) Given a process model M with
its set of nodes N and its flow relation F , a SESE (single-entry
single-exit) fragment S has exactly one entry node and one exit
node. A SESE fragment is trivial if it is composed of a single flow
relation. A SESE fragment S is canonical if it does not partially
overlap with any other SESE fragment S’ that can be derived from

2. Please note that we disregard inclusive OR-gateways because of
their marginal relevance in industrial process models [24].

M , i.e. S and S’ are either nested (S ⊆ S′ ∨ S′ ⊆ S) or they are
disjoint (S ∩ S′ = ∅).

In the remainder of this paper, we only consider so-
called valid decompositions of process models [28], which is
a decomposition in which fragments only share activities
or gateways. Any SESE decomposition can be turned into
a valid decomposition by using the technique presented
in [29]. Figure 2a provides a decomposition for the running
example into a root fragment S0 and 9 smaller fragments.
This figure also highlights the hierarchy that exists between
the SESE fragments in a decomposition. The so-called Re-
fined Process Structure Tree (RPST) can be used to capture this
hierarchy between canonical SESE fragments, as visualized
in Figure 2b, and defined as follows.

Definition 3 (RPST) Let M be a process model. The Refined
Process Structure Tree (RPST) of M is the tree composed of the
set of all its canonical SESE fragments such that the parent of
a canonical SESE fragment S is the smallest canonical SESE
fragment that contains S. The root of the tree is the entire process
model, and the leaves are the trivial SESE fragments. The set of
all the nodes of the tree is denoted as S .

In the remainder of the paper, we will refer to canonical
SESE fragments resulting from the RPST decomposition
simply as SESE fragments. Also note that the SESE frag-
ments are defined as a set of flow relations. For simplicity,
however, we will use the term SESE fragment to also refer
to the fragment of a process model that is induced by
those relations. For instance, we shall use S1 to denote the
fragment containing the activities A and B, the xor-gateway
followingB, and the flow relations that connect these nodes.

Finally, we define event logs and event traces according
to notions from [30]. Definition 4 formally defines an event
log.

Definition 4 (Event Log) Let C be a finite set of event classes.
A log L is defined as L = (E , I, E, I,<), where

• E is the set of events,
• I is the set of case identifiers,
• E : E → I a surjective function linking events to cases,
• I : E → C a surjective function linking events to event

classes,
• < ⊆ E × E a strict total ordering over the events.

Given an event log L according to Definition 4, we shall
use the shorthand notation τ = 〈e1, . . . , en〉 in the remain-
der of this paper to refer to an event trace that consists of
n events with an identical case identifier. Furthermore, for
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Fig. 2. Decompositions of the process model for the order handling process

any pair of events ei and ej with i < j, it holds that ei < ej
according to the strict total ordering of the events in log L.

4 CONFORMANCE CHECKING USING BEHAVIORAL
SPACES

This section describes the conceptual basis of our
conformance-checking technique. It takes as input an event
trace, a process model, and an uncertain event-to-activity
mapping. Note that the question of how to obtain an uncer-
tain mapping, which consists of a number of potential event-
to-activity mappings, is not the focus of this paper. Potential
mappings can be obtained using one or more mapping
techniques, such as [4], [8], [9]. In the remainder, Section 4.1
first describes the notion of a behavioral space, which we
use to capture the impact of mapping uncertainty on the
process behavior described by trace τ . Then, Section 4.2
introduces the conformance-checking metrics that build on
the obtained behavioral spaces. Finally, Section 4.3 discusses
the diagnostic conformance-checking information that can
be obtained for processes with our technique.

4.1 Capturing Mapping Uncertainty using Behavioral
Spaces
Mapping uncertainty results from multiple views on which
behavior, in terms of process model activities, is described
by a single event trace. This uncertainty manifests itself
through the existence of multiple possible event-to-activity
mappings. A single event-to-activity mapping captures re-
lations between events in an event trace τ and the activities
in a process model M , as defined in Definition 5.

Definition 5 (Event-to-Activity Mapping) Let
τ = 〈e1, . . . , en〉 be an event trace with a set of events Eτ
and M = (AM , E,G,N, F, t) a process model. An event-
to-activity mapping is a surjective relation ∼ ⊆ Eτ × AM .
Elements of the relations are referred to as correspondences, where
a correspondence e ∼ a ∈ (Eτ × AM ) denotes a mapping
relation between an event e and an activity a.

In Definition 5, the relation ∼ is defined as surjective,
because we assume that each event in a trace τ is always
mapped to an activity. Furthermore, this implies that a
N:1 relation can exist between events and activities. This
cardinality captures the notion that events are typically
more fine granular than activities [31]. As an illustration,

consider a trace τ = 〈e1, e2, e3, e4, e5, e6〉 and a mapping
{e1 ∼ a, e2 ∼ c, e3 ∼ c, e4 ∼ d, e5 ∼ e, e6 ∼ f}. Given that
both e2 and e3 are aligned to activity c, this mapping indi-
cates that the trace τ , consisting of six events, corresponds
to a sequence of only five activities: 〈a, c, d, e, f〉.

Mapping uncertainty leads to the existence of multiple
potential event-to-activity mappings. Here, we capture this
spectrum in the form of an uncertain event-to-activity mapping
EA(τ,M), as defined in Definition 6.

Definition 6 (Uncertain Event-to-Activity Mapping) Let
τ = 〈e1, . . . , en〉 be an event trace and M a process model with
an activity set AM . An uncertain event-to-activity mapping is a
tuple EA(τ,M) = (M, φ), with:
• M: a set of event-to-activity mappings between τ and M ;
• φ : M→ [0, 1]: a function that assigns a probability to each

event-to-activity mappingM(τ,M) ∈ M. For this function,
it holds that the cumulative probability is equal to 1, i.e.,∑
M∈M φ(M) = 1.

In this definition, each mapping M(τ,M) ∈ M repre-
sents a potential way to map the events in τ to the activities
in AM . The probability function φ assigns a probability pi to
each mappingM(τ,M) ∈ M. These probabilities generally
follow from the confidence of an event-to-activity mapping
technique. For instance, a technique based on semantic
similarity scores, such as [4], can quantify the probability
as the product of the similarity scores associated with each
correspondence in the mapping. In this way, mappings with
a higher semantic similarity receive a higher probability
than the ones with a lower score. If no probabilities are
available, the most straightforward solution is to assign an
equal probability p=

1
|M| to each mapping.

Given such an uncertain event-to-activity mapping
EA(τ,M), we define the notion of a probabilistic behavioral
space as a means to capture all process model behavior
conveyed by trace τ according to the mapping EA(τ,M),
i.e. the sequences of process model activities that follow
from the different possible mappings. We shall refer to such
a sequence of process model activities as a trace translation
of event trace τ , because it represents a translation of the
trace’s events into process model activities. We denote a
trace translation of τ with σ(τ).

Definition 7 (Trace Translation) Let τ = 〈e1, . . . , en〉 be an
event trace with a set of events Eτ , M = (AM , E,G,N, F, t)
a process model, and M(τ,M) an event-to-activity mapping
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between τ and the activity set of process model M . A trace
translation σ(τ) represents a sequence of activities 〈a1, . . . , am〉
according to the mappingM(τ,M).

Since an uncertain mapping EA(τ,M) consists of mul-
tiple event-to-activity mappings, a mapping EA(τ,M) re-
sults in different trace translations for τ . For instance in
Section 2, we described an example where a single trace
had two trace translations, σ1(τ) = 〈a, c, d, e, f, h〉 and
σ2(τ) = 〈a, c, d, f, e, h〉, which resulted from two possible
mappings. Together, the translations of a trace represent
the spectrum of process behavior potentially conveyed by
τ , i.e. the behavioral space of an event trace. Since each
mapping can be associated with a probability, we include
a probabilistic component in our definition of a behavioral
space, as captured in Definition 8.

Definition 8 (Probabilistic Behavioral Space) Let
τ = 〈e1, . . . , en〉 be an event trace with a set of events
Eτ , M = (AM , E,G,N, F, t) a process model, and EA(τ,M)
an uncertain event-to-activity mapping between τ and the
activity set of process model M . We define a probabilistic
behavioral space as a tuple PBSτ = (Σ(τ), φ), with:
• Σ(τ): the set of trace translations of trace τ over the

activity set A as given by the event-to-activity mappings
in EA(τ,M);

• φ : Στ → [0, 1]: a function that assigns a probability to each
trace translation in Σ(τ). For this function, it holds that the
cumulative probability is equal to 1, i.e.,

∑
σ∈Σt

φ(σ) = 1.

The set Σ(τ) comprises potential trace translations of
trace τ over the activity set AM , where each translation
σi ∈ Σ(τ) is based on a mapping M(τ,M) contained in
EA(τ,M). This set, together with the probabilities provided
by the function φ, provides the basis for the probabilistic
conformance metric described next.

4.2 Probabilistic Conformance

The goal of conformance checking is to determine if ob-
served behavior in a trace τ is allowed by the behavioral
specification of a process model M . Since uncertain event-
to-activity mappings lead to multiple views on the process
model behavior described by a trace (i.e. its trace trans-
lations), all these views need to be checked against the
model M . In this section, we demonstrate how to perform a
conformance check given a probabilistic behavioral space in
order to obtain insightful conformance results and diagnos-
tic information.

To perform this conformance checks, we build on the
approach for decomposed conformance checking defined
by Munoz-Gama et al. [29]. It splits up a process model
into a set of canonical SESE fragments S , as described and
depicted in Section 3, and then determines for each fragment
in S whether it conforms to a given activity sequence or
not. We use this approach as the basis for our conformance
checks of an entire behavioral space against a model. We
kindly refer the interested reader to [29] for an in-depth
explanation of the conformance checks between a single
activity sequence and a SESE fragment and proofs of the
guarantees it provides regarding the correctness of decom-
posed conformance-checking results.

Building on the approach from [29], we introduce a
probabilistic conformance metric that quantifies the confor-
mance of a probabilistic behavioral space to a SESE frag-
ment. The metric combines the conformance assessments for
individual trace translations with probabilistic information.
Specifically, the metric corresponds to the total probability
associated with the trace translations that conform to a
certain SESE fragment S ∈ S . In this way, the metric defined
in Definition 9 represents the probability that τ conforms to
fragment S.

Definition 9 (Behavioral Space Conformance) Let τ be a
trace with a probabilistic behavioral space PBS(τ) = (Σ(τ), φ),
M a process model, and S a fragment of the SESE decomposition
of M . Then we define:
• ΣS(τ) ⊆ Σ(τ) as the set of trace translations in Σ(τ)

conforming to fragment S;
• ProbConf(τ, S) =

∑
σ∈ΣC(τ) φ(σ): as the behavioral

space conformance of trace τ to fragment S, where φ(σ)
captures the probability of trace translation σ.

Because of the probabilistic nature of the ProbConf
metric, the metric yields a different kind of result than
traditional conformance-checking techniques. In traditional
conformance-checking scenarios, i.e. without mapping un-
certainty, a trace either conforms or does not conform to (a
fragment of) a process model. By contrast, when using our
technique, traces are either conforming, non-conforming,
or potentially conforming. Potentially conforming traces are
those traces for which some trace translations conform to
a process model, whereas others do not. The conformance
of these traces is associated with a certain probability
0 < p < 1. Take, for instance, the process model fragment S3

and a trace τ1 with two trace translations σ1(τ1) and σ2(τ1),
as depicted in Figure 3. Assume that σ1(τ1) is associated
with a probability of 0.7 and σ2(τ1) with probability 0.3.

S3
D

E

F

G

τ1 = 〈e1, e2, e3, e4, e5, e6〉

σ1(τ1) = 〈a, c, d, e, f, h〉
σ2(τ1) = 〈a, c, d, e, f, g〉

φ(σ1(τ1)) = 0.7
φ(σ2(τ1)) = 0.3

Fig. 3. Process model fragment S3 and two trace translations

While trace translation σ1(τ1) conforms to S3, this does
not apply for σ2(τ1). This latter translation executes both
of the mutually exclusive activities F and G. This leads to
a conflict between the conformance of the different transla-
tions of τ1 with respect to S3. Therefore, the trace τ1 is said to
be potentially conforming with S3 with a probability of 0.7,
i.e. ProbConf(τ1, S3) = 0.7. This shows that, even though
we cannot make certain statements about the conformance
of τ1 to S3, we do know that τ1 is more likely to conform
than not. Furthermore, we also know the mapping con-
ditions under which τ1 is conforming or non-conforming.
Namely, τ1 conforms to S3 if the correspondence e6 ∼ f
holds, whereas the trace is non-conforming if e6 ∼ g is true.
This type of diagnostic information is very useful because
it provides insights into which aspects of an uncertain
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mapping lead to uncertainty in the conformance-checking
results for observed behavior.

It is important to note that the ProbConf metric,
despite its probabilistic nature and the presence of mapping
uncertainty, can often still produce non-probabilistic (or
deterministic) conformance-checking results. To illustrate
this, reconsider the process model fragment S3, as well as a
trace τ2 with the following trace translations:

σ1(τ2) = 〈a, c, d, e, f, h〉
σ2(τ2) = 〈a, c, d, e, g, h〉

In this case, mapping uncertainty has resulted in two
trace translations that differ with respect to their fifth activ-
ity: F for σ1(τ2) and G for σ2(τ2). Despite this uncertainty,
we can still with certainty state that τ2 conforms to S3.
The reason is that both trace translations conform to S3,
since S3 allows for the execution of either activity F or
G. As a result, ProbConf(τ2, S3) = 1.0, thus yielding a
deterministic result. In a similar fashion, we can determine
for certain that some traces are non-conforming, despite
having multiple translations.

4.3 Hierarchical Conformance Insights

Thus far we focused on conformance checking for a single
process fragment using the ProbConf metric. This metric
can be applied to obtain conformance information for a
process model as a whole, yielding a single ProbConf value
indicating the likelihood that a trace conforms to the entire
process. However, an important benefit of decomposed con-
formance checking is that it can provide conformance results
at various levels of detail. In particular, we can exploit
the hierarchical relations between the SESE fragments of a
decomposition in order to obtain hierarchical conformance-
checking results.

Consider, for instance, the SESE fragments depicted in
Figure 4. The fragments S9 and S10 are subsumed by their
parent, S8, whereas, in turn, S10 subsumes fragments S11

and S12. By applying ProbConf on all fragments, we can
obtain conformance-checking results at different levels of
detail. Using the trace translations of τ4 depicted in the
same figure, we can observe some interesting properties.
For instance, even though the conformance of the fragments
S11 and S12 are both equal to 1.0, the conformance of their
parent fragment, i.e., ProbConf(τ4, S10), is only 0.1. These
results reveal that the conformance problems for this trace
do not relate to either S11 or S12 individually, but rather to
their inter-relation. This example illustrates the usefulness
of decomposed conformance checking in combination with
behavioral spaces because this diagnosis could only be
observed by considering both levels of detail.

We can expand this hierarchical view on conformance
checking to consider the entire hierarchical structure of SESE
fragments in a decomposition. For this, we can adapt the
RPST representation of a decomposition, which we pro-
vided in Figure 2b, to incorporate conformance-checking re-
sults obtained by the ProbConf metric. Figure 5 illustrates
this for the running example with conformance-checking
results based on trace τ4. This figure clearly shows how
the probabilistic conformance of a trace can differ among

S8

S10
S12

S11

E

F

G

S9

σ1(τ4) = 〈a, c, d, f, g, h〉
σ2(τ4) = 〈a, c, d, e, f, g〉
σ3(τ4) = 〈a, c, d, e, f, h〉

φ(σ1(τ4)) = 0.4
φ(σ2(τ4)) = 0.5
φ(σ3(τ4)) = 0.1

Fig. 4. Process model fragment S8 with subsumed fragments

the various fragments and levels of detail. While the entire
process model has a probability of only 0.1 to be conforming
(following from the only fully conforming trace translation
σ3(τ4)), the figure clearly shows that this low probability
largely results from problems in the latter part of the pro-
cess, related to the fragment S8.
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Fig. 5. Hierarchical conformance results for τ4

Despite these apparent differences between probabilistic
conformance values, the relation between the likelihoods
of a fragment and its sub-fragments defines a
clear bound for conformance values. Namely, the
ProbConf value of a fragment Si with sub-fragments
SSi

= {Si1, . . . , Sin} can never be higher than the
minimum of its child-fragments, i.e. ProbConf(τ, Si) ≤
min{ProbConf(τ, Si1), . . . , P robConf(τ, Sin}. Intuitively,
this means that a child-fragment can never be less
conforming than its parent.

By obtaining conformance insights for all process model
fragments at various levels of granularity, our conformance-
checking technique provides the foundation for root-cause
analysis of conformance problems. The conformance levels
of traces to particular fragments reveals which parts of a
process can be considered most problematic. As such, these
insights can be used in order to take measures to avoid these
problems in the future, thereby improving the process. In
the next section, we describe how the concepts introduced in
this section can be used to obtain the conformance-checking
results in an efficient manner.

5 EFFICIENT CONFORMANCE CHECKING

In this section, we define an approach that can be used
to efficiently compute the conformance-checking results de-
scribed in the previous section. The ability to obtain these
results efficiently is important, because the computational
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complexity of conformance-checking techniques represents
a key issue for their applicability in industrial settings [32].
In the context of this paper, this complexity is particularly
problematic, since mapping uncertainty can exponentially
increase the number of conformance checks that are re-
quired to be performed per trace. For instance, if traces
are associated with 10 trace translations, the execution time
could be an order of magnitude larger than in a situation
without mapping uncertainty. However, because mapping
uncertainty may only relate to specific parts of a process,
it is not always necessary to recompute the conformance
of all process model fragments for every trace translation.
By recognizing this, we can define a technique that obtains
conformance-checking results in a considerably more effi-
cient manner.

5.1 Approach Overview

Our computation approach builds on the idea that mapping
uncertainty often only relates to specific parts of a process.
For example, in the running example, mapping uncertainty
might affect the parts of the process related to billing (i.e.
activities E, F , and G), whereas other parts of the process,
related to order processing and shipment, are not affected
by uncertainty. By utilizing this knowledge, we define an ef-
ficient conformance-checking technique that only performs
repeated checks (for different trace translations) for those
parts of a process affected by mapping uncertainty. For other
parts, a single check suffices to determine the conformance
of all trace translations in a behavioral space.

We achieve this through the approach visualized in
Figure 6. The approach takes as input an event trace τ , a pro-
cess model M , and an uncertain event-to-activity mapping
EA(τ,M). In our approach we first decompose a process
model according to the method from [27], briefly described
in Section 3. Furthermore, we compute a behavioral space
PBSτ by generating a single trace translation σ(τ) for each
mapping in EA(τ,M), according to the method described
in Section 4.1.

After these preliminary steps, we conduct three further
steps that enable us to conduct conformance checks in a
more efficient manner. Based on the established behavioral
space, our approach identifies those activities that are asso-
ciated with mapping uncertainty. Then, we determine which
process fragments of the decomposed process model are
affected by uncertainty. Finally, we perform an efficient con-
formance check by only recomputing conformance values
for those process model fragments that are actually affected
by mapping uncertainty. In the remainder of this section, we
describe each of these latter three steps in detail.

 Process 
Model

Event trace

Uncertain 
activity 

identification

Affected 
fragment 

identification

Conformance 
checking

Probabilistic 
Conformance

S0

S2

S4 S5
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S6 S7

Uncertain 
mapping
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space 
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Process model 
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Fig. 6. Overview of our computation approach

5.2 Uncertain Activity Identification
In the first step of our approach, we determine the activities
affected by mapping uncertainty. Algorithm 1 describes
this step. The method used to identify activities affected
by mapping uncertainty depends on whether the event-
to-activity mapping was established using a class-level or
instance-level mapping technique. Class-level techniques,
such as [7], [12], establish a mapping between event classes
and process model activities. As a result, any occurrence
of an event of a certain class will be mapped to the same
activity or, in case of uncertainty, the same activities. By con-
trast, instance-level techniques, such as [4], may map events
from the same event class to different activities in different
traces. In Algorithm 1, we use isClassLevel() on line 4
and isInstanceLevel() on line 11 to distinguish among
these two options.

Algorithm 1 Identifying activities affected by mapping un-
certainty

1: function IDENTIFYUNCERTAINACTIVITIES
2: Input: PBSτ = (Σ(τ), φ) . Behavioral space of τ
3: Input: EA(τ,M) . Uncertain mapping
4: if isClassLevel(EA(τ,M)) then
5: UM = ∅
6: for E ∈ C do
7: AE = getMappedActivities(E,EA(τ,M))
8: if |AE | > 1 then
9: UM = UM ∪AE

10: Uτ = UM ∩ Aτ
11: else if isInstanceLevel(EA(τ,M)) then
12: Uτ = ∅
13: for σ1(τ) ∈ Στ do
14: for σ2(τ) ∈ Στ do
15: δ =String.diff(σ1(τ), σ2(τ))
16: Uτ = Uτ ∪ δ
17: return Uτ

A class-level mapping directly provides insights into the
activities that differ among the trace translations. In such a
scenario, we can, for instance, observe that an event class
E ∈ C is always mapped to either activity B or activity C .
From this, we know that activities B and C are affected
by uncertainty. By identifying the activities associated with
all event classes subject to mapping uncertainty, see lines
5–9 in Algorithm 1, we then obtain a set UM ⊂ AM of
uncertain activities for the process model M . For a specific
behavioral space PBSτ , the set of uncertain activities Uτ is
then given as the subset of Uτ that is contained in any of
the trace translations in BSτ , i.e. using Aτ to denote the set
of activities contained in the behavioral space of trace τ , we
get Uτ = UM ∩Aτ , as described in line 10.

Computing the differences for mappings at the instance-
level is more complex. Specifically, this requires a compari-
son of the trace translations with each other. By abstracting
from process model activities to a set of symbols of an
alphabet A (as we have done throughout this work), each
trace translation represents a sequence of characters, i.e. a
string, from A, i.e. σ(t) = 〈a, b, c, d〉 equals the string abcd.
Given such character sequences, we can employ a string-
difference algorithm by Myers [33] to efficiently compute the
difference between two character sequences, which find the
difference between two strings by identifying the shortest
path in an edit graph (line 15).
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For instance, sequences abde and acde yield the differ-
ence δ = {B,C}. The union of all differences that exist
among trace translations in Στ then represents the set of
activities affected by mapping uncertainty (lines 15–16).

5.3 Affected Fragment Identification
Given a set Uτ of activities affected by uncertainty, the
next step is to determine to which SESE fragments of a
decomposed process model these activities relate. To do this,
we check which fragments do not contain any activities
from the set Uτ . Formally, we define the set of certain (i.e.
fragments unaffected by uncertainty) fragments as Sc(τ) =
{S ∈ S | T (S) ∩ Uτ = ∅}. The set Sc(τ) can be efficiently
computed in a top-down manner, as illustrated in Algo-
rithm 2. Given a fragment S in the RPST, we first determine
if the fragment does not contain any activity in the set
of uncertain activities Uτ (line 4). If this is the case, then
we know that S is not affected by uncertainty and should
be included in Sc(τ), but we also know that none of the
descendants (i.e. elements below S in the RPST) contains
any activities from Uτ . Therefore, also these descendants are
included in Sc(τ) (line 5). In case S does contain activities
from Uτ , the algorithm recursively moves to the child-nodes
of S in lines 8–10.

Algorithm 2 Identifying fragments affected by mapping
uncertainty

1: function IDENTIFYAFFECTEDFRAGMENTS
2: Input: Uτ . Result of Algorithm 1
3: Input: S . SESE fragment as RPST node
4: Sc(τ) = ∅
5: if AS ∩ Uτ = ∅ then
6: Sc(τ) = {S} ∪ S.getDescendants()
7: else
8: for child ∈ S.getChildren() do
9: S ′

c(τ) = IdentifyAffectedFragments(Uτ , child)
10: Sc(τ) = Sc(τ) ∪ S ′

c(τ)

11: return Sc(τ)

For example, given a set of uncertain activities Uτ =
{E,F}, we obtain the set of unaffected fragments Sc(τ) =
{S1, S2, S4, S5, S6, S7, S12}. This set does not include the
fragments S9 and S11, which, respectively, encompass ac-
tivities E and F and it neither includes any of their super-
fragments (S10, S8, S3, and S0). The complement of the set
Sc(τ), which we denote as Su(τ), contains all fragments that
are affected by uncertainty. We take these two sets as input
to the final step of our approach.

5.4 Conformance Checking
After determining which fragments of a process model are
affected by mapping uncertainty, we can perform the nec-
essary conformance checks. Here, we apply the notion that
for fragments not affected by uncertainty, i.e. the set Sc(τ),
we only have to check the conformance of a single trace
translation σ(τ) ∈ Σ(τ) in order to determine the confor-
mance of all translations in Σ(τ). Because these fragments
are not affected by uncertainty, all translations are either
conforming or all are non-conforming to fragments in Sc(τ).
As described in Section 4.2, we perform the conformance
check between a single trace translation and a fragment by

employing the method from [29]. Naturally, when all trace
translations have the same conformance, the ProbConf
metric will yield a value of either 0.0 or 1.0 for the fragments
in Sc(τ).

For fragments that are affected by mapping uncer-
tainty, in the set Su(τ), we need to determine the confor-
mance of all trace translations in order to obtain a correct
ProbConf value. Therefore, we determine the conformance
of all trace translations in Σ(τ) with respect to a frag-
ment S and then compute the probabilistic conformance
as ProbConf(τ, S) =

∑
σ∈Σ(τ) φ(σ). After computing

ProbConf(τ, S) for all fragments in Sc(τ) and Su(τ), we
have obtained the necessary results. These results can, for
instance, be visualized in the manner depicted in Figure 5.
These results represent the final output of our conformance-
checking technique.

6 EVALUATION

This section presents a two-stage evaluation in which we as-
sess the usefulness of behavioral space-based conformance
checking and the efficiency of our computation approach.
In the first part of the evaluation, we assess how the
impact of mapping uncertainty on conformance checking
can be reduced by using behavioral spaces as a basis. In
particular, we observe for how many traces our technique
is able to provide non-probabilistic conformance-checking
results as compared to traditional conformance-checking
techniques. In the second part of the evaluation, we analyze
the computational efficiency of our computation approach
and compare it to a benchmark.

In the remainder of this section, Section 6.1 first intro-
duces the test collections used for the evaluation experi-
ments. Section 6.2 presents the first part of the evaluation,
focusing on the usefulness of our proposed technique. Sec-
tion 6.3 presents the second part, focusing on the efficiency
of our computation approach. Finally, Section 6.4 discusses
limitations of the conformance-checking technique and its
evaluation.

6.1 Test Collections
To perform the evaluation, we combine a collection of real-
world business process models with a collection of syn-
thetic, generated models.

Real-world models. As a real-world collection, we em-
ploy the BIT process library, which comprises 886 process
models that were created in process automation projects in
various industry domains, such as financial services, au-
tomotive, telecommunications, construction, supply chain,
health care, and customer relationship management [34]. We
picked this process model collection because it has already
been used in a variety of related evaluations, among others
to test several event-to-activity mapping approaches [7],
[12]. Hence, we believe that results obtained by using this
collection present a realistic view on the applicability of
the event-to-activity mapping approach against which we
compare our conformance-checking technique. Following
the same filtering steps used in [7], we omitted any process
models with soundness issues such as deadlocks or livelocks.
Furthermore, we omitted six models for which the em-
ployed event-to-activity mapping approach was not able to
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TABLE 2
Characteristics of the test collections

Models with Real-world Synthetic Total

Loops 63 63 126
Skips 0 139 139
Non-free choice 0 104 104
Total 598 650 1248

Real-world Synthetic Total
Node Type Avg. Max. Avg. Max. Avg.

Places 8.8 34 17.7 96 13.4
Transitions 7.4 40 17.7 100 12.8
And-splits 0.7 5 4.3 62 2.6
Xor-splits 0.8 12 4.5 33 2.6
Silent steps 2.2 29 6.1 76 2.7
Skips 0 0 0.2 4 0.1

produce a mapping due to memory shortage. As a result
of the filtering, a collection of 598 process models remains
available for usage in our evaluation.

Synthetic models. We have generated a collection of
650 synthetic models that allows us to assess the impact
of model characteristics such as loops, arbitrary skips, and
non-free choice constructs on the performance of our ap-
proach. We employed the state-of-the-art process model
generation technique from [35] due to its ability to also
generate non-structured models, e.g., models with non-free
choice constructs [36]. For the generation, we employed the
default parameters used by the developers of the approach
in their evaluation.

As shown in Table 2, the test collections contain models
that differ considerably in their size, complexity, and char-
acteristics. For this reason, as well as due to the widely-
established relevance of the BIT process library, we believe
that our test collection is well-suited to achieve a high
external validity of the results.

6.2 Deterministic Conformance Evaluation
This section presents our evaluation regarding the utility
of behavioral space-based conformance checking. To assess
the utility of our approach, we observe for how many traces
our approach is able to provide non-probabilistic, i.e. de-
terministic, conformance-checking results. We compare this
to the number of traces for which traditional conformance-
checking techniques can provide the same results. We note
that these results are independent of the choice for a particu-
lar traditional conformance-checking technique, since none
of the other techniques are able to provide trustworthy
results in the presence of mapping uncertainty.

6.2.1 Setup
Figure 7 depicts the three main steps of our evaluation
setup. To perform these steps, we employ the ProM6 frame-
work, which provides a vast amount of so-called plug-ins
that implement process mining techniques.3 In the first two
steps of this evaluation, we build on existing plug-ins for
event-to-activity mapping techniques, as described in [7].

3. See www.promtools.org for more information and to download the
framework.
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Fig. 7. Overview of the evaluation setup

For the third step, we implemented the generation of behav-
ioral spaces and our proposed technique for conformance
checking as a plug-in, which is available as part of the Be-
havioralSpaces package in ProM6. In this implementation, we
employ the technique for decomposed conformance check-
ing, as described in [29], available in the JorgeMunozGama
package.

In step 1 of the evaluation, we first generate an event log
for each of the 1248 process models in the test collection. In
line with the evaluation in [7], we generate a log containing
1000 traces for each model. For process models that include
loops, we generate traces with a maximum length of 1000
events. Since we are interested in conformance checking, we
transform these fully conforming logs into logs containing
non-conforming behavior. We achieve this by using a noise-
insertion plug-in in ProM.4 This plug-in randomly adds
noise to a log (i.e. non-conforming behavior) by shuffling,
duplicating, and removing events for a given percentage of
traces. In this manner, we generate 11 different event logs,
containing 0%, 10%, . . . , 90%, 100% noise.

In step 2, we take a process model and an accompa-
nying event log and use the mapping technique from [7]
to establish an event-to-activity mapping. We have selected
this particular technique for the real-world model collection
because it returns all potential mappings in case of uncer-
tainty. Furthermore, the technique is relatively robust in the
context of non-conforming behavior. For the synthetic data
collection, we use the positional-based matcher from [20],
since the technique presented in [7] is not suitable in the
presence of non-free choice constructs. In case the approach
can compute a single mapping, i.e. there is no mapping
uncertainty, we can conclude that for this process model
and event log, traditional conformance-checking techniques
suffice to determine the conformance of all traces in the
log. If the mapping approach returns multiple possible
mappings, i.e. there is mapping uncertainty, we continue
with the third step of the evaluation.

In step 3, we first construct a behavioral space for a
trace based on the uncertain event-to-activity mapping EA
established in the previous step. We obtain a behavioral
space by creating a trace translation for each of the potential
event-to-activity mappings included in EA, as described in
Section 4.1. Afterwards, we perform a conformance check
between the obtained behavioral space and the process
model using the approach described in this paper. If this
method returns a ProbConf value of 0.0 or 1.0 for the entire
process model, we can conclude that our technique is able
to provide a non-probabilistic conformance-checking result
for the trace. This means that we know whether or not τ
is conforming with certainty. For other values, also the con-

4. Provided by the Event2ActivityMatcher package.
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Fig. 8. Deterministic conformance-checking results for the real-world
collection

sideration of behavioral spaces does not suffice to be sure
about the conformance of τ . Nevertheless, our technique
still obtains probabilistic results and diagnostic information,
whereas traditional conformance-checking techniques can-
not provide any trustworthy results for these cases.

6.2.2 Results
In this section, we first consider the overall performance of
our technique in practical settings based on the evaluation
results obtained for the real-world model collection. Subse-
quently, we investigate the impact of control-flow constructs
on the performance based on the collection of synthetic
models.
Real-world collection. Figure 8 presents the results of our
evaluation experiments for the real-world model collection.
The figure illustrates for which percentage of traces deter-
ministic conformance-checking results are obtained by our
and traditional techniques.

For noise level 0, where all traces in the event logs con-
form to the process models, we observe that the mapping
approach establishes a single event-to-activity mapping for
71% of the models in the collection, which means that
traditional techniques can provide (deterministic) results
71% of the traces. Because these logs do not contain non-
conforming behavior, the inability to establish mapping for
certain models is caused by activities which are behaviorally
identical to each other. Such cases can be seen for activities
F and G of the running example. Because of these issues,
traditional conformance-checking techniques cannot assess
the conformance of 29% of the traces. However, by using
behavioral spaces, we can still determine the conformance
of a trace when mapping uncertainty is caused by such
behavioral equivalent activities. Hence, by using our pro-
posed conformance-checking technique, we can provide
deterministic conformance-checking results for all traces.

For increasing noise levels, the ability of the mapping
approach to establish a single event-to-activity mapping
diminishes. For logs with 10% and 20% noisy traces the
approach can still establish a mapping for approximately
66% of the process models, as indicated by the 66% de-
terministic conformance results in Figure 8. However, this
percentage sharply drops to 33% certain results for event
logs with 40% noise, followed by only 21% certainty for

TABLE 3
Fraction of traces with deterministic conformance-checking results for

the synthetic collection

Models with N 0% 20% 40% 60% 80% 100%

Loops 63 96.5 75.5 57.0 38.4 21.2 3.9
Skips 130 81.8 60.5 45.9 33.2 19.2 5.5
N.-free choice 104 73.0 53.0 41.2 31.7 18.5 5.9
All models 650 89.8 68.9 52.1 36.1 19.9 4.0

noise levels above 60%. As a result of these steep drops,
the ability of traditional conformance-checking techniques
to provide trustworthy conformance-checking results also
sharply decreases. Although our behavioral space-based
technique can also provide less deterministic results when
the level of noise increases, this decrease is considerably less
severe than for the benchmark. For instance, at 30% noise,
our technique can still provide deterministic results for 83%,
whereas the benchmark can only provide such results for
55% of the cases. For the highest noise levels, our technique
can still provide deterministic results for approximately 30%
of the traces, which means that the technique outperforms
the benchmark by close to 50%.

In summary, traditional conformance-checking tech-
niques become less and less useful. For high noise levels,
they can provide results for as little as 21% of the traces.
Although the deterministic results obtainable through con-
formance checking with behavioral spaces is also affected
by the increased levels of noise, the impact is much smaller.
Therefore, we can conclude that in practical scenarios our
conformance-checking technique is much wider applicable
than traditional conformance-checking techniques. Further-
more, a crucial aspect in favor of our conformance-checking
technique is that even in cases where also our technique can-
not provide deterministic conformance-checking results, our
technique still provides trustworthy conformance-checking
information in the form of probabilistic results and diagnos-
tic insights.
Synthetic collection. Table 3 provides an overview of the
performance of our technique for the collection of synthetic
models. Given that these models are all generated based on
the same parameters, this collection allows us to accurately
assess how the presence of certain control-flow constructs
affects our technique’s performance. In particular, the table
depicts the performance of the technique on the subset of
models that contain loops, skips, and non-free choice con-
structs. From these results, we can observe that in particular
non-free choice constructs affect the performance of our
technique. For models with non-free choice constructs, the
fraction of traces for which we can compute deterministic
conformance-checking results is lower than for the overall
collection, e.g. 0.73 versus 0.90 for 0% noise and 0.41 versus
0.52 for 40% noise. The presence of skips has also been
shown to affect the performance of the approach, though
the impact is lower in this case. However, the performance
on models with loops is slightly higher when compared
to the average. This is most likely because the presence of
loops results in repeated occurrences of subtraces, which can
be particularly helpful when establishing event-to-activity
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mappings, resulting in less mapping uncertainty.

6.3 Computational Efficiency

In the second part of our evaluation, we evaluate the
computational efficiency of our computation approach. As
described in Section 5, our approach analyzes which frag-
ments of a decomposed process model actually need to be
recomputed for all trace translations, as a means to reduce
the necessary number of conformance checks. To determine
the gains obtained in this way, we compare the computation
time to a benchmark. This benchmark is obtained by per-
forming the conformance check for all trace translations for
every fragment of a decomposition, rather than considering
which fragments actually need to be recomputed for all
translations. This part of the evaluation is conducted on the
collection of real-world models.

6.3.1 Setup
For this evaluation experiment we focused on the time re-
quired to perform conformance checks using our technique
and the benchmark. We performed this evaluation using
the same sets of event logs, with varying noise levels, as
used in the first part of the evaluation. Considering the
setup depicted in Figure 7, we start the measurement after
we have decomposed a process model in step 3 of the
evaluation. This means that we measure the time used for
the actual conformance check, not for establishing the event-
to-activity mapping and for process model decomposition.
We performed the evaluation on an HP desktop with an
8 × 3.60 GHz Intel Core i7 processor and 8 GB RAM,
running on 64-bit Ubuntu 16.04 and Java Virtual Machine
1.8. As a benchmark, we also measure the computation time
that is required when all trace translations are compared
against all process model fragments, i.e., the time that would
be required without our proposed approach for efficient
conformance checking.

6.3.2 Results
Figure 9 depicts the efficiency gains that can be obtained
by using our computation approach when compared to
the benchmark. The percentage efficiency gained is here
computed as (1− time(approach)

time(benchmark) )× 100%.
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Fig. 9. Computational efficiency of conformance-checking approach

The figure shows that these efficiency gains increase for
higher levels of noise. This is the case because for higher
levels of noise, the number of possible mappings generated
by a mapping approach typically increases. In these cases,
more time can be saved when performing conformance
checks in a manner that does not require a full enumer-
ation of all possible trace translations for every fragment
of a decomposition. In particular, at 0% noise, our efficient
approach only saves approximately 11% of the computation
time on average. For this noise level, the mapping approach
most often generates only a single mapping and an average
of approximately 10 mappings per process. By contrast, for
noise levels above 40%, our computation approach leads to
a reduction of more than half of the throughput time. At
higher noise levels, our approach saves approximately 70%
of the computation time. This reduction can be explained by
the large number of mappings generated by the mapping
approach: an average of 136 mappings per process for event
logs with a 100% noise level.

In summary, these results clearly illustrate that the com-
putation approach described in Section 5 can yield sig-
nificant gains in computational efficiency. In this way, the
approach makes conformance checking more applicable in
realistic settings.

6.4 Limitations

Our evaluation experiments demonstrate that our technique
provides useful and efficient conformance-checking results
in realistic settings. However, these results need to be con-
sidered against the background of certain limitations. In
particular, we identify limitations related to the technique
itself, limitations with respect to the expected input, and
limitations related to the presented evaluation.

Our proposed technique has to be considered against
the limitation that the obtained conformance-checking re-
sults are dependent on the quality of the event-to-activity
mappings on which our approach builds, i.e. the results
depend on the quality of the utilized mapping techniques.
Most importantly, its results can be negatively affected if the
correct mapping is not included in the set of potential map-
pings generated by a mapping approach. However, these
issues rarely occurred during our evaluation experiments,
especially for traces with relatively low levels of noise. This
illustrates that the utilized mapping technique is well-suited
for our purposes.

As for the expected input of our technique, it is impor-
tant to note that the level of block-structuredness of the in-
put model affects how detailed the computed conformance
insights are. In case the input model consists of a single
unstructured fragment, conformance-checking results can
be only obtained on that level of granularity. However, since
both industrial as well as academic modeling guidelines
strongly advocate the use of block-structured models [37],
[38], we do not expect this to represent a common issue.
What is more, there are automatic techniques available
to structure certain types of non-block-structured process
models [39].

A limitation related to the evaluation of our technique
is that our test collection consisted of partially synthetic
data. While the process models used for the evaluation
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were obtained from a collection of real-world models, the
event logs were automatically generated. This means that
the obtained results may not fully reflect the situation in
practice, where event logs related to the process models may
have different characteristics. Nevertheless, we generated
logs with varying levels of noisy behavior, which means
that the utilized test collection contains behavior that can
be observed in a variety of situations. Since our evaluation
results show that our conformance-checking technique out-
performs traditional techniques for all noise levels, we are
confident that the improved performance also holds for real-
world event logs.

7 RELATED WORK

This section discusses three streams of work related to our
conformance-checking technique. Section 7.1 discusses ap-
plication scenarios and techniques for conformance check-
ing. Section 7.2 considers techniques for the establishment
of event-to-activity mappings. Finally, Section 7.3 considers
existing works that deal with data uncertainty in other
application contexts.

7.1 Conformance Checking
Process conformance checking involves the comparison of
observed process behavior to a process specification. These
techniques are applied in various application scenarios,
including process querying [40], legal compliance [41], and
auditing [42]. Most conformance-checking techniques focus
on the comparison of observed process behavior, as cap-
tured in event traces, to a process specification in the form of
a process model, cf. [29], [32], [43], [44], [45], [46]. Recently,
however, we also developed a technique for conformance
checking for process specifications in the form of natural
language texts [47].

The goal of conformance checking is primarily to deter-
mine if a trace of observed events conforms to the process
specified by a process model. However, most conformance-
checking techniques go beyond determining whether or not
a trace conforms to a process model. They analyze non-
conforming traces in order to determine their degree of
non-conformance, as well as to investigate to which parts
of a process the trace does and does not conform. Different
types of conformance-checking techniques have been devel-
oped for this purpose. Examples include the seminal replay-
based [2], [45] and alignment-based [32], [43] techniques, as
well as the decomposition-based technique [29] utilized in
this paper. While these techniques focus on conformance
from a control-flow perspective, developments have also
been made that check conformance with respect to other
process perspectives, such as time-based [48] and data-
based conformance [49].

Despite the vast number of existing conformance-
checking techniques, all these techniques require the exis-
tence of a known event-to-activity mapping, a limitation
which we overcome with the conformance-checking tech-
nique presented in this paper.

7.2 Mapping Events to Activities
The task of establishing a mapping between events and
activities represents a so-called matching problem. Matching

problems are addressed by matching techniques that set out to
automatically identify relations between two artifacts [50].
A plethora of matching techniques have been developed
and applied in various fields, including schema matching
(cf. [13], [51], [52]), ontology alignment (c.f.. [15], [53], [54]),
and process model matching (cf. [20], [55], [56]).

A variety of matching techniques [4], [8], [9], [12] have
recently been developed that apply concepts from related
matching fields to the task of matching events to activi-
ties. These techniques aim to identify events and workflow
activities with similar characteristics. To achieve this, they
consider a variety of information. For instance, techniques
presented in [4], [8] compare the labels associated with
events and tasks in order to determine their similarity. This
supports the identification of events and activities with
equal labels, as well pairs with similar labels, e.g. “ship
product” and “product sent”. Other information taken into
accounts by matchers are structural properties (indicating
the relations that exist between different events and activ-
ities) [7], [12], work instructions associated with process
models [4], and additional data associated with events [9].
A distinction between mapping approaches that is relevant
for this paper exists between approaches that map at the
event class-level and approaches that map events at an
instance-level. Approaches of the former type, such as [7],
map all occurrences of a particular event class Ex to the
same activity class. By contrast, instance-level techniques
might map events of a particular class to different activities
for different traces. For instance, an event of type Ey might
be mapped to activity C for a trace τ , but to activity D for
trace τ ′.

7.3 Representing Data Uncertainty

To be able to reason about process conformance in the
context of mapping uncertainty, we introduce the notion
of probabilistic behavioral spaces in this paper. This concept
is used to capture the implications of uncertainty in a
manner that enables probabilistic reasoning about process
conformance. In this way, our work relates to streams of
research for reasoning in the presence of data uncertainty.

Data uncertainty is inherent to various application con-
texts, typically caused by data randomness, incompleteness,
or limitations of measuring equipment [57]. This has created
a need for algorithms and applications for uncertain data
managements. As a result, the modeling of uncertain data
has been studied extensively [58]. This has, lead to the de-
velopment of various probabilistic and uncertain databases
cf. [59], [60], [61], as well as a variety of querying and
analysis algorithms for these data structures [62], [63].

Our notion of probabilstic behavioral spaces shares char-
acteristics with solutions for probabilistic and uncertain
databases. Most prominently, our notion of probabilistic
behavioral spaces builds on a concept of possible worlds used
in databases to capture the various possible implications of
data uncertainty for database instances [63]. We use a similar
notion to capture the impact of mapping uncertainty on the
process behavior that may be conveyed by an event trace.
Furthermore, the process-orientation of behavioral spaces
implicitly capture the dependencies that exist between un-
certain events for a single trace. This is similar to the use
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of conditions to capture dependencies between uncertain
database values, such as used by [61]. Despite these sim-
ilarities, the application contexts of these uncertain data
models, mostly querying and data integration [58], differ
considerably from the process-oriented view of proabilstic
behavioral spaces used for conformance checking.

8 CONCLUSION

In this paper, we introduced a conformance-checking tech-
nique that can be used in the presence of uncertain event-
to-activity mappings. Our technique provides conformance-
checking results without the need to select a single, pos-
sibly incorrect mapping to base conformance checks on.
This is achieved by considering the entire spectrum of
possible mappings generated by event-to-activity mapping
techniques and capturing this spectrum in a behavioral
space. Our probabilistic conformance-checking metric then
provides insights into the fraction of compliant mappings,
as well as useful diagnostic information. Therefore, our
conformance-checking technique avoids the risk of drawing
incorrect conclusions about process conformance. A quanti-
tative evaluation based on a large collection of real-world
process models demonstrated that our technique can be
used to obtain results in a vast number of cases where
existing conformance-checking techniques fail to do so.
Furthermore, we presented a computation approach that is
shown to considerably reduce the time required to obtain
conformance-checking results.
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[39] A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas, “Structuring
acyclic process models,” in BPM. Springer, 2010, pp. 276–293.

[40] A. Awad, G. Decker, and M. Weske, “Efficient compliance check-
ing using bpmn-q and temporal logic,” in BPM. Springer, 2008,
pp. 326–341.

[41] S. Sadiq, G. Governatori, and K. Namiri, “Modeling control objec-
tives for business process compliance,” in BPM. Springer, 2007,
pp. 149–164.

[42] R. Accorsi and T. Stocker, “On the exploitation of process mining
for security audits: the conformance checking case,” in Proceedings
of the 27th Annual ACM Symposium on Applied Computing. ACM,
2012, pp. 1709–1716.

[43] A. Adriansyah, B. van Dongen, and W. van der Aalst, “Con-
formance checking using cost-based fitness analysis,” in EDOC.
IEEE, 2011, pp. 55–64.
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