
Does This Make Sense? Machine Learning-based
Detection of Semantic Anomalies in Business Processes

Julian Caspary, Adrian Rebmann, and Han van der Aa

University of Mannheim, Germany
julian.yuya.caspary@students.uni-mannheim.de
{rebmann,han.van.der.aa}@uni-mannheim.de

Abstract. The detection of undesired behavior is a key task in process mining,
supported by techniques for conformance checking and anomaly detection. A
downside of conformance checking, though, is that it requires a process model
as a basis, limiting its applicability, whereas existing anomaly detection tech-
niques look for statistically infrequent behavior, even though infrequency does
not necessarily imply undesirability. The recently introduced concept of seman-
tic anomaly detection overcomes these issues by detecting behavior that stands
out from a semantic point of view, such as a claim being paid after it has been
rejected. In this manner, it detects behavior that is undesirable, while its ground-
ing in natural language analysis allows it to consider behavioral regularities ex-
tracted from other processes, alleviating the need to have a process model avail-
able. However, the state-of-the-art approach for semantic anomaly detection, a
rigid, rule-based approach, is limited in its scope and accuracy. Therefore, we
propose a machine learning-based alternative, which uses a classifier trained to
recognize whether observed process behavior is normal or anomalous. Our ex-
periments show that this learning-based approach greatly outperforms the state
of the art. Users can directly apply our approach to detect semantic anomalies in
their own event data by using one of our pre-trained classifiers, even if their data
contains so far unseen process behavior.

Keywords: Process mining · Anomaly detection · Natural language processing ·
Machine learning.

1 Introduction

Process mining analyzes data recorded during the execution of business processes in or-
der to gain insights into an organization’s operations [2]. A common task in this regard
involves the detection of undesired process behavior, since such occurrences can, e.g.,
reveal compliance issues, operational inefficiencies, or recording errors. Such unde-
sired behavior can be detected using conformance checking techniques [3], though only
when a normative process model is available. Alternatively, techniques for anomaly de-
tection [18] can be used to detect behavior that stands out in a statistical sense, i.e.,
because it is infrequent. However, infrequent behavior does not necessarily mean that it
is undesired, since it could point to rare, but acceptable situations, whereas, conversely,
behavior that is common is not necessarily desirable.



2 Caspary et al.

The recently introduced concept of semantic anomaly detection [1] overcomes these
limitations by aiming to detect process behavior that stands out from a semantic point
of view. It achieves this by considering the natural language labels associated with
events, which allows it to recognize behavior that does not make logical sense, such
as a claim being paid after it has been rejected or an order that is updated before it is
created. Given that such semantic issues are often applicable across processes, semantic
anomaly detection can exploit behavioral regularities extracted from existing resources,
such as process model repositories. In this manner, undesired behavior can be detected,
without the need to have a process model for the particular process at hand.

The problem that we address in this paper is that the state-of-the-art approach for
semantic anomaly detection [1] is limited in terms of its accuracy and scope. In par-
ticular, it can only detect anomalies between pairs of activities that relate to the same
business object and has limited generalization capabilities due to its rule-based nature.

Therefore, we propose an alternative approach that uses machine learning (ML) and
state-of-the-art natural language processing (NLP) techniques. The core of our approach
is formed by a classifier that we trained on data from a large process repository, cov-
ering a variety of domains. Our approach uses this classifier to detect out-of-order and
exclusion anomalies, thus being able to recognize when two events should have been
performed in a different order or should not have both been executed for the same case.
We test classifier architectures that use classical ML techniques with word embeddings
and deep learning techniques based on transformers. Our evaluation shows that both
architectures greatly outperform the state of the art in terms of precision and recall, al-
lowing our approach to detect a broader range of anomalies in a more accurate manner.
Due to its demonstrated generalization capabilities, users can apply our approach di-
rectly on their event data, i.e., without requiring any training or labeled examples, even
if their data contains process behavior that our classifiers have not seen before.

The remainder of this paper is structured as follows. Section 2 motivates the goal
of semantic anomaly detection and highlights the limitations of the state of the art.
Section 3 defines essential preliminaries. Section 4 presents our proposed ML-based
approach, which we evaluate in Section 5. Finally, Section 6 discusses related work,
whereas Section 7 concludes the paper.

2 Motivation

This section illustrates the potential of semantic anomaly detection, before describing
the current state-of-the-art approach and its limitations.
Illustration. Consider the following two traces of a claims-handling process:

t1 = ⟨receive claim, accept claim, check claim, pay compensation⟩
t2 = ⟨receive claim, check claim, reject claim, pay compensation⟩

Without having any additional information about the process, the activity labels in these
traces reveal two clearly undesirable process executions: in trace t1, a claim was ac-
cepted before it had been checked, rather than the other way around, whereas in trace
t2, compensation was paid, even though the claim had been rejected.

Such examples demonstrate the potential of semantic anomaly detection based on
the natural language of activity labels. This task is particularly easy for humans, who



ML-based Semantic Anomaly Detection 3

can apply their commonsense and transferable knowledge to the process at hand in
order to recognize that both traces show undesirable process behavior. To do this in
an automated manner, however, requires an approach to learn such semantic relations
between steps in a process, which is notably harder.

State of the art. The approach by Van der Aa et al. [1] tackles this challenge by es-
tablishing a knowledge base that captures rules about the semantics of appropriate pro-
cess executions, extracted from a linguistic resource (VerbOcean) and a process model
repository. Each rule captures a relation that should not be violated between two actions
(i.e., verbs) applied to the same business object in a trace. For example, the knowledge
base contains a rule that states that business objects should be checked before they can
be accepted, which can be used to detect the anomaly in trace t1.

Limitations of the state of the art. As the first approach of its kind, the approach by
Van der Aa et al. [1] demonstrated the potential of semantic anomaly detection, yet
also left considerable room for improvement with respect to its scope and accuracy. In
particular, the approach proposed in our paper overcomes the following limitations:

Only intra-object anomalies. The existing approach can only detect anomalies involving
two activities related to the same business object. In this manner, it can detect that accept
claim should not come before reject claim in trace t1, since both relate to a claim object.
However, the approach cannot recognize that pay compensation should not follow reject
claim, since these relate to different objects. By contrast, our proposed learning-based
approach can detect both intra and inter-object anomalies.

Limited generalizability. The existing approach is limited in its ability to generalize in-
formation on process behavior. Specifically, it can learn individual rules, e.g., that reject
and accept are mutually exclusive actions, and can generalize these to some degree by
recognizing synonymous terms, e.g., that a claim can then also not be rejected and ap-
proved (a synonym of accept). However, this is as far as its generalization capabilities
go, since the approach does not make connections between the rules it extracts, e.g.,
in order to recognize that in general positive outcomes (accept, approve, confirm, sup-
port, etc.) are exclusive to negative outcomes (reject, refuse, limit, etc.). By contrast,
our proposed learning-based approach incorporates the information from all examples
it encounters, to learn such broader behavioral regularities.

No context-specific anomalies. Finally, the existing approach treats all business objects
in the same manner. However, many desirable or undesirable behavioral relations are
context specific, meaning that they should or should not be allowed for certain business
objects. For example, whereas in general it is fine that objects can be changed after
they have been created, e.g., updating a created text document, this does not apply to
objects such as a so-called rush order in SAP systems, which are special order types
that are not allowed to be changed after creation, so that they can be safely processed
immediately. Our proposed learning-based approach can make such context-specific
distinctions, provided it receives training data that contains examples of when a certain
behavioral regularity should and should not hold.



4 Caspary et al.

3 Preliminaries

Event model. Our work takes as input an event log L, which is a collection of traces.
A trace t = ⟨e1, e2, .., en⟩ ∈ L is a sequence of events belonging to the same case of a
process. Each event in a trace is associated with a textual label, indicating the activity
to which it corresponds. Without loss of generality, we denote traces as sequences of
their event labels when convenient, as e.g., shown for traces t1 and t2 in Section 2.
Process model. A process model defines desired execution dependencies between the
activities of a process. For our purposes, it is sufficient to abstract from specific process
modeling languages and focus on the behavior defined by a model. Therefore, we define
a model M as a set of activity label sequences that lead the defined process from its start
to its final state. We also define MF ⊆ M as the set of loop-free label sequences of M ,
i.e., the sequences that do not repeat any process fragments.
Eventually-follows relation. We use the eventually-follows relation ≺ to capture inter-
relations between pairs of labels, stemming from recorded traces or allowed process
model sequences. Given a trace t = ⟨e1, e2, .., en⟩, we use ei ≺t ej to denote that
ei occurs (directly or indirectly) before ej in the trace. Similarly, ai ≺M aj holds if
a process model M contains an execution sequence in which activity label ai occurs
before aj , and ai ≺MF aj holds if M contains a loop-free sequence with that relation.
Vector operations. We use v =

[
v1 v2 · · · vn

]
to denote a numerical n-dimensional

vector, with vi ∈ R for 1 ≤ i ≤ n. The average of two vectors, v and w, is obtained
by dividing the sum of the vectors by two, i.e., (v + w)/2. Finally, we denote the
concatenation of two vectors as

[
v w

]
.

4 Approach

This section presents our proposed approach for semantic anomaly detection. As shown
in Figure 1, our approach takes as input a trace t and consists of two main compo-
nents. The first component, the event-pair extractor, takes a trace t and extracts a set
of eventually-follows pairs of events Pt to be checked for anomalies. Then, the second
component, the anomaly detector, takes each event pair ei ≺ ej ∈ Pt and uses a classi-
fier to determine if events ei and ej should be able to follow each other in this particular
order, i.e., whether or not this behavior is anomalous. We provide classifiers that we
pre-trained on data stemming from a large process model repository, which means that
users of our approach do not have to train their own classifier themselves. Based on such
a classifier, our approach detects ordering anomalies, i.e., cases where ej should have
become before ei rather than vice versa, e.g., accept request followed by check request,
as well as exclusion anomalies, i.e., cases where ej should not follow ei because the
two are mutually exclusive, e.g., reject request followed by pay compensation.

4.1 Event-pair Extractor

Our approach detects anomalies for pairs of events that are in an eventually-follows
relation in a trace t = ⟨e1, e2, .., en⟩. We use this abstraction level, instead of a directly-
follows relation, because semantic inter-relations between process steps often remain



ML-based Semantic Anomaly Detection 5

Event-pair 
extractor

Anomaly 
detector

Trace t
<e1,e2,..,en>

Event pairs Pt
{e1≺ e2, … }

Semantic 
anomalies At

Fig. 1: Overview of our anomaly detection approach.

applicable even when other process steps occur in between them. For example, the
notion that receive request should precede accept request holds true, irrespective of the
occurrence of other steps in between, such as check request or read request documents.

However, when extracting eventually-follows pairs from a trace, it is important to
consider the notion of rework, stemming from loops in a process. This is a crucial factor,
because rework can have an important impact on the semantics of a process instance,
particularly with respect to which events may or may not follow each other. For exam-
ple, although reject request should normally not be followed by pay compensation (cf.,
trace t2 in Section 2), this does not apply to trace t3 shown in Figure 2. There, rework
was conducted after initially rejecting the request, which made the subsequent payment
of compensation acceptable.1

Trace t3  = ⟨receive req., check req., reject req., update req., check req., accept req., pay compensation⟩

Anomalies?

Sub-traces = ⟨receive req., check req., reject req., update req.⟩ , ⟨check req., accept req., pay compensation⟩
sub-trace t3:1 sub-trace t3:2

Fig. 2: Illustration of the necessity to identify rework in traces.

Therefore, to prevent the detection of incorrect anomalies, we only check for anoma-
lous behavior within the same cycle of an instance’s execution, by avoiding the com-
parison of behavior occurring in different loops through the process. To do this in the
absence of a normative process model (which would render anomaly detection unnec-
essary), we detect rework at a trace level. Specifically, we split traces into sub-traces,
by creating a new sub-trace each time we observe a label that was already present in
the current sub-trace. For example, as shown in the lower part of Figure 2, trace t3 is
split into two sub-traces, where sub-trace t3:2 starts when check request occurs for the
second time. Alternatively, a process model can be discovered for the event log, in order
to recognize loops in the process.

Given such sub-traces (a single one for traces without any repetition), we then
extract the set of event pairs Pt so that it includes all pairs of events that are in an
eventually-follows relation within an identified sub-trace. For sub-trace t3:2, this yields
check request ≺ accept request, check request ≺ pay compensation, accept request ≺

1 Note that rework considerations would also apply to directly-follows relations, e.g., in ⟨..,
check, reject, check, accept ⟩ we observe that check [request] (directly) follows reject [re-
quest], rather than vice versa, yet that this is allowed due to rework being conducted.



6 Caspary et al.

pay compensation, whereas Pt3 comprises 6 + 3 = 9 event pairs in total. By contrast,
without splitting t3 into its sub-traces, the set would comprise 21 pairs.

4.2 Anomaly Detector

In this component, we apply a classification model to determine for each event pair in
the set Pt if it is anomalous or not. We train this classification model on data from a large
process model repository, which can then be used when applying our approach on any
event log. We test two model architectures for this: An architecture using Support Vector
Machines (SVMs), a traditional machine learning technique, in combination with word
embeddings, and a transformer-based architecture, a deep learning technique, using a
fine-tuned BERT model.

Given that SVMs are simpler and faster to train, whereas transformers often gain
better accuracy on complex problems, the comparison of the two architectures allows us
to gain insights into the complexity of the problem (i.e., whether or not traditional ma-
chine learning suffices), as well as into the benefit of building on a pre-trained language
model (i.e., BERT) and a more computationally-intensive method (i.e., deep learning
using transformers).

Model architecture 1: SVM-based classification. Architecture 1 first transforms the
natural language labels of an event pair ei ≺ ej ∈ Pt into a vector representation by
using word embeddings. This vector is then fed into a trained SVM, which will return
a classification, i.e., whether or not ei ≺ ej is an anomaly.
Vector representation using GloVe. Given that SVMs (as most machine learning tech-
niques) require a numerical vector as input, we first turn an event pair ei ≺ ej into a
vector representation vei,ej using GloVe representations [21].

GloVe (short for Global Vectors) is a static word representation technique that can
be used to create an embedding for a given word, i.e., a vector representation of the word
in a high-dimensional space. Such word embeddings are used to capture the meaning of
words in a vector, by placing semantically similar words close to each other in the em-
bedding space. Given an event label, e.g., accept request, we first use GloVe to establish
an embedding of each word, resulting in two 300-dimensional vectors, e.g., vaccept and
vrequest. Then, to obtain vectors of equal length, independent of the number of words
in a label, we take the average of all word vectors of the event label, resulting in a sin-
gle vector representation, e.g., ei = (vaccept +vrequest)/2. Finally, to encode an event
pair, we concatenate the vectors of the two event labels, i.e., vei,ej =

[
ei ej

]
, resulting

in a vector of size 600, which accounts for the order in which ei and ej were observed
(i.e., vectors vei,ej and vej ,ei are different).

By using embeddings as input for text classification, a classifier can recognize event
pairs that have a similar meaning, allowing it to generalize from its training data. For
example, if the relation check application ≺ approve application is observed during
training, a classifier can recognize that the relation check request ≺ accept request is
semantically similar (i.e., has a similar vector representation), and thus recognize that
this previously unseen behavioral relation is not an anomaly.
Support Vector Machine. We use the obtained vector representation vei,ej as input for
a two-class SVM, which is a common technique for supervised (traditional) machine



ML-based Semantic Anomaly Detection 7

learning on textual data [4]. As shown in Figure 3a, an SVM aims to establish a hyper-
plane that separates data points belonging to different classes in the feature space, in
our case event pairs in the high-dimensional vector space obtained through embedding.

(a) Data separated by
a linear hyperplane

Φ: v→ φ(v)

(b) Use of a kernel function Φ to separate data (c) Benefit of pa-
rameter C.

Fig. 3: Illustration of SVMs (based on [4]).

When training an SVM (the procedure is described below), we alter two primary
settings: the applied kernel function Φ and the choice of the regularization parameter
C. A kernel function Φ transforms the dimensionality of the data at hand, aiming to
represent the data in a higher dimensionality that allows for better separation. Figure 3b
shows an example in which data points are not separable in a two-dimensional space,
but that can be clearly separated after applying a kernel function that transforms the
data into a three-dimensional space. In our experiments, we test linear, polynomial, and
Gaussian functions. Furthermore, we alter the regularization parameter C, which sets
the degree of misclassification allowed when establishing a hyperplane. Particularly,
as shown in Figure 3c, by allowing for a soft margin (corresponding to a low C value),
some of the training data points may fall outside of the hyperplane, i.e., be misclassified.
By allowing for this, the SVM can avoid overfitting to the training data.
Model architecture 2: BERT-based classification. Architecture 2 is a transformer-
based architecture that uses a fine-tuned BERT model for anomaly detection.
Transformers and BERT. A transformer is a type of neural network architecture that
uses self-attention mechanisms to process sequences of data, such as natural language
sentences, and learn the relationships between different elements in the sequence [24].
BERT (short for Bidirectional Encoder Representations from Transformers), in turn, is
a transformer-based language representation model [6] that has been shown to achieve
excellent performance on a broad range of natural language processing tasks.

BERT learns to understand language by processing large amounts of text data (such
as the entire English Wikipedia) in an unsupervised manner. This pre-training is per-
formed using masked language modeling (Masked LM) and next sentence prediction
(NSP). Masked LM trains the model to predict masked tokens based on the context of
the surrounding tokens, which allows BERT to learn to represent words in the context
of the entire sentence, rather than just based on their local context. In NSP, BERT is
trained to predict whether two sentences are consecutive in the input text or not, which
helps the model to learn about the relationships between sentences and the broader con-



8 Caspary et al.

text of the text. By pre-training on these tasks, BERT learns to represent words and
sentences in a way that captures the semantic relationships between them, allowing it
to understand natural language text and perform well on a wide range of downstream
tasks, such as text classification, question answering, and named entity recognition.
BERT fine-tuning. To use BERT for semantic anomaly detection, we fine-tune a pre-
trained BERT model on the task at hand. Fine-tuning has the benefit that the classifi-
cation model can use the language understanding it obtained during pre-training, while
requiring much fewer training samples and computation time than would be required
when training such a model from scratch.

To perform fine-tuning, we extend BERT’s architecture with an additional out-
put layer for two-class classification (whether an input pair is anomalous or not) and
then train it in a supervised manner on a collection of positive and negative train-
ing samples. Since BERT takes a sequence as input, we provide it event pairs in the
following manner: [[CLS], receive, request,[SEP ], check, document, completeness,
[SEP ], [PAD], ..., [PAD]], where [CLS] is a special token to indicate a classifica-
tion task, [SEP ] is used to indicate the end of an event label, and [PAD] is used to
fill the input vector to its maximum length of 128 (since transformers process an entire
input sequence of fixed length at once).

Model training. We train our SVM-based and BERT-based classification models on
label pairs extracted from an available process model collection M (details on the data
itself provided in Section 5.1). Given a process model M ∈ M, we extract training sam-
ples in the form of allowed and anomalous label pairs based on the model’s loop-free
eventually-follows relation ≺MF . Specifically, we first establish a set of positive label
pairs P+

M , which consists of all pairs of activity labels that can appear in an eventually-
follows relation in model M , without any loops in the process. For the example model
M1 in Figure 4, this yields a set P+

M1
with eight eventually-follows relations, such as

receive request ≺+ check request and check request ≺+ pay compensation.2
bpm2023_example

Receive
request

Accept
request

Pay
compensation

Reject
request

Fig. 4: Exemplary process model used as a basis for training samples.

Then, we establish a set of anomalous samples P−
M consisting of label pairs not

allowed in model M , i.e., that are not included in P+
M . To provide a balanced training

set, we populate P−
M by randomly selecting pairs that are not in P+

M , until we have an
equal number of positive and negative samples. This would yield a set P−

M that also
consists of eight relations for the example from Figure 4, e.g., including reject request
≺− pay compensation and accept request ≺− check request.

2 For clarity, we use ≺+ and ≺− to denote positive and negative training samples, respectively.



ML-based Semantic Anomaly Detection 9

Anomaly detection. Finally, we use a trained classification model to classify each event
pair ei ≺ ej ∈ Pt as either anomalous or not, resulting in a set of anomalous relations
At ⊆ Pt. Note that, before feeding a label pair into a classifier, we first sanitize the
labels using a previously proposed tokenization technique [22], which deals with, e.g.,
underscores and camel case labels.

4.3 Approach Output

Our approach yields a set of detected anomalies At per trace. When presenting the
results to a user, we recognize that a single issue in a process can lead to multiple
anomalous label pairs. For example, a trace t4 = ⟨accept claim, receive claim, check
claim⟩ will yield two anomalous relations, i.e., At4 = {accept claim ≺ receive claim,
accept claim ≺ check claim }, which both relate to the premature occurrence of ac-
cept claim. Furthermore, we verbalize the detected issues using a standard template in
order to make them easier to interpret. For the exemplary trace t4, this then yields the
following output:

“Anomaly in t4: accept claim occurred before receive claim and check claim.”
Finally, we aggregate the anomalies detected for all traces in an event log L, resulting
in a multi-set of identified issues and their respective frequencies.

5 Experimental Evaluation

This section reports on evaluation experiments conducted to assess the accuracy of
our proposed approach, including its two model architectures, and compare it to the
state-of-the-art rule-based approach. We describe the data collection Section 5.1 and
the experimental setup in Section 5.2. In Section 5.3, we present the evaluation results
demonstrating that our ML-based approach accurately detects semantic anomalies and
greatly outperforms its rule-based competitor in this regard. Finally, Section 5.4 shows
an application scenario in which we apply our approach on a real-world event log. The
employed implementation, data collection, evaluation pipeline, and raw results are all
available in our repository.3

5.1 Data Collection

To evaluate our approach, we require a data collection consisting of traces with known
anomalies, or, more specifically, event pairs for which a gold standard classification as
anomalous or not is available. Since there are no real-world event logs available that in-
clude such a gold standard, we instead obtain gold standard data from a large collection
of real-world process models from the BPM Academic Initiative (BPMAI) [25].

Specifically, we selected those process models from BPMAI that are in the BPMN
notation, have English labels, and that can be turned into a sound workflow net, yielding
a total set M of 2,813 process models. This set comprises process models from a broad
range of types and domains, including typical processes related to the handling of orders

3 https://gitlab.uni-mannheim.de/processanalytics/ml-semantic-anomaly-dection

https://gitlab.uni-mannheim.de/processanalytics/ml-semantic-anomaly-dection


10 Caspary et al.

and requests, as well as more specialized processes, e.g., from software engineering and
healthcare domains.

Train-test split. To evaluate our approach in an unbiased manner, we established a ran-
dom split of the process model collection by dividing M into a training set, Mtrain,
comprising 70% (i.e., 1,969) of the models, and a test set, Mtest, containing the remain-
ing 30% (844). The training set was used for model training, including hyper-parameter
optimization (see Section 5.2), whereas the test set is exclusively reserved for assessing
the performance of our approach. The train-test split is available on our repository.

Characteristics. For each model M ∈ M, we establish equally-sized sets of (unique)
normal and anomalous eventually-follows pairs, i.e., P+

M and P−
M , using the method

described in the Model training paragraph of Section 4.2, this means that 50% of the
label pairs in the training and in the test are anomalies, whereas the rest corresponds to
regular process behavior.

Table 1 shows the characteristics of the train and test set separately. It shows that
nearly half of the label pairs in the test set (10,073) are not included in the training
set. With so many unseen label pairs in the test set, a successful anomaly detection
approach needs to be able to generalize well from the pairs that it observes during
training, making the data collection highly suitable for our purpose.

Table 1 also reports on the number of label pairs that relate to the same business
object (BO), such as create order ≺ accept order, since the rule-based state of the
art [1] is restricted to such pairs.

Table 1: Characteristics of the data collection. The Unseen column refers to labels or
label pairs that only occur in the test set, not the training set.

Training set Test set
Total Total Unseen

Process models 1,969 844 –
Unique labels 9,089 4,715 2,684
Total label pairs 53,598 23,770 10,073
Unique label pairs 43,483 21,934 9,906
Total label pairs (same BO) 3,724 1,714 723
Unique label pairs (same BO) 2,711 1,488 694

5.2 Experimental Setup

Implementation and environment. We implemented our approach in Python (see our
repository) and conducted experiments on a machine with 768GB of RAM, an Intel
Xeon 2.6 GHz CPU, and an Nvidia RTX 2080 Ti GPU (used to fine-tune BERT).

Hyper-parameter optimization. We conducted a hyper-parameter search to identify
the most promising configuration for each of our model architectures.



ML-based Semantic Anomaly Detection 11

For the SVM-based architecture, we tested different kernel functions, i.e., a lin-
ear, a polynomial, and a Gaussian radial basis function (RBF), various values for the
degree D of the polynomial kernel function, i.e., D ∈ {2, 4, 6, 8, 10} , and different
settings for the regularization parameter C, i.e, C ∈ {2−5, 2−3, 2−1, 2, 23}. Moreover,
we tested the effect of reducing the dimensionality of the embedding vectors using
Principal Component Analysis (PCA) prior to training the SVM, because this can help
reduce the time required for training. The results obtained after using PCA showed that
this causes too much information loss, though, and thus leads to considerably worse per-
formance. Therefore, we use the original vector size of 600, obtained by concatenating
two 300-dimensional GloVe embeddings, one per label of a pair.

For the BERT-based architecture, we tested two base models for English: bert-base-
cased, which is pre-trained on text that is case sensitive, and bert-base-uncased, which
is pre-trained on all lower case text. Furthermore, we tested different learning rates (5e-
5, 4e-5, 3e-5, 2e-5) and warm-up steps the model performs when fine-tuning (0, 500,
and 1000 steps). We use 3 epochs for fine-tuning in order to avoid over-fitting [6].4

To select a configuration, we randomly split the models of the training set Mtrain

into a 90% part that is used for the actual training and 10% that are used for validation.
We then conducted a train-validation run per configuration, and selected the configura-
tion that yielded the best results:

– SVM: an RBF kernel with a C-value of 2, and a vector size of 600.
– BERT: bert-base-uncased with a learning rate of 5e-5 and 500 warm-up steps.

We trained an SVM-based and a BERT-based classification model on the entire training
set using these optimal configurations, which we use for our experiments on the test set
and provide as pre-trained models to users of our approach in our repository.

Baseline. We compare our approach against the rule-based approach by Van der Aa
et al. [1], of which the details are described in Section 2. It is important to note that
this baseline can only detect anomalies for label pairs that share the same business
object (as reported in Table 1); the baseline thus automatically classifies pairs with
distinct BOs as non-anomalous. We compare our work against the configuration with
the best results reported in the original paper, referred to as SEM4 in their experiments.
Most importantly, this configuration uses a semantic similarity threshold to improve the
generalizability of the rules learned by the approach.

Measures. We measure the performance of our approach in terms of precision, recall,
and F1-scores, obtained by comparing the predicted classes of label pairs (i.e., anomaly
or normal behavior) to the gold standard. Given a class c ∈ {Anomaly, Normal}, we
denote the number of pairs correctly assigned to c as tp, the number of pairs that are
incorrectly assigned to c as fp, and the number of pairs that belong to c in the gold
standard, yet, are not assigned to c as fn. Precision (Prec.) is then defined as tp/(tp+ fp),
recall (Rec.) as tp/(tp + fn), and the F1-score as the harmonic mean of the two.

4 We provide detailed results of the hyper-parameter optimization in our repository.



12 Caspary et al.

5.3 Results

This section presents the results obtained through our evaluation experiments. We first
focus on an in-depth analysis of the classification performance of our approach and the
baseline, followed by a report on the training and inference times.

Overall results. Table 2 gives an overview of the main results of our experiments.
It shows precision, recall, and F1-scores per model architecture and the baseline, for
different subsets of the event pairs included in the test set.

Overall, the SVM-based model achieves a reasonable F1-score of 0.69 when con-
sidering the entire test set, which shows its general capability to distinguish semantic
anomalies from normal behavior. The similar F1-scores for the individual classes, i.e.
0.68 for the Anomaly and 0.70 for Normal class, indicate that the model’s has learned
to recognize anomalous behavior and normal behavior equally well.

Table 2: Results of the evaluation experiments obtained on the test set. Bold numbers
indicate the best score for that particular row.

SVM BERT BL [1]
Scope Class Support Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

All pairs
Anomaly 11,885 0.70 0.66 0.68 0.76 0.74 0.75 0.69 0.01 0.01
Normal 11,885 0.68 0.72 0.70 0.75 0.77 0.76 0.51 0.99 0.67
Overall 23,770 0.69 0.69 0.69 0.76 0.76 0.76 0.60 0.50 0.54

All pairs
w. same BO

Anomaly 857 0.73 0.71 0.72 0.81 0.76 0.78 0.69 0.07 0.12
Normal 857 0.72 0.73 0.73 0.77 0.82 0.80 0.51 0.97 0.67
Overall 1,714 0.72 0.72 0.72 0.79 0.79 0.79 0.60 0.52 0.56

Unseen pairs
Anomaly 5,009 0.64 0.64 0.64 0.62 0.66 0.64 0.67 0.01 0.01
Normal 5,064 0.64 0.64 0.64 0.64 0.60 0.62 0.50 0.99 0.67
Overall 10,073 0.64 0.64 0.64 0.63 0.63 0.63 0.58 0.50 0.54

Unseen pairs
w. same BO

Anomaly 343 0.72 0.73 0.73 0.79 0.76 0.77 0.68 0.07 0.12
Normal 380 0.75 0.75 0.75 0.79 0.82 0.80 0.54 0.97 0.69
Overall 723 0.74 0.74 0.74 0.79 0.79 0.79 0.60 0.54 0.57

Our BERT-based model outperforms its SVM-based alternative in all aspects on
the entire test set. It achieves a good overall F1-score of 0.76, which shows that it
accurately classifies unseen behavior into semantic anomalies and normal behavior. The
better results compared to the SVM-based model suggest that the general language
understanding of the transformer in combination with its process-specific fine-tuning
improves the performance on our anomaly detection task. At the same time BERT’s
performance is also stable across classes, achieving comparable scores (0.74–0.77) for
all metrics, for both the Anomaly and the Normal class.

Both our models greatly outperform the baseline (with the exception of recall on the
Normal class), which achieves an overall F1-score of 0.54, versus 0.69 and 0.76 of our
models. Part of this difference occurs because the baseline, by definition, cannot detect



ML-based Semantic Anomaly Detection 13

anomalies for event pairs with different business objects, which comprises about 93%
of the total pairs. As a result, the baseline assigns the Normal class in the vast majority
of cases, resulting in a low precision (0.50) but high recall (0.99) for that class, while
achieving a recall of only 0.02 for the Anomaly class, with a precision of 0.64.

Same BO pairs. We also computed the results for the subset of label pairs that share the
same business object (i.e., intra-object anomaly detection), this, among others, provides
a fairer comparison to the baseline. We observe that—in line with expectations—the
performance of the baseline improves for this subset, achieving an overall F1-score of
0.56 compared to 0.54 on the full collection, caused by an increase in recall to 0.07
for the Anomaly class (versus 0.01 for the total collection. However, the baseline is still
outperformed by both our models, which achieve overall F1-scores of 0.72 (SVM) and
0.79 (BERT). The performance of the SVM-based model slightly improved from 0.69
overall F1-score on the entire dataset to 0.72 on the subset of data, whereas the BERT-
based model demonstrated larger gains, achieving an overall F1-score of 0.79 compared
to 0.76 for the full collection. We can thus note that even if we only consider data that
the baseline is designed to handle, our approach still consistently achieves better results.

Unseen label pairs. To be able to assess how well our approach can deal with unseen
behavior, we computed the results for the subset of label pairs that only occur in Mtest

and thus have not been observed by our models during training.
The results obtained for this subset show that both model architectures of our ap-

proach can generalize reasonably well to such unseen data, although it is clear that
this anomaly detection task is more challenging. We observe that the performance of
the BERT-based model drops to an F1-score of 0.63, from 0.76 for the entire test set,
whereas the SVM-based model is more stable, achieving an F1-score of 0.64, compared
to 0.69 for the entire set.

The main generalization capabilities of our approach become apparent when con-
sidering the detection of intra-object anomalies, i.e., by considering unseen label pairs
with the same business object. For this subset, both model architectures perform equally
well on unseen pairs as on the set including seen pairs, achieving F1-scores of 0.79
(BERT-based) and 0.74 (SVM-based). It should be noted that this subset is relatively
small, though, consisting of 723 label pairs.

Overall, these results reveal that anomaly detection can be well-generalized to intra-
object relations, e.g., by learning that objects should be received before they are checked,
whereas it is more challenging to learn rules that also apply to unseen activities that re-
late to different business objects, e.g., just because an order must be created before a
delivery, does not mean that this also applies to two unseen objects.

Post-hoc analysis. In order to gain deeper insights into the results, we go beyond a
quantitative analysis and take a closer look at the correct and incorrect classifications
of our approach and the baseline. Specifically, we focus on our BERT-based model,
which has demonstrated better performance. We find that our approach is able to cor-
rectly identify a wide range of semantically problematic behaviors in the test set. For
instance, it finds that reject credit should not happen before assess risk, that wait for
payment should only happen after create invoice, and that receive payment should not
be followed by confirm order. Note especially that none of these anomalies can be de-
tected by the baseline, since the activities per pair refer to distinct business objects.



14 Caspary et al.

Looking at the baseline’s results in detail, we observe that, even though it specifi-
cally targets the detection of semantic anomalies that involve the same business object,
our approach finds additional, relevant intra-object anomalies that the baseline could
not detect. For instance, our model correctly detects that approve application should
not follow cancel application and that evaluate request should not happen before prior-
itize request, which the baseline does not find. Such cases illustrate the capability of our
approach to better consider the meaning of entire activities, not just the actions applied
to the same object, as done by the baseline.

However, there is also behavior that our approach fails to classify correctly. For in-
stance, our approach detects receive payment followed by pick shipment as an anomaly,
whereas it is well-imaginable that for some order handling process a shipment is indeed
only sent after payment for that shipment was collected. Conversely, our approach did
not find that, e.g., send loan request followed by fill out loan request may be problem-
atic, for instance, if these are executed by the same resource. Our approach currently
does not consider such context-dependent anomalies, which would require the incorpo-
ration of resource information, a direction for future research.
Computation time. Table 3 depicts training and inference times of our models and the
baseline. The training time refers to the time it takes to train a model using the pairs in
Mtrain. The duration refers to the actual training, thus excluding the time it takes to
load process models and establish training pairs (which is the same for all approaches).

Table 3: Average training and inference times of our models and the baseline.
SVM BERT BL [1]

Training time 23.4s 1,859.8s 2.8s

Inference time per label pair 0.01s 0.01s 0.03s

We find that our SVM-based model requires a training time of 23 seconds, whereas
the BERT-based model requires 1,859 seconds (~31 minutes) for fine-tuning in 3 epochs.
The knowledge base population of the baseline only takes about 3 seconds, since it just
performs a single pass over the label pairs, storing their counts. As such, there is a
trade-off between lower training times and optimized performance. Nonetheless, the
performance gain is so strong that we give a clear recommendation for using the BERT-
based model. This is especially the case because users do not need to train our approach
themselves, but can directly use the fine-tuned model provided in our repository.

With respect to inference time, both our models and the baseline are fast, classifying
label pair in less than 0.03 seconds on average.

5.4 Real-world Application

Finally, we also applied our approach on real-world data: the permit log from the BPI
2020 challenge [9], which captures data on work trips conducted by university employ-
ees. The process flow concerns the request for and approval of a travel permit, the trip
itself, a subsequent travel declaration, as well as associated reimbursements.



ML-based Semantic Anomaly Detection 15

Although there is no gold standard available that indicates true anomalies in this
process, our approach (using the BERT-based model) detects various interesting sit-
uations, as shown in Table 4. The examples correspond to situations in which trips
happened before a permit was properly handled or approved (a1 and a2), declarations
submitted before a trip rather than after (a3), as well as payments that were approved
before the respective permit was (a4). Still, we also recognize that certain detected
anomalies look concerning, but are fine in light of the specifics of the process. This
applies to anomaly a5, which corresponds to payments occurring before a declaration
was actually approved. Although this seems problematic, it is possible in this process
for payments related to pre-paid expenses.5

ID Detected anomaly Frequency

a1 end trip occurred before permit final approved by supervisor 2,800
a2 start trip occurred before permit submitted by employee 2,205
a3 declaration submitted by employee occurred before start trip 4,707
a4 request for payment approved by administration occurred before permit ap-

proved by supervisor
611

a5 declaration final approved by supervisor occurred after request payment and
payment handled

4,292

Table 4: A selection of anomalies detected for the real-world permit log.

6 Related Work

Various approaches for anomaly detection in process mining have been proposed. Most
of these are frequency-based, arguing that uncommon behavior is not of interest or
undesirable, as opposed to our semantic approach. Such frequency-based anomaly de-
tection is an inherent part of certain process discovery algorithms [14], which use it to
preserve only the most common process behavior. Close to our approach are ML-based
techniques, such as works that use autoencoders [13,19], as well as LSTMs (long short-
term memory) [12], working in unsupervised or semi-supervised manners. Whereas
most approaches only consider control-flow information, others also incorporate addi-
tional perspectives, such as BINet [18] for deep learning-based anomaly detection de-
tection, and pattern-based techniques employed in the context of filtering in the process
discovery [16] and the repair of event log imperfections [8]

Our work also relates to other NLP applications that focus on distinguishing normal
from abnormal relations, primarily in the form of commonsense reasoning. Beyond us-
ing ML-based techniques, such reasoning can be done based on, e.g., lexical resources,
such as WordNet [17] or VerbOcean [5], which capture relations between words, or
commonsense knowledge graphs [11, 20], which capture common relations between
entities. Such reasoning is, for example, employed to improve the quality of actions
and state changes extracted from natural language texts [15, 23].

5 Note that such false positives would be avoided when using an object-centric event log, since
there would be no relation between the events related to pre-payments and declarations.



16 Caspary et al.

7 Conclusion

In this paper, we proposed an ML-based approach for the detection of semantic anoma-
lies in business processes, allowing users to detect undesired behavior without depend-
ing on the availability of a normative process model. By building on state-of-the-art
NLP techniques to train an anomaly classifier, our approach has learned to distinguish
normal from undesired process behavior based on the textual labels associated with
recorded events. Our experiments demonstrate that our learning-based approach greatly
outperforms an earlier, rule-based approach for semantic anomaly detection in terms of
both scope and accuracy.

Still, our work is subject to limitations. Our approach itself is limited by its fo-
cus on event pairs. Although this perspective is chosen because it allows us to achieve
accurate results and fine-granular anomaly insights (i.e., much more specific than de-
tecting whether or not a trace is anomalous), the event-pair perspective does not allow
us to detect missing behavior, e.g., that check request was skipped (unlike the baseline
approach [1]). Also, the performance of our approach depends on the similarity of be-
havioral regularities observed during training and those in the event log on which it is
applied. Positive points in this regard are that we trained our approach on data from
a broad range of domains and that we have demonstrated its capabilities to generalize
to unseen data, especially when it comes to intra-object anomalies. Furthermore, in the
absence of real-world logs with known anomalies, our experiments are conducted using
generated samples. However, these samples are established based on real-world process
models, whereas we also show the potential of our work in a real-world application.

In future work, we aim to lift the concept of ML-based semantic anomaly detection
to the recent wave of generative large language models, such as ChatGPT and GPT4,
once such technology becomes freely accessible, so that experiments can be conducted
in a reproducible manner. Here, we would also like to stress that our conceptual idea
is independent of a specific language model, so that the same approach can later be
updated according to new developments on the NLP side. Furthermore, we also aim to
incorporate additional perspectives into the detection of anomalies. Particularly, we aim
to encode resource roles and categorical attribute values, allowing our approach to, e.g.,
consider who performed a certain step and what the outcome of a decision was. Finally,
in terms of application scenarios, we plan to integrate our work into analysis pipelines
in which semantic correctness plays an important role, such as in the privatization of
event data, where the insertion of obvious noise should be avoided [10], and in next
activity prediction, where predicted next steps should make semantic sense [7].
Reproducibility: Our employed implementation, data, and obtained results are avail-
able through the project repository linked in Section 5.

References

1. van der Aa, H., Rebmann, A., Leopold, H.: Natural language-based detection of semantic
execution anomalies in event logs. Information Systems 102, 101824 (2021)

2. van der Aalst, W.M.P.: Process mining: Data science in action, vol. 2. Springer (2016)
3. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance checking. Springer

(2018)



ML-based Semantic Anomaly Detection 17

4. Chauhan, V.K., Dahiya, K., Sharma, A.: Problem formulations and solvers in linear SVM: a
review. Artificial Intelligence Review 52(2), 803–855 (2019)

5. Chklovski, T., Pantel, P.: Verbocean: Mining the web for fine-grained semantic verb relations.
In: EMNLP. pp. 33–40 (2004)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional
transformers for language understanding. In: NAACL. pp. 4171–4186. ACL, Minneapolis,
Minnesota (2019)

7. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. Process Mining Hand-
book. LNBIP 448, 320–346 (2022)

8. Dixit, P.M., Suriadi, S., Andrews, R., Wynn, M.T., ter Hofstede, A.H., Buijs, J.C., van der
Aalst, W.M.: Detection and interactive repair of event ordering imperfection in process logs.
In: CAISE. pp. 274–290. Springer (2018)

9. van Dongen, B.: BPI challenge 2020 (2020). https://doi.org/10.4121/UUID:52FB97D4-
4588-43C9-9D04-3604D4613B51

10. Fahrenkrog-Petersen, S.A., Kabierski, M., van der Aa, H., Weidlich, M.: Semantics-aware
mechanisms for control-flow anonymization in process mining. Information Systems p.
102169 (2023)

11. Havasi, C., Speer, R., Alonso, J.: ConceptNet 3: a flexible, multilingual semantic network for
common sense knowledge. In: RANLP. pp. 27–29. John Benjamins Philadelphia, PA (2007)

12. Krajsic, P., Franczyk, B.: Semi-supervised anomaly detection in business process event data
using self-attention based classification. Procedia Computer Science 192, 39–48 (2021)

13. Krajsic, P., Franczyk, B.: Variational autoencoder for anomaly detection in event data in
online process mining. In: ICEIS (1). pp. 567–574 (2021)

14. Leemans, S.J., Fahland, D., Van Der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: BPM Workshops. pp. 66–78.
Springer (2014)

15. Losing, V., Fischer, L., Deigmoeller, J.: Extraction of common-sense relations from proce-
dural task instructions using BERT. In: 11th Global Wordnet Conference. pp. 81–90 (2021)

16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.: Data-driven process
discovery-revealing conditional infrequent behavior from event logs. In: CAISE. pp. 545–
560. Springer (2017)

17. Miller, G.A.: WordNet: a lexical database for english. Communications of the ACM 38(11),
39–41 (1995)

18. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Binet: Multi-perspective business pro-
cess anomaly classification. Information Systems p. 101458 (2019)

19. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process anomalies
using autoencoders. Machine Learning 107(11), 1875–1893 (apr 2018)

20. Omeliyanenko, J., Zehe, A., Hettinger, L., Hotho, A.: LM4KG: Improving common sense
knowledge graphs with language models. In: ISWC. pp. 456–473. Springer (2020)

21. Pennington, J., Socher, R., Manning, C.: GloVe: Global vectors for word representation. In:
EMNLP. pp. 1532–1543. ACL, Doha, Qatar (2014)

22. Rebmann, A., van der Aa, H.: Enabling semantics-aware process mining through the auto-
matic annotation of event logs. Information Systems 110, 102111 (2022)

23. Tandon, N., Dalvi, B., Grus, J., Yih, W.t., Bosselut, A., Clark, P.: Reasoning about actions
and state changes by injecting commonsense knowledge. In: EMNLP. pp. 57–66 (2018)

24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

25. Weske, M., Decker, G., Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Model Col-
lection of the Business Process Management Academic Initiative (2020)

https://doi.org/10.4121/UUID:52FB97D4-4588-43C9-9D04-3604D4613B51
https://doi.org/10.4121/UUID:52FB97D4-4588-43C9-9D04-3604D4613B51

	 Does This Make Sense? Machine Learning-based Detection of Semantic Anomalies in Business Processes 

