
From Text to Performance Measurement:
Automatically Computing Process Performance
using Textual Descriptions and Event Logs⋆

Manuel Resinas1[0000−0003−1575−406X], Adela
del-Ŕıo-Ortega1[0000−0003−3089−4431], Han van der Aa2[0000−0002−4200−4937]

1 SCORE Lab, I3US, Universidad de Sevilla, Seville, Spain
resinas@us.es,adeladelrio@us.es

2 University of Mannheim, Mannheim, Germany
han.van.der.aa@uni-mannheim.de

Abstract. Process performance measurement assesses how well a pro-
cess is running, covering various dimensions such as time, cost, and qual-
ity. This task involves the definition of measurable Process Performance
Indicators (PPIs), which in many cases are calculated based on data
recorded in an event log. An inhibitor of effective performance analy-
sis is that establishing PPI definitions measurable from event logs is
highly complex, because it requires process analytical expertise, as well
as in-depth knowledge about the structure and contents of the available
event data. Given that managers typically do not have such knowledge,
this means that those stakeholders that are generally most interested in
measuring process performance cannot do so in a convenient manner.
Recognizing this, we bridge this gap by proposing an approach for the
measurement of process performance based on textual descriptions and
event logs, which combines state-of-the-art natural language processing
techniques with matching strategies that are tailored to the task at hand.
Evaluation experiments using textual descriptions provided by both in-
dustry and academic users demonstrate the accuracy of our approach.

Keywords: Process performance measurement · process mining ·
natural language processing · matching

1 Introduction

Process Performance Measurement is the practice of evaluating various dimen-
sions of business processes, such as time, cost, and quality, to determine if busi-
ness processes are achieving strategic and operational goals, and to assist in their
optimization. It includes the definition, collection, visualization and analysis of

⋆ This work has been partially supported by projects PID2021-126227NB-
C21/ AEI/10.13039/501100011033/ FEDER, UE; TED2021-131023B-C22/
AEI/10.13039/501100011033/ Unión Europea NextGenerationEU/PRTR, and
US-1381595 (Junta de Andalućıa/FEDER, UE)

2 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

Process Performance Indicators (PPIs), which are quantifiable metrics used to
evaluate the efficiency and effectiveness of one or more business processes [4].
PPIs can be calculated from different sources, with recorded execution data,
stored event logs, being among the main ones [15] and the focus of this paper.

The definition of PPIs calculated from event logs consists of two primary
parts: (1) establishing a formal definition of the manner in which process perfor-
mance should be measured, according to a certain metamodel for PPIs [13,16,21],
and (2) linking that definition to the data structure and contents of a specific
event log. For example, to measure the “average time until reimbursement” in
a travel reimbursement process, part (1) involves the recognition that this cor-
responds to a PPI that should compute the average (an aggregate measure)
time (a measure type) between receiving a request (start moment) and the reim-
bursement being paid (end moment). Part (2), in turn, requires one to recognize
that this measure should be linked to the time between “receive request” and
“payment handled” activities in a particular event log.

The problem here is that both parts of this task involve expertise from
users regarding process performance measurement and process mining (how to
properly define PPIs, how event logs work, etc.), as well as in-depth knowl-
edge about the data in an event log (which activity or attribute value corre-
sponds to an occurrence of interest, e.g., that the moment of reimbursement,
non-straightforwardly, corresponds to a “payment handled” activity). Given that
such expertise and domain knowledge are rarely (both) held by managers, process
performance currently cannot be conveniently measured by those stakeholders
most interested in it. Instead, managers need to involve process analysts and do-
main experts to obtain the insights they desire, which can lead to considerable
hindrance in terms of additional effort and delays, as well as possibly incorrect
measurements caused by miscommunication [1].

In this work, we overcome this barrier by proposing an approach for mea-
suring process performance based on event logs and textual descriptions. In this
manner, our work allows managers to conveniently and quickly obtain useful in-
sights by describing desired performance measures in a textual manner, such as
“the fraction of requests that are rejected” or “the maximum time between receiv-
ing and delivering orders that were approved”. With this goal, our work comple-
ments recent work on using natural language querying in process mining [2,11],
with an approach tailored to the task of process performance measurement.

Our approach builds on a language model fine-tuned to the task of extracting
entities from PPI descriptions. To align these extracted entities to the contents
of an event log, we propose various matching functions, as well as heuristics to
infer missing information. Evaluation experiments using real-world event logs
and PPI descriptions collected from industry and academic users highlight the
potential of our approach, yet also reveal the challenging nature of the task.

In the remainder, Section 2 describes the challenges of automated transfor-
mation, whereas Section 3 provides essential definitions. Section 4 describes our
automated approach to compute PPIs described in natural language. Section 5

From Text to Performance Measurement 3

presents a quantitative evaluation of our approach. Streams of related work are
described in Section 6 and we conclude our paper in Section 7.

2 Problem Illustration

This section illustrates the main challenges associated with the transformation of
textual PPI descriptions into measurable definitions. As a basis for this, we use
the well-known domestic declarations event log from the 2020 BPI Challenge [5]
and the PPI descriptions in Table 1. This process involves the submission, ap-
proval or rejection, and payment of travel declarations by employees.

Table 1. Exemplary PPI descriptions

ID Description

ppi1 The average duration between submission and payment of a declaration
ppi2 The average time it takes for a declaration to be paid after its submission
ppi3 The amount of time until reimbursement
ppi4 The percentage of rejected requests
ppi5 The number of denied declarations as a fraction of the total submitted ones
ppi6 The number of declarations above 100 euros
ppi7 The total amount paid per year

C1: High flexibility of natural language. Textual PPI descriptions can de-
scribe the same measure in many different ways. For example, ppi1 to ppi3 all
describe the time between submission and payment of declarations, using differ-
ent structures (e.g., starting point first or last) and terminology (e.g., duration
versus time). Similarly, whereas ppi4 immediately indicates that this is a frac-
tional measure, this information comes later in ppi5, which starts in the exact
same manner (“The number of [..]”) as is common for count measures, such as
ppi6. These examples are only the tip of the iceberg, though, which means that
a transformation approach must be able to deal with highly variable input.

C2: Differences between description and data.When describing a measure
of interest, users do not necessarily account for the way that a process is recorded,
which can result in large differences between the contents of a textual description
and an event log. This often results in the use of synonyms (denying versus
rejecting), though differences may also be process specific. For example, ppi3
refers to the time until reimbursement, yet there is no activity in the event
log that contains this term. Rather, the moment of reimbursement corresponds
to the the Payment handled activity. Therefore, when matching information
extracted from a PPI description to the contents of an event log, an approach
must be able to find challenging correspondences.

C3: Missing information. Finally, PPI descriptions may leave certain infor-
mation implicit that is required to define a measure. Common examples are:
missing aggregation functions (does ppi3 refer to the average, total, or individ-
ual time until payment?), missing starting points of time measures (what is the

4 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

starting point of ppi3?), and missing denominators of fractions (e.g., in ppi4).
A transformation approach needs to be able to make the right choices in such
situations, in order to still be able to compute a value for the desired measure.

3 Measurable PPI Definitions

This section presents the formal PPI definitions that our approach uses. These
definitions are inspired by the PPINOT metamodel [4], which we specifically
adapted to the way in which PPIs are commonly described in natural language,
allowing for easier and more accurate transformation from textual description to
a formal PPI. The values for PPIs defined in this manner can be automatically
measured using a PPI computation tool (cf., [15]).

Scope. Our work covers a broad range of PPI definitions, allowing users to
combine the following aspects. Each PPI definition should correspond to one of
three types of base measures: count, time, and data. These can be complemented
with additional operators such as aggregation functions (e.g., min., max., aver-
age), group-by conditions (e.g., request per year or department), negation (e.g.,
requests not accepted), and filters (such as above 100 euros or in the form of a
fraction, such as the fraction of rejected declarations).

Definitions. We formalize measurable PPIs through the following definitions.

Definition 1 (Universes). We define the following universes:
– Uatt and Uval are the universes of attribute names and values in an event

log, including an activity attribute to refer to activities and their names. For
each a ∈ Uatt, we use dom(a) ⊆ Uval to refer to values that a can take.

– Uagg is the universe of aggregation functions. In this paper we consider
Uagg = {avg,max,min, sum, perc}.

– Uop is the universe of operations. In this paper Uop = {==, ̸=, >,<,≥,≤}.
– Ucase is the universe of possible conditions that refer to a case. In this paper,

Ucase = {begin, end}, which refer to the beginning and end of a case.
– Umval is the universe of possible values of base measures computed on an

event log. This includes integers (for count measures), time intervals like 7
days for time measures, and Uval for data measures.

We next define the different kinds of conditions used to specify measures:

Definition 2 (Conditions). We define two sets of conditions:
– Instant conditions CI = CE ∪ CC comprise event and case conditions. Event

conditions CE = Uatt × Uop × Uval are tuples that relate an attribute name
to a value using a comparison operator. Case conditions CC = Ucase refer to
either the beginning or end of a case.

– Measure conditions CM = Uop × Umval are tuples that define a boolean ex-
pression based on a comparison against a possible measure value (Umval).

An example of an event condition is (activity,==, submit declaration), which
occurs when a submit declaration activity is completed, while to select cases

From Text to Performance Measurement 5

of declarations above 100 euros, we specify (>,e100) as a measure condition
over a measure value that refers to a case attribute. Using instant and measure
conditions, we can define the base measures supported by our approach.

Definition 3 (Base measures). Base measures MB = MC ∪ MT ∪ MD,
comprise three types:
– Count measures MC = CI × (CM ∪ {⊥}) are tuples that include an instant

condition that specifies when to count, and an optional measure condition
that is applied to the result of the count (⊥ as the absence of a condition).

– Time measures MT = CI×CI×(CM∪{⊥}) are tuples that include two instant
conditions specifying when the time measure starts and stops, respectively,
and an optional measure condition (⊥ as the absence of a condition).

– Data measures MD = Uatt×(CM ∪{⊥}) are tuples that include the attribute
whose value we want to obtain, and an optional measure condition.

For example, the count measure for ppi4 is ((activity,==, reject), (>, 0)),3 the
time measure for ppi3 is (begin, (activity,==, payment handled),⊥), and the
data measure for ppi7 is (amount,⊥).

Finally, we define aggregated measures, which expand the expressiveness of
base measures with aggregation, group-by, and filtering options:

Definition 4 (Aggregated measures). The set of aggregated measures MA =
MB × Uagg × (Uatt ∪ {None}) × (CE∪ ⊥) is the set of tuples such that a =
(b, agg, att, c) means that the aggregation function agg is applied over the base
measure b, grouping by attribute att, and filtering the cases that meet condition
c. If att = None, this means that no grouping is applied; if c =⊥, this means
that no condition is applied.

For example, the full measure for ppi1 is (((activity,==, submit), (activity,==
, payment handled),⊥), average,None,⊥), i.e., the average time between the two
activities, and for ppi7 we get ((amount,⊥), sum, ′year ′,⊥), to group the data
measure (sum of the amount attribute) per year.

4 Approach

Figure 1 depicts an overview of our approach. The input is a textual description
of a PPI and the output is the result of evaluating this PPI against a given event
log. The approach consists of four main steps. Step 1 focuses on the extraction of
relevant entities from the textual PPI description (tackling challenge C1). Step
2 matches the extracted entities against the contents of the event log in order
to start establishing a measurable PPI definition (challenge C2). Then, for cases
in which a user left out certain required information (challenge C3), Step 3 uses
various heuristics to fill in the gaps and thereby complete the PPI definition.
Finally, Step 4 uses the established definition in order to compute the desired
PPI, thus directly measuring process performance for the event log.

3 (>, 0) is used to count the cases for which this activity happens at least once.

6 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

Step 1:
Entity Extraction

Step 2:
Entity Matching

Step 3:
PPI Completion

Step 4:
PPI Computation

Computed
PPI

“Average time until
reimbursement”

Textual PPI
description

Event
log

Fig. 1. Overview of our approach

4.1 Step 1: Entity Extraction

In this first step, our approach takes a textual PPI description P as input and
extracts the entities necessary to establish a PPI definition. We first discuss the
kinds of entities we extract, before describing the extraction technique itself, and
the data augmentation strategy we used to compensate for the small size of the
available training data.

Entity types. Our approach aims to extract a number of entity classes, which
we each denote with a specific tag. The tags for base measures are:

– Count measures: We use a count entity CE to capture what should be counted,
e.g., requests for reimbursement or accepted orders.

– Time measures: We use start and endpoints (TSE and TEE) when present in
descriptions, e.g., “The amount of time until reimbursement” contains an
end point (“reimbursement”). However, descriptions of time measures may
also use a single entity to refer to the range from start to end, for which we
use a TBE tag, such as for “The time to approve declarations”.

– Data measures: We use the DMA tag to refer to the description of the attribute
to be measured, such as the total amount in ppi7.

On top of these classes for the measure types, we extract aggregation functions
(AGR), such as average or maximum, group-by clauses (GBC), such as per year
in ppi7, measure conditions, which are composed of an operator (CCI) and a
measure value (MEV), such as above 100 euros in ppi6, and filters (FDE), such as
pre-approved in the total amount of requests that are pre-approved.

Extraction technique. We apply a two-stage approach for entity extraction,
using an annotated training dataset of PPI descriptions DT (see below) and
a pre-trained language model [20] as a basis for both stages. In this paper,
we use DistilBERT [18] as the pre-trained language model, but the proposal is
independent of the language model used.

In the first stage, we use text classification to categorize a PPI description
P according to its base type (count, time, or data). To this end, we fine-tune
the pre-trained language model, with a linear layer on top of its pooled output,
using the gold-standard measure types of the training collection DT . We use the
resulting fine-tuned model to infer the measure type of unseen PPI descriptions.

In the second stage, we use token classification to identify the entities of in-
terest in a description P . As a basis for this, we use the gold-standard tags of the
descriptions in DT . Since entities can span multiple words, tags are assigned per
chunk, e.g.: The\O,average\AGR, time between\O submission\TSE and\O

From Text to Performance Measurement 7

payment of a declaration\TEE.4 Based on these gold-standard tags, we fine-
tune the pre-trained language model for token classification, using a linear layer
on top of its hidden-states output. We do this separately for count, time, and
data measures, so that we obtain language models that are specifically fine-
tuned to extract information from a given measure type, as identified by the
aforementioned text classifier.

Given a textual PPI description P , we represent the output after token clas-
sification as a sequence ΦP \TP = ⟨ϕ1\t1, . . . , ϕm\tm⟩. Each ϕi\ti represents a
chunk of text (ϕi) and its assigned tag (ti). Each chunk, ϕi consists of one or
more consecutive words from P and each word is assigned to exactly one chunk.

Data augmentation. We only had a collection of 165 PPI descriptions avail-
able, including 129 from prior research [1]. However, the fine-tuning of language
models requires a considerable amount of training data, especially when dealing
with such diverse kinds of input and entities as in our work (challenge C1).

We address this challenge through data augmentation. Specifically, we greatly
extend the initial set of PPI descriptions with automatically generated ones.
To this end, we handcrafted textual patterns based on the descriptions in the
initial set, making sure that a wide variety of different patterns is included. For
instance, a typical text pattern for time measures is [Agg] time from [cond1]

to [cond2]. Then, we used Chatito5, a text generation tool, to generate distinct
training phrases by combining all alternatives provided for each pattern. In this
manner, we ended up with a total of 12,036 annotated descriptions in DT .

Using this augmented set to train the aforementioned text and token classifi-
cation techniques, our entity extraction step can deal with highly flexible input.

4.2 Step 2: Entity Matching

We next set out to establish an actual measure MP , according to the con-
cepts defined in Section 3. To illustrate this step, we use ppi1 as an example,
which Step 1 identifies as a time measure with the tagged sequence ΦP \TP :
⟨average\AGR, submission\TSE, payment of a declaration\TEE⟩.

To establish MP , we start with the structure of an aggregated measure
(b, agg, att, c), as defined in Definition 4, and expand its base measure b with the
structure of the identified measure type. Since ppi1 is a time measure, b’s struc-
ture is (s, e, (op, v)) (cf. Definition 3), yielding MP = ((s, e, (op, v)), agg, att, c).

Overall procedure. Given a tagged sequence ΦP \TP , each tagged chunk ϕ\t
will be used to find a value for an element of MP . The correspondence between
a chunk ϕ\t and an element ϵ follows from the tag t. For instance, average\AGR
corresponds to agg, whereas submission\TSE and payment of a declaration\TEE,
respectively, correspond to the time measure’s start (s) and end (e).

For a chunk ϕ\t, we use a matching function match(ϕ\t) to identify the
right value for its corresponding element ϵ in MP , from a target domain D. For
instance, match(ϕ\AGR) identifies the value for its corresponding element agg

4 Tag O indicates that a chunk does not belong to any entity from the tag set.
5 https://rodrigopivi.github.io/Chatito/

https://rodrigopivi.github.io/Chatito/

8 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

from its domain, which is Uagg (cf., Definition 4). As detailed next, we propose
six instantiations of match(ϕ\t), for different tags t. The general procedure is the
same, though: match evaluates the similarity between the chunk ϕ and elements
of the target domain D using a similarity measure, returning the element with
the highest score.

Matching AGR tags. Chunks with AGR tags correspond to aggregation functions,
which means that the matching function’s target domain is Uagg = {avg,max,
min, sum, perc}. Therefore, to match ϕ\AGR, we consider the similarity between
ϕ and each of the possible values of Uagg. Additionally, we also consider synonyms
for each of them (e.g., average, mean, total average).

This is formalized as match(ϕ\AGR) = argmaxd∈Uagg
simcomb(ϕ, d), where

simcomb combines both the syntactic and semantic similarity of text chunk ϕ to
the respective domain values d of the tag and its synonyms as follows:

simcomb(ϕ, d) = w1semSim(ϕ, d) + w2synSim(ϕ, d)

The semantic similarity (semSim(ϕ, d)) of ϕ with a domain value d is the average
of the semantic similarity of d and its synonyms. This semantic similarity is
the cosine distance between vectors obtained using an algorithm like word2vec6.
The syntactic similarity (synSim(ϕ, d)) is determined using the mean of the well-
known Damerau-Levenshtein dl(ϕ, d) and the Jaro-Winkler j(ϕ, d) distances,
where we consider the synonym of ϕ with the highest score.

Matching CCI tags. This tag corresponds to an operator (e.g., above or greater
than). Therefore, its target domain is Uop. The approach followed is exactly the
same as for aggregation functions: match(ϕ\CCI) = argmaxd∈Uop

simcomb(ϕ, d).

Matching DMA and GBC tags. These tags corresponds to the attribute name
used in data measures (e.g., amount in “the total amount paid per year”), and
group by clauses (e.g., “orders per customer type”), respectively. For these tags,
the function match again uses simcomb, this time to compare ϕ to L’s attribute
names in Uatt, which is their target domain. However, for the GBC tag, we restrict
the target domain to a subset of Uatt, so that it only includes attributes with a
relatively low number of distinct values (we use 15 as a guideline). The rationale
is that we expect users to be interested in groupings with a limited number of
categories (e.g., per customer type), as opposed to grouping by attributes that
have unique values per case (e.g., per order ID).

Matching CE and TBE tags. The target domain of these tags is the set of instant
conditions CI of the event log L, which are composed of three parts: attribute,
operator, and value. Therefore, given a chunk ϕi\TBE like reimbursement in ppi3,
its matched value is (activity,==, payment handled). We perform this matching
at once, for just a single chunk ϕ, since users generally do not specify conditions
in an attribute-operator-value manner, but rather use a shorthand. For instance,
“reimbursement” does not explicitly state that this condition refers to an equals
to operator and that the relevant attribute is an event’s activity.

A challenge is that the target domain is huge (spanning numerous combina-
tions of attributes and their values), so we apply three actions to reduce it. First,

6 We use the en core web lg model provided by spacy (https://spacy.io/).

https://spacy.io/

From Text to Performance Measurement 9

we only consider categorical attributes whose number of categories is lower than
a threshold (we use 100). Second, we only consider the attributes whose value
changes across the events of at least one case. The reason is that, if the attribute
does not change, it is not useful to use it as a condition in count or time metrics.
Finally, we restrict the operator of instant conditions to equals to, whereas we
support not equals to in the PPI completion step (Section 4.3). This restriction
of the operator does not apply to the operator identified by the CCI tag.

Let S ⊆ CI be the subset of conditions after applying these three actions.
Then, to match a text chunk ϕ to an instance condition, we define match(ϕ\t) =
argmaxd∈SconSim(ϕ, d), where t ∈ {CE, TBE}. Here we quantify the condition
similarity conSim between ϕ and a condition d = (a,==, v) as follows:

conSim(ϕ, d) = (1− watt)valSim(ϕ, a, v) + watt

∑
vi∈dom(a)

valSim(ϕ, a, vi)

|dom(a)|

The first part of the equation computes the value similarity (valSim) between
the text chunk ϕ and the attribute-value pair of the condition. The second part
of the equation considers the average similarity between the chunk and all values
of the attribute domain (dom(a)). This allows us to prioritize those attributes
whose domain is closer to ϕ. watt represents the weight given to the latter.
valSim(ϕ, a, v) itself is computed as follows:

valSim(ϕ, a, v) = (1− wc)indSim(ϕ, v) + wcindSim(ϕ, a+ v)

Here, the first part of the equation computes the individual similarity (indSim)
between the text chunk and the value of the attribute v, whereas the second part
of the equation computes the same similarity but considering both the name of
the attribute and its value (“< a > < v >”). This is done to account for cases
where the text chunk either omits or includes the name of the attribute.

Finally, indSim(ϕ, v) can be computed using any established similarity mea-
sures. In this paper, we combine four similarity measures with a weighted sum:
simcomb as defined above, simis, which uses a standard measure for bag-of-words-
based similarity we applied in a previous work [1]. simemb, which uses the cosine
distance between the sentence embeddings of the chunks [14]. simbert, which uses
pre-trained natural language inference models as zero shot text classifiers [22].

Matching TSE and TEE tags. These tags refer to the conditions that determine
the beginning (TSE) and end (TEE) of a time measure such as “the duration
between submission and payment of a declaration.” When both of these tags
are extracted from P , we can extend the approach used for CE and TBE with
the following two heuristics to improve its performance. First, the from and to
conditions are likely to be related to the same attribute (e.g., if the first condition
refers to an activity, the second condition tends to refer to an activity as well).
Second, the from condition should commonly occur before the to condition in
the case. Therefore, given a text chunk ϕ, we compute the similarity for each

10 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

possible pair of conditions di = (ai,==, vi) and dj = (aj ,==, vj) as follows:

pairSim(ϕ, di, dj) =(1− wmh)
conSim(ϕ, di) + conSim(ϕ, dj)

2
+

+wmh
same(ai, aj) + cr(di, dj)

2

(1)

Where same(ai, aj) has a value of 1 if ai = aj and 0 otherwise, and cr(di, dj) is
the ratio of cases where the from condition occurs before the to condition from
all cases where both conditions occur. To penalize only those conditions where
the condition ratio is significantly low, we apply a logistic function normalized

between 0.5 and 1 as follows: 2

(
1

1 + e−k×cr
− 0.5

)
, where k is a parameter that

determines the steepness of the curve. We use k = 10 in our implementation.

Matching MEV tag. This tag refers to a measure value used in a measure condi-
tion, such as “100 euros” in ppi6. Its target domain is the set of possible values
of base measures computed on an event log L (Umval). The matching is per-
formed using the context provided by the measure type identified in Step 1. For
count measures, it just involves parsing an integer. For time measures, we use a
syntactic parsing of time deltas. For data measures, it depends on the domain of
the attribute used in it. For instance, in The number of declarations with amount
above 100 euros, we would match 100 with the domain of amount, which is an
integer. If the domain is categorical, we use simcomb.

4.3 Step 3: PPI completion

After the previous step, a PPI definition MP has been built according to the
information that is explicitly provided in the textual description P . However,
as described in challenge C3, some details may have been left implicit, which
means that certain mandatory slots in MP may still be empty. In this step, we
fill these remaining slots based on several heuristics, which reflect common-sense
interpretations of the missing pieces of information.

Missing time points. Descriptions such as “The amount of time until reim-
bursement” only describe a single point in time (the end, here), even though
a time measure requires both a start and an end. Therefore, we complete time
measures with an unspecified start point by setting it to the earliest timestamp
of a case, and use the last timestamp for missing endpoints.

Default conditions. Users can provide descriptions of count measures like “the
percentage of rejected requests.” Such percentage aggregations require measure
conditions in order to be properly defined. Therefore, we add a measure condition
> 0 to the result of the count, in our example: ((activity,==, declaration rejected
by employee), (>, 0)), to capture that this activity should occur at least once for
a case to be considered in the aggregation’s numerator.

Default aggregations. Users may provide descriptions for time measures such
as “The amount of time until reimbursement” (ppi3). Although these technically
do not indicate that this is an aggregate measure, we recognize that a user is likely

From Text to Performance Measurement 11

not interested in the time of individual instances, which is why we automatically
set the aggregation function to average here. Similarly, for a count measure such
as “the number of declarations”, we employ a sum aggregation by default.

Applying negation. Instant conditions can include negations, e.g., the number
of requests that are not paid, which can be recognized using available dependency
parsers.7. In these cases, we must ensure that the corresponding negated measure
is properly defined. For time measures, this is straightforward, since we can
just change the operator of the identified instant condition from equals to to
not equals to. However, if we negate the condition of a count measure, such
as (activity, ̸=, payment handled), we would get a situation in which all non-
payment activities are counted. Therefore, we instead insert a measure condition,
i.e., (=, 0), which ensures that all cases for which the payment handled activity
did not occur are counted.

4.4 Step 4: PPI computation

Step 3 yields a complete PPI definition. To actually compute a value for it,
this definition can be translated into the input for a PPI computation tool, like
ppinot4py [15] or the Celonis Process Query Language (PQL) [19]. In this paper,
we use ppinot4py because there is a direct correspondence between the elements
of the PPI definition and the PPINOT model so no transformation is needed.

5 Evaluation

To test our approach, we conducted an evaluation in which we compare PPI
definitions obtained by our approach to a manually created gold standard.8

5.1 Evaluation Data

We collected two data sets of textual PPI descriptions for real-world event logs,
whose main characteristics are summarized in Table 2. To allow for a high ex-
ternal validity of our evaluation, the data was obtained from different sources.
The first one was gathered during different BPM courses with undergraduate
and master students and includes 52 PPI descriptions related to the event log
of a public traffic fine management process (TF) [12]. The second one was col-
lected using an online questionnaire, through which industry and academic users
from different countries provided 53 PPI definitions, all related to the domestic
declarations process (DD) [5]. Participation was voluntary and anonymous.

In both datasets, a pre-processing step was needed and, as shown in Ta-
ble 2, some PPI textual descriptions from the original data collection had to
be excluded. These PPI descriptions could not be manually transformed into

7 We again use the Spacy library for this.
8 More information, our prototype, and links to the materials can be found at https:
//github.com/isa-group/ppinat.

https://github.com/isa-group/ppinat
https://github.com/isa-group/ppinat

12 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

Table 2. Information about the datasets in the test collection

Dataset Participants PPIs Reason to exclude PPIs tested
(1) (2) (3) Time Count Data

Traffic fines (TF) 18 52 7 7 18 12 8 0
Declarations (DD) 14 53 12 9 2 11 17 2

(1) Information not in the log. (2)Not supported. (3) Ambiguous information.

structured definitions to be computed against the information available in the
corresponding event logs. Although most PPIs are time-related, the diversity of
the PPI descriptions provided by the participants is noteworthy.

5.2 Experimental Setup

Implementation. To conduct the evaluation, we implemented the presented
approach in Python, available in our repository.

Hyperparameter search. The entity-matching step uses various weights to
operationalize the matchers. To find the appropriate settings, we perform an ex-
haustive grid search considering the following values: wsimx ∈ {0, 0.25, 0.5, 0.75, 1},
watt ∈ {0, 0.1, 0.2}, wc ∈ {0, 0.5, 1}, and wmh ∈ {0, 0.25, 0.5}, where watt, wc, wmh

are the weights defined in Section 4.2, and wsimx captures the weights of the sim-
ilarity measures used in indSim, testing a total of 945 combinations.

In this manner, we selected a configuration with the following weights: wsimis =
0.25, wsimemb

= 0.5, wsimbert = 0.25, wsimcomb
= 0, wc = 0.5, watt = 0.2 and

wmh = 0.25. We report on the impact of these parameters below in the discus-
sion of the results of Step 2.

Evaluation measures. To assess the quality of our approach we use the well-
known precision and recall measures to compare generated PPI definitions to a
manually created gold standard. The gold standard, available in the repository,
was created by the three authors, who independently established measurable
definitions for the gathered PPI descriptions based on their understanding of
the respective event logs. The few differences were then resolved through a joint
discussion. Here, precision reflects the fraction of slots that our approach filled
correctly according to the gold standard, whereas recall represents the fraction
of slots filled in the gold standard that were also correctly filled by our approach.

5.3 Results

In this section we report on the overall results obtained using our approach,
followed by an assessment of its individual steps and configurations.

Overall results. Table 3 summarizes the results obtained in our evaluation. The
Approach column reports on the results obtained by applying our full approach
on the data, which shows that it obtains a precision and recall of above 0.70 for
both datasets.

As expected, the best results are obtained for the matching of aggregation
slots, which have a small, fixed target domain. Condition slots also get a high

From Text to Performance Measurement 13

Table 3. Evaluation results obtained for the two datasets and various configurations

Dataset: Domestic declarations (DD) Traffic fines (TF)
Config.: Approach Perfect No comp. Approach Perfect No comp.

Slot type n prec. rec. prec. rec. prec. rec. n prec. rec. prec. rec. prec. rec.

Aggreg. 29 0.93 0.93 1 1 0.88 0.76 18 0.89 0.89 0.95 0.95 0.75 0.33
Cond. 12 0.8 1 0.92 1 1 0.08 3 0.75 1 1 1 0 0
From 11 0.72 0.72 0.82 0.82 0.6 0.27 12 0.58 0.58 0.75 0.75 0.33 0.08
To 11 0.45 0.45 0.54 0.54 0.6 0.27 12 0.67 0.67 0.83 0.83 0.67 0.17
When 16 0.44 0.44 0.47 0.47 0.44 0.44 6 0.83 0.83 0.87 0.87 0.83 0.83

Total 82 0.70 0.72 0.78 0.80 0.67 0.44 52 0.72 0.75 0.86 0.86 0.64 0.27

precision and recall in both datasets, but in this case the majority of true posi-
tives comes from the PPI completion of Step 3 (see below). Regarding from, to,
and when slots, their precision and recall changes significantly from one dataset
to the other, which suggests that they are heavily domain-dependent. Note that
we omitted slot types (group-by, data, and filters) with n ≤ 2.

Step 1: Impact of entity-extraction quality. We evaluate if and how any
mistakes made by the parser used in Step 1 affect the overall result of our
approach. To do this, we also computed results obtained when using perfectly
extracted entities (from the gold standard) as input for Step 2. As shown through
the Perfect column in Table 3, we then obtain a precision of 0.78 and recall of
0.80 for DD, and precision and recall of 0.86 for the TF dataset, showing that
our matching strategies are accurate. Compared to the results obtained with our
full approach, we observe differences between 0.08 in DD and 0.14 in TF. This
improvement is especially apparent for from and to slots, where more precise
extraction leads to clear improvements for entity matching.

Step 2: Matching configurations. Next, we assess the impact of the various
parameter settings and heuristics used in Step 2 to match extracted entities to
the elements of an event log. The results obtained during hyperparameter search
(available in the repository) show that the configuration of the matchers consid-
erably affects the overall result quality. Out of the 945 matcher configurations,
the best configured matchers outperform the worst matchers by 0.11 for DD and
0.14 for TF in terms of precision and recall. To further examine the effects of the
weights, we compared the values of the top 25% and the worst 25% configura-
tions. The best configurations typically combine at least two similarity metrics
(out of the four simx options) for matching extracted entities to instant con-
ditions for the from, to, and when slots. Moreover, virtually all configurations
in the top 25% use a similarity metric based on language models (simbart or
simemb), frequently combining both.

With respect to the matching heuristics, we find that top-25% configurations
typically consider the order in which entities matched to from and to slots appear
in traces (by using wmh > 0), whereas the worst configurations tend to omit this

14 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

consideration (using wmh = 0). Furthermore, when matching from, to, and when
slots, the majority of the top-5% configurations consider attribute names (on top
of attribute values), by setting wc = 0.5. By contrast, there is no clear difference
between configurations that assign positive weights to watt, which also lets a
matcher consider the entire domain of an attribute. Nevertheless, the positive
impact of wmh and wc thus highlight the importance of considering the contents
of an event log, in terms of event order and attribute names, during matching.

Step 3: Impact of PPI completion. We assess the relevance of the PPI
completion step by comparing the results of our full approach to those obtained
when omitting this step (No comp. in Table 3). The results reveal a significant
drop in recall, i.e., of 0.28 in DD and 0.49 in TF. This shows that the proposed
PPI completion heuristics help to identify many missing default values for ag-
gregation, condition, from, and to slots. Precision also decreases (e.g., from 0.72
to 0.64 for TF), because without Step 3, negations are not properly interpreted.

Runtime efficiency. We tested our approach on an Intel i9 PC with 64GB of
RAM, a 2TB SSD hard drive, and a consumer GPU GeForce RTX 3080 Ti. The
average execution time for steps 1 to 3 for each PPI defined for DD and TF
is 0.66 and 0.91 seconds, respectively. The initialization time, which is executed
just once for each log and involves loading the log and computing the embeddings
of the attribute names and values, is 10 seconds for DD and 42 seconds for TF.

5.4 Discussion

A post-hoc analysis of the results obtained reveals that the approach faces several
challenges related to the entity-extraction and entity-matching steps.

Entity-extraction challenges. The usage of a state-of-the-art token classifica-
tion technique allows our approach to deal with highly flexible input (challenge
C1), and performs well with previously unseen terms. However, it is occasionally
infeasible to distinguish different entity types based on just a description. For
instance, in the TF dataset, the description “Percentage of fines with an incre-
ment” corresponds to a percentage aggregation over a count entity CE (counting
the cases with an “Add Penalty” activity). By contrast, the description “Per-
centage of fines appealed with vehicle class A”, involves a filter entity FDE on
top of the count entity CE, even though the two descriptions are structurally
identical. Here, one might envision a post-processing step that evaluates all dif-
ferent alternatives and picks the one that fits best with the event log or even
fine-tuning the token classification for the specific domain at hand.

Matching challenges. The entity-matching step also faces the problem of lack
of domain knowledge to resolve its task. For instance, in the DD dataset there are
several activities with the text “approval” in them (e.g., Declaration approved
by Administration and Declaration final approved by supervisor). If the PPI
description does not provide indications about what kind of approval it refers
to, e.g., “Percentage of declarations are approved”, it is near impossible for the
entity matching to tell to which approval activity it should be matched.

A related problem occurs when confounding words appear in the PPI descrip-
tion and the entity-matching step gives them more relevance than the actual key

From Text to Performance Measurement 15

words of the description. For instance, the DD dataset has two activities called
Request payment and Approve request. When trying to match a PPI descrip-
tion like “Average time to approve the request for reimbursement”, the matcher
has to decide which part of the text is more relevant: “approve the request”,
which matches best with Approved request or the confounding “request for re-
imbursement”, which matches best with Request payment. This problem may be
addressed by recognizing when a PPI description refers to the overall goal of a
process (e.g., request for reimbursement) and using that information to reduce
the relevance of these confounding elements for matching.

6 Related Work

Process performance measurement. Most process mining tools support the
computation of some types of PPIs. In most cases, however, they just support
a predefined set of metrics, mainly related to time. There are some exceptions
to this, e.g the PQL language to define customized PPIs in Celonis [19]. The
main drawback in this case is that the computation results are not designed to
be used outside the tool platform and integrated with other tools or workflows.
Recently, ppinot4py was presented as a library that can be used to compute
a wide variety of custom PPIs [15]. Yet, its main limitation is that users need
to know low-level details of the log involved as well as technical aspects of the
definition of PPIs. There is another thread of works that proposes user-friendly
approaches to define custom PPIs, in the form of graphical representations [4,9]
or templates [17]. A caveat is that the PPIs from these approaches cannot be
directly computed over an event log.

NLP interfaces for data base querying. Highly related to our approach
is the existing work on defining queries on tables or databases using natural
language. There are two main threads in this regard. The first thread uses natural
language text and a database schema as input to generate an SQL query that can
be directly computed on the database. An example of this is the work presented
in [8], but many more can be found in a recent survey [10]. The second thread
does not generate an intermediate query model, but uses deep learning to learn
the appropriate output, given a natural language query and a database table.
Some examples are [7] and [6]. Although these works address a similar problem
to the one presented in this paper, the nature of processes and the event logs
that collect their information differs significantly from that of databases, which
prevents us from using the same approaches off-the-shelf.

NLP interfaces for process mining. Finally, there is developing interest in
using NLP to facilitate process mining tasks. For instance, Kobeissi et al. [11]
present an intent-based natural language interface to allow users to perform
queries on an event log. However, their work focuses on queries about event re-
lated data, with performance queries being out of scope. In addition, [11] needs
to be adapted for each event log, unlike our proposal, which is log-independent
and does not require human intervention to hand-craft the training set for each
new event log. Barbieri et al. [2] present an architecture to support a conver-

16 Manuel Resinas, Adela del-Ŕıo-Ortega, Han van der Aa

sational, process mining oriented interface to existing process mining tools, but
only focused on questions over process execution data. This preliminary work
is extended in [3]. It introduces a taxonomy for natural language questions for
process mining and also provides support to queries over process behavior and
process mining analyses. However, their implementation and evaluation is per-
formed with general questions applicable to any event log, leaving those associ-
ated with selected, domain-specific event logs for future work.

7 Conclusion

In this paper, we presented a first approach to calculate process performance in-
dicators against a given event log based on textual descriptions. Our work builds
on a fine-tuned language model to extract relevant entities, tailored techniques
to match these entities to the contents of an event log, as well as completion
heuristics to deal with incomplete descriptions provided by users. The evalu-
ation performed yielded promising results, although there are also clear open
challenges. It is worth noting that the heuristics used for completing PPIs have
been useful in improving the performance of our approach. In addition, the pub-
licly available dataset we established for this work is valuable in itself, as it allows
other researchers and us to continue advancing in this direction.

In future work, we aim to improve both the scope and accuracy of our work.
For this, we naturally aim to use the exponentially increasing potential of large
language models (LLMs) such as GPT-4. A first direction, aiming for accuracy
improvements, is to incorporate LLMs directly into our proposed approach by
using their functionality to replace parts of our work that currently rely on
other NLP technologies, such as the entity-extraction step and the computation
of semantic similarity scores. Next to that, we aim to use the conversational
capabilities of LLMs to facilitate interaction between a user and an approach
such as ours, in order to guide users through the step-by-step definition of PPIs
using textual input. In such an interactive setting, the agent can ask clarifying
questions where appropriate and, furthermore, allow users to iteratively build
up highly expressive performance measures, thus improving both the accuracy
and scope of our work.

Acknowledgments

We thank Maria Isabel Ramos and Javier Vilariño for their support in the im-
plementation.

References

1. van der Aa, H., Leopold, H., del Ŕıo-Ortega, A., Resinas, M., Reijers, H.A.: Trans-
forming unstructured natural language descriptions into measurable process per-
formance indicators using hidden markov models. Inf. Syst. 71, 27–39 (2017)

From Text to Performance Measurement 17

2. Barbieri, L., Madeira, E.R.M., Stroeh, K., van der Aalst, W.M.: Towards a natural
language conversational interface for process mining. In: ICPM Workshops. pp.
268–280. Springer, Cham (2021)

3. Barbieri, L., Madeira, E.R.M., Stroeh, K., van der Aalst, W.M.: A natural language
querying interface for process mining. J Intell Inf Syst (2022)

4. del-Ŕıo-Ortega, A., Resinas, M., Durán, A., et al.: Visual PPINOT:A graphical no-
tation for process performance indicators. Bus.Inf.Syst.Eng. 61(2), 137–161 (2019)

5. van Dongen, B.: BPI challenge 2020 domestic declarations. https://doi.org/10.
4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

6. Eisenschlos, J.M., Gor, M., Müller, T., Cohen, W.W.: Mate: Multi-view attention
for table transformer efficiency (2021)

7. Herzig, J., Nowak, P.K., Müller, T., Piccinno, F., Eisenschlos, J.: TaPas: Weakly
supervised table parsing via pre-training. In: ACL. pp. 4320–4333 (2020)

8. Hui, B., Shi, X., Geng, R., Li, B., Li, Y., Sun, J., Zhu, X.: Improving text-to-SQL
with schema dependency learning. arXiv preprint arXiv:2103.04399 (2021)

9. Janiesch, C., Matzner, M.: BAMN: a modeling method for business activity mon-
itoring systems. J. Decis. Syst. 28(3), 185–223 (2019)

10. Katsogiannis-Meimarakis, G., Koutrika, G.: A survey on deep learning approaches
for text-to-SQL. The VLDB Journal (2023)

11. Kobeissi, M., Assy, N., Gaaloul, W., Defude, B., Haidar, B.: An intent-based natu-
ral language interface for querying process execution data. In: ICPM. pp. 152–159.
IEEE (2021)

12. de Leoni, M., Mannhardt, F.: Road traffic fine management process. https://doi.
org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5 (2015)

13. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators.
Inf. Syst. 35(4), 505–527 (2010)

14. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: EMNLP. ACL (11 2019)

15. Resinas, M., del Ŕıo-Ortega, A., Ruiz-Cortés, A.: PPINOT computer and
ppinot4py: Two libraries to compute process performance indicators. In: ICPM
(Demo track) (2021)

16. del Ŕıo-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A.: On the definition
and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–
490 (2013)

17. del Ŕıo-Ortega, A., Resinas, M., et al.: Using templates and linguistic patterns to
define process performance indicators. Ent. Inf. Sys. 10(2), 159–192 (2016)

18. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

19. Vogelgesang, T., Ambrosy, J., Becher, D., Seilbeck, R., Geyer-Klingeberg, J.,
Klenk, M.: Celonis PQl: A query language for process mining. In: Process Querying
Methods, pp. 377–408. Springer (2022)

20. Wang, H., Li, J., Wu, H., Hovy, E., Sun, Y.: Pre-Trained Language Models and
Their Applications. Engineering (Sep 2022)

21. Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance indicators
of semantic business processes. In: BIS. pp. 227–238. Springer (2008)

22. Yin, W., Hay, J., Roth, D.: Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach. In: EMNLP. pp. 3914–3923 (2019)

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

	From Text to Performance Measurement: Automatically Computing Process Performance using Textual Descriptions and Event Logs

