IM-viz: A Tool for the Step-by-step Visualization of
the Inductive Miner

Florian Lang*, Din Hida*, Yingjie Bian*, Adrian Rebmann*, Han van der Aa*
*School of Business Informatics and Mathematics, University of Mannheim, Germany
Email: {florian.vincent.lang | din.hida | yingjie.bian} @students.uni-mannheim.de
{rebmann | han.van.der.aa} @uni-mannheim.de

Abstract—The Inductive Miner is a state-of-the-art algorithm
for process discovery and a staple in process mining education,
since its divide-and-conquer nature can teach students how to
recognize behavioral relations in event data and to break up a
discovery problem into smaller parts. However, a key problem
from this educational perspective is that the algorithm’s manual
application is time consuming, involving a considerable amount of
drawing, whereas existing implementations of the algorithm only
show the final outcome, not its intermediary steps. To overcome
this, we present IM-viz, an educational process mining tool that
visualizes the application of the Inductive Miner and the Inductive
Miner infrequent in an iterative manner. IM-viz allows users to
interactively explore how inductive mining works and how it deals
with different kinds of event data, thus providing a convenient
means for process mining students and educators to establish
and analyze step-by-step process discovery examples.

Index Terms—process mining, inductive miner, algorithm vi-
sualization

I. INTRODUCTION

Process discovery is a quintessential task in process mining,
which takes exemplary process executions, stored in an event
log, and aims to establish a process model that accurately
describes the underlying process [1]. In this context, inductive
mining refers to a family of discovery algorithms that work
in a top-down manner [2]. These algorithms apply a divide-
and-conquer strategy to recursively decompose the process
discovery task into smaller parts. This is achieved by es-
tablishing a directly-follows graph (DFG) of the event log
and, subsequently, identifying cuts that partition the activities
in the DFG into smaller sets. These cuts identify behavioral
relations between the activity sets, indicating that they are in a
sequential, parallel, exclusive, or loop relation. The algorithm
is recursively applied on the sub logs corresponding to these
smaller activity sets, until the problem cannot be further
decomposed and a process tree or workflow net is returned.

Inductive mining is recognized as (part of the) state of the
art for process discovery, as it provides formal guarantees on
its output (most importantly, output models are always sound),
is scalable, and provides flexibility to users, since inductive
mining algorithms exist that can deal with different quality
issues, such as noise and incompleteness. Furthermore, induc-
tive mining is interesting from an educational perspective, as
its divide-and-conquer nature provides a convenient means for
students to learn how to break up a discovery task into smaller
problems and to recognize behavioral relations in event data.

A downside from this educational perspective is that stu-
dents new to process mining may find it difficult to understand
how the algorithms exactly work and how they should be
applied. Additionally, the algorithms are time consuming to
apply in a manual manner, involving a considerable amount
of drawing (of the DFGs). Since existing implementations only
provide the output obtained by discovery (i.e., the final process
tree or workflow net), these do not allow users to understand
the intermediary steps taken to reach this result. Consequently,
it is tedious for educators and difficult for students to gain
insights into the application of inductive mining algorithms in
a step-by-step manner.

To alleviate this issue, we present IM-viz, an educational
process mining tool that visualizes the application of the
standard Inductive Miner and the Inductive Miner infrequent
algorithms in a step-by-step manner, showing the intermediary
steps taken to go from input to output. The creation of IM-
viz is inspired by the VisuAlgo project [3] of the National
University of Singapore (NUS), which visualizes popular
algorithms and data structures in an intuitive manner.

II. THE IM-viz TooL

At https://github.com/badrecursionbrb/im-viz IM-viz is
available. This repository provides a link to a deployed in-
stance of IM-viz, the source code and instructions to run the
tool locally, documentation, and a video showing its usage.

A. Visualizer

The main page of the IM-viz application, directly accessed
when opening it, focuses on the visualization of the inductive
mining algorithms, as shown in Figure 1.

IM-Viz

PROCESS TREE

Fig. 1: Screenshot of the main part of the IM-viz tool, the
visualizer. Depicted is an example with the first step

https://github.com/badrecursionbrb/im-viz

4
@ 4
f
4 5
\ I
a ., LK
[B] “B—[;\l ['e', 'a'] ['d', 'b']
5 i
y 4 ‘-ﬂ.
-
@B
0 renfl

(a) DFG visualization, each color (b) Process tree under construc-
indicates an activity set identified tion, brackets indicating activity
by a cut sets to be explored.

Fig. 2: Screenshots of the main graphs in the visualizer

Getting started. To start visualizing a discovery task, users
first select the event data and algorithm to apply. In terms
of event data, IM-viz allows users to upload an XES file,
simply write down an event log using a string representation
(e.g., “<a,c,d>4;<c,a,a,d>5;"), or select one of the ready-made
examples. In terms of algorithms, users can currently select the
standard Inductive Miner and the Inductive Miner infrequent.
If the Inductive Miner infrequent is selected, one needs to
additionally enter the desired noise threshold. After that, the
user clicks the “Go!" button to start the selected algorithm.

Algorithm visualization. When a user presses “Go!" (or, after
the first step, “Next”), IM-viz will apply one step of the
selected discovery algorithm on the selected event data. As
shown in Figure 1, the tool visualizes the application of this
step through three complementary components:

1. The top-right window shows the DFG of the (sub-) log that
is currently being considered. The DFG visualization, depicted
in Figure 2a, uses different colors to indicate different activity
sets that will be separated by the cut to be performed.

2. The bottom-right part of the screen shows the inductive
mining algorithm that is currently being applied and which
lines are currently being executed, showing if the algorithm is
currently in a base case, if a cut has been identified, or if a fall-
through scenario is reached (where no cut can be applied). The
box next to this algorithm, then, provides more information on
this current step, e.g., by indicating which cut has been found
and why this cut can be applied to the DFG at hand.

3. The left-hand side of the screen shows the current state
of the process tree, which is updated after each step. The tree
representation, depicted in more detail in Figure 2b, uses, e.g.,
[’e, £’] to indicate an activity set that needs further exploration.
After updating each of these components in a sequential
manner, the application of the algorithm is paused, so that
users can take the time to explore the current, intermediary
state of the discovery task. When ready, users can press “Next”
to apply the next step, which corresponds to the left-most node
in the tree that requires further exploration.

B. Education Section

IM-viz also includes an education section (accessible via the
top-right corner of the UI). It provides information on the most

Fig. 3: Screenshot from the front page of the education section

important concepts necessary for a general understanding of
the Inductive Miner were selected and explained briefly such
as process trees or the so called flower model. A screenshots
of the education section landing page is shown in Figure 3.

C. Tool Architecture

The IM-viz application consists of a Python-based back-
end and a JavaScript-based front-end, which communicate
via REST requests. The back-end uses Flask to implement
the REST-API and PM4Py [4] as a basis for the Inductive
Miner algorithm implementation. Because accessing interme-
diate results required code changes, PM4Py was forked to
keep the distinction between IM-viz and the original PM4Py
framework. The front-end is built with vue.js and node.js.
For visualizations, we used the Data Driven Documents (D3)
library, together with the Cola.js implementation for the net-
work graph. The front-end can be hosted by any HTTP server.

IIT. CONCLUSION AND FUTURE WORK

IM-viz provides students with step-by-step guidance
through the application of inductive mining algorithms using
event data of their choice. The tool provides different kinds of
information for each step of an algorithm, showing the current
step in the algorithm itself, the DFG, and the process tree,
allowing users to jump back and forth between steps.

As next steps, we aim to extend the tool to includes
other process mining algorithms, such as the alpha algorithm
for process discovery or the A* search in alignment-based
conformance checking. Additionally, the visualizations itself
may be improved in terms of comprehensibility and vividness.
Finally, we aim to conduct user studies to assess the benefits
of using algorithm visualization in process mining education.

REFERENCES

[1] W. M. van der Aalst and J. Carmona, Process mining handbook. Springer
Nature, 2022.

[2] S. J. J. Leemans, “Robust Process Mining with Guarantees: Process
Discovery, Conformance Checking and Enhancement,” Ph.D. dissertation,
Eindhoven University of Technology, Eindhoven, 2017.

[3] S. Halim, F. Halim, K. Z. Chun, V. Loh Bo Huai, P. Thi Quynh Trang,
P. Phandi, A. Millardo tijndradinata, N. Hoang Duy, R. M. Tan Zhao Yun,
and I. Reinaldo, “VisuAlgo - visualising data structures and algorithms
through animation,” 2011. [Online]. Available: https://visualgo.net/en

[4] A. Berti, S. van Zelst, and W. M. van der Aalst, “Process Mining for
Python (PM4Py): Bridging the Gap Between Process- and Data Science,”
in ICPM Demos 2019, vol. 2374. CEUR, 2019, pp. 13-16.

https://visualgo.net/en

	Introduction
	The IM-viz Tool
	Visualizer
	Education Section
	Tool Architecture

	Conclusion and Future Work
	References

