
PGTNet: A Process Graph Transformer Network
for Remaining Time Prediction of Business

Process Instances

Keyvan Amiri Elyasi1[0009−0007−3016−2392], Han van der
Aa2[0000−0002−4200−4937], and Heiner Stuckenschmidt1[0000−0002−0209−3859]

1 Data and Web Science Group, University of Mannheim, Germany
{keyvan,heiner}@informatik.uni-mannheim.de

2 Faculty of Computer Science, University of Vienna, Austria
han.van.der.aa@univie.ac.at

Abstract. We present PGTNet, an approach that transforms event logs
into graph datasets and leverages graph-oriented data for training Pro-
cess Graph Transformer Networks to predict the remaining time of busi-
ness process instances. PGTNet consistently outperforms state-of-the-art
deep learning approaches across a diverse range of 20 publicly available
real-world event logs. Notably, our approach is most promising for highly
complex processes, where existing deep learning approaches encounter
difficulties stemming from their limited ability to learn control-flow rela-
tionships among process activities and capture long-range dependencies.
PGTNet addresses these challenges, while also being able to consider
multiple process perspectives during the learning process.

Keywords: Predictive process monitoring · Remaining time prediction
· Deep learning · Graph Transformers.

1 Introduction

Predictive process monitoring (PPM) aims to forecast the future behaviour of
running business process instances, thereby enabling organizations to optimize
their resource allocation and planning [17], as well as take corrective actions [7].
An important task in PPM is remaining time prediction, which strives to accu-
rately predict the time until an active process instance will be completed. Precise
estimations for remaining time are crucial for avoiding deadline violations, opti-
mizing operational efficiency, and providing estimates to customers [13,17].

A variety of approaches have been developed to tackle remaining time predic-
tion, with recent works primarily being based on deep learning architectures. In
this regard, approaches using deep neural networks are among the most promi-
nent ones [15]. However, the predictive accuracy of these networks leaves consid-
erable room for improvement. In particular, they face challenges when it comes
to capturing long-range dependencies [2] and other control-flow relationships
(such as loops and parallelism) between process activities [22], whereas they

2 K. Amiri et al.

also struggle to harness information from additional process perspectives, such
as case and event attributes [13]. Other architectures can overcome some of
these individual challenges. For instance, the Transformer architecture can learn
long-range dependencies [2], graph neural networks (GNNs) can explicitly in-
corporate control-flow structures into the learning process [22], and LSTM (long
short-term memory) architectures can be used to incorporate (parts of) the data
perspective [13]. However, so far, no deep learning approach can effectively deal
with all of these challenges simultaneously.

Therefore, this paper introduces PGTNet, a novel approach for remaining
time prediction that can tackle all these challenges at once. Specifically, our ap-
proach converts event data into a graph-oriented representation, which allows us
to subsequently employ a neural network based on the general, powerful, scalable
(GPS) Graph Transformer architecture [16] to make predictions. Graph Trans-
formers (GTs) have shown impressive performance in various graph regression
tasks [4, 10, 16] and their theoretical expressive power closely aligns with our
objectives: they can deal with multi-perspective data (covering various process
perspectives) and can effectively capture long-range dependencies and recognize
local control-flow structures. GTs achieve these latter benefits through a combi-
nation of local message-passing neural networks (MPNNs) [6] and a global at-
tention mechanism [18]. They employ sparse message-passing within their GNN
blocks to learn local control-flow relationships among process activities, while
their Transformer blocks attend to all events in the running process instance to
capture the global context.

We evaluated the effectiveness of PGTNet for remaining time prediction us-
ing 20 publicly available real event logs. Our experiments show that our approach
outperforms current state-of-the-art deep learning approaches in terms of accu-
racy and earliness of predictions. We also investigated the relationship between
process complexity and the performance of PGTNet, which revealed that our
approach particularly achieved superior predictive performance (compared to
existing approaches) for highly complex, flexible processes.

The structure of the paper is outlined as follows: Section 2 covers background
and related work, Section 3 presents preliminary concepts, Section 4 introduces
our proposed approach for remaining time prediction, Section 5 discusses the
experimental setup and key findings, and finally, Section 6 summarizes our con-
tributions and suggests future research directions.

2 Background and Related work

This section briefly discusses related work on remaining time prediction and
provides more details on Graph Transformers.
Remaining time prediction. Various approaches have been proposed for
remaining time prediction, encompassing process-aware approaches relying on
transition systems, stochastic Petri Nets, and queuing models, along with ma-
chine learning-based approaches [20]. In recent years, approaches based on deep
learning have emerged as the foremost methods for predicting remaining time [15].

PGTNet for Remaining Time Prediction 3

These approaches use different neural network architectures such as LSTMs [13,
17], Transformers [2], and GNNs [3].

Vector embedding and feature vectors, constituting the data inputs for Trans-
formers and LSTMs, face a challenge in directly integrating control-flow relation-
ships into the learning process. To overcome this constraint, event logs can be
converted into graph data, which then acts as input for training a Graph Neu-
ral Network (GNN) [22]. GNNs effectively incorporate control-flow structures
by aligning the computation graph with input data. Nevertheless, they suffer
from over-smoothing and over-squashing problems [10], sharing similarities with
LSTMs in struggling to learn long-range dependencies [16]. Moreover, existing
graph-based predictive models face limitations due to the expressive capacity
of their graph-oriented data inputs. Current graph representations of business
process instances, either focus solely on the control-flow perspective [7, 19] or
conceptualize events as nodes [3, 22], leading to a linear graph structure that
adversely impacts the performance of a downstream GNN.
Graph Transformers. Inspired by the successful application of self-attention
mechanism in natural language processing, two distinct solutions have emerged
to address the limitations of GNNs. The first approach unifies GNN and Trans-
former modules in a single architecture, while the second compresses the graph
structure into positional (PE) and structural (SE) embeddings. These embed-
dings are then added to the input before feeding it into the Transformer net-
work [16]. Collectively known as Graph Transformers (GTs), both solutions aim
to overcome the limitations of GNNs, by enabling information propagation across
the graph through full connectivity [10, 16]. GTs also possess greater expressive
power compared to conventional Transformers, as they can incorporate local
context using sparse information obtained from the graph structure [4].

Building upon this theoretical foundation, we propose to convert event logs
into graph datasets to enable remaining time prediction using a Process Graph
Transformer Network (PGTNet), as discussed in the remainder.

3 Preliminaries

This section presents essential concepts that will be used in the remainder.
Directed and attributed graphs. A directed graph G = (V, E) is defined by
a set of nodes V , and a set of ordered pairs of nodes E ⊆ V × V called directed
edges. For an edge ϵij = (vi, vj) ∈ E pointing from vi to vj , nodes vi ∈ V and
vj ∈ V are called source and target nodes, respectively. Setting n = |V |, G’s
adjacency matrix A is a n × n matrix with Aij = 1 if ϵij ∈ E and Aij = 0 if
ϵij /∈ E . An attributed graph is a graph that has node attributes in the form of
a node feature matrix X ∈ Rn×d, with xv ∈ Rd representing the feature vector
of node v. It may also have edge attributes in the form of Z ∈ Rm×c, where
m = |E| is the number of edges, and zu,v ∈ Rc denotes the feature vector of edge
(u, v).
Events. Let Γ be the event universe (i.e., set of all possible event identifiers),
T the time domain, A the finite set of process activities, C the set of all possible

4 K. Amiri et al.

case identifiers, and V1,V2,...,Vm sets of all possible values for data attributes
d1,d2,...,dm. An event e is denoted by the tuple e = (a, c, t,D). We assume
that every event is characterized by mandatory properties, namely an activity
identifier, a case identifier (i.e., the business process instance which the event
belongs to), and a timestamp. Put it differently, there are ΠA : Γ → A, ΠC :
Γ → C, and ΠT : Γ → T functions that map an event e to an activity, a
case, and a timestamp: ΠA(e) = a, ΠC(e) = c, ΠT (e) = t. All other attribute-
value pairs (e.g., transition life-cycle, organizational attributes, etc.) which may
be associated to the event are denoted by D ≡ {(d1, v1), (d2, v2), ..., (dm, vm)}
where ∀vi ∈ Vi. Similar projection functions can be defined to extract values of
specific attributes out of an event (e.g., Πdi

(e) = vi).
Traces, event log, event prefixes. Let Γ ∗ be the set of all possible sequences
over Γ . A finite non-empty sequence of events σ =< e1, e2, ..., en >∈ Γ ∗, of
length |σ| = n, is called a trace only and only if: 1) ∀ei, ej ∈ σ : πC(ei) = πC(ej)
(i.e., all events belong to the same case), 2) ∀1 ≤ i ≤ j ≤ n : πT (ei) ≤ πT (ej)
(i.e., the events are ordered by their timestamps). Each trace thus represents the
execution of one business process instance. An event log refers to a collection of
traces and is denoted as L ⊆ Γ ∗, where every event appears only once within
the entirety of the log. For the remaining time prediction problem, we also need
to define partial traces, which we do through event prefixes. An event prefix of
length k consists of the first k events of a trace and is denoted by hdk(σ) =<
e1, ..., ek >, where k ∈ [1, n− 1] is a positive integer number.
Problem statement. Given an event log L of completed traces and an event
prefix hdk(σ) of a trace σ =< e1, e2, ..., en >, where σ /∈ L is an unseen trace of
the same process as the traces of L, then the remaining time prediction problem
is defined as using the traces from L to learn a function θL that takes an un-
seen event prefix hdk(σ) and estimates the remaining time of the corresponding
business process instance:

θL(hd
k(σ)) ≈ πT (en)− πT (ek) (1)

4 PGTNet for Remaining Time Prediction

To predict the remaining time of business process instances, we convert an event
log into a graph dataset (see Section 4.1), and use it to train a predictive model
(see Section 4.2). Once the model’s parameters are learned, we can query the
model to predict the remaining time of an active process instance based on its
current partial trace.

4.1 Graph Representation of Event Prefixes

To train a predictive model, we first turn an event log L (consisting of traces of
completed process instances) into a collection of event prefix-time tuples, with
each tuple (hdk(σ), πT (en)− πT (ek)) capturing an event prefix of length k of a
trace σ ∈ L, along with the time difference between σ’s final timestamp and the

PGTNet for Remaining Time Prediction 5

last timestamp of hdk(σ). Then, we establish a collection of directed attributed
graphs G, where each graph Ghdk(σ) ∈ G encodes an event prefix hdk(σ), with its
target attribute πT (en)− πT (ek). This transformation is illustrated in Figure 1,
displaying a snapshot of an event log for case ID ‘27583’ and the corresponding
graph representation of the event prefix of a length of 6. The details of this
transformation procedure are as follows:

(A_SUBMITTED,
COMPLETE): [0]

(A_PARTLYSUBMITTED,
COMPLETE): [1]

(W_Handling leads,
SCHEDULE): [2]

(W_Handling leads,
START): [3]

(W_Handling leads,
COMPLETE): [4]

ε2

ε1

ε3

ε4 ε5
ε1: [0.1, 0, 0, 0, 0.365, 0.195, 0.24, 1, 0, …, 0, 0, 0.250]

ε2: [0.1, 5.8E-6, 5.8E-6, 5.8E-6, 0.365, 0.195, 0.24, 1, 0, …, 0, 0, 0.252]

ε3: [0.1, 0.0347, 0.0347, 0.0347, 0.406, 0.344, 0.24, 0, 1, …, 0, 0, 0.400]

ε4: [0.1, 0,009, 0,009, 0.0437, 0.676, 0.382, 0.24, 0, 1, …, 0, 0, 0.450]

ε5: [0.1, 0.0236, 0.0236, 0.0673, 0.385, 0.484, 0.24, 0, 1, …, 0, 0, 0.442]

Normalization assumptions:
max (DF) = 10,
max (case duration) = 30 days,
0 ≤ Amount ≤ 50,000,
max (concurrent process instances) = 600

Target attribute = 0,0003 (763 seconds)

Case ID Activity Lifecycle: transition Timestamp Resource Amount Active Cases
27583 A-SUBMITTED COMPLETE Tue, 04.10.2023, 08:45:33 112 12.000 150
27583 A-PARTLYSUBMITTED COMPLETE Tue, 04.10.2023, 08:45:33 112 12.000 150
27583 W-Handling leads SCHEDULE Tue, 04.10.2023, 08:45:48 112 12.000 151
27583 W-Handling leads START Wed, 05.10.2023, 09:44:10 11001 12.000 240
27583 W-Handling leads COMPLETE Wed, 05.10.2023, 16:13:52 11001 12.000 270
27583 W-Handling leads START Thu, 06.10.2023, 09:13:56 11001 12.000 265
27583 A-DECLINED COMPLETE Thu, 06.10.2023, 09:26:32 11001 12.000 262
27583 W-Handling leads COMPLETE Thu, 06.10.2023, 09:26:39 11001 12.000 262

Fig. 1. Graph representation of an event prefix of length of 6, Case ID= ‘27583’.

Nodes. We create a node in Ghdk(σ) for each event class, i.e., each unique combi-
nation of an activity and life-cycle attribute (if any) contained in prefix hdk(σ).
Each node has a numeric identifier, such as (‘A-SUBMITTED’, ‘COMPLETE’):
[0] in Figure 1. Using event classes as graph nodes results in graphs with rela-
tively few nodes, even for lengthy prefixes.
Edges and edge weights. We create an edge in Ghdk(σ) for each directly-
follows (DF) relation in hdk(σ), while the edge’s weight indicates the number of
its occurrences within hdk(σ). These edge weights are normalized by the maxi-
mum number of occurrences of any directly-follows relation within the available
training prefixes. In Figure 1, this normalization coefficient (max(DF)) is equal
to 10, resulting in edge weights of 0.1 (the first feature in the edge’s vector).
Edge features. To enhance the expressive capacity of the graph representation,
we incorporate additional features into the edge feature vector:
– We use five different temporal features per edge. These include the total

duration (t1) and duration of the last occurrence (t2) of the DF relation
represented by the edge. Similar to other works [17], we also incorporate
distances between the timestamp of the target node and the start of the

6 K. Amiri et al.

case (t3), start of the day (t4), and start of the week (t5) for the latest
occurrence of the DF relation. While t1, t2, and t3 are normalized by the
largest case duration in the training data, t4 and t5 are normalized by the
duration of days and weeks, respectively. In Figure 1, the temporal features
are underlined in the feature vectors of the edges.

– We encode case attributes and event attributes of the target node (for the last
occurrence of the DF relation in hdk(σ)). For numerical and categorical at-
tributes, we use min-max normalization and one-hot encoding, respectively.
In Figure 1, one-hot encoding of the categorical attribute ‘Resource’ is high-
lighted with a grey shadow, while the feature before this gray part (always
0.24 in the example) captures the case attribute ‘Amount’.

– To account for the overall workload of the process at a given time, we capture
the number of active cases at the timestamp of the target node (for the last
occurrence of the DF relation). This feature is normalized by the maximum
number of concurrent process instances observed in the training data.

Note that we encode this information as edge features, rather than on the nodes,
in order to preserve the simplicity of the node semantics. In this way, PGTNet
can also deal with event logs with a large number of event classes, achieved by
employing an embedding layer.
Target attribute. For each graph Ghdk(σ) ∈ G, its target attribute πT (en) −
πT (ek) is normalized by the longest case duration in the training data.

4.2 Training PGTNet to Predict Remaining Time

Once an event log is converted into a graph dataset, it can be used to train
PGTNet to learn function θL in Equation 1 in an end-to-end manner. We specif-
ically approach the remaining time prediction problem as a graph regression
task, using L1-Loss (mean absolute error between predictions and ground truth
remaining times). Model training employs the backpropagation algorithm to
iteratively minimize the loss function. For this, we adopt the GPS Graph Trans-
former recipe [16] as the underlying architecture of PGTNet.
PGTNet architecture. PGTNet’s architecture comprises embedding and pro-
cessing modules, as shown in Figure 2.
Embedding modules have two main functionalities:
– They map node and edge features into continuous spaces. To ensure that

similar event classes are closer in the embedding space, an embedding layer
is used to map integer node features into a continuous space. We use fully-
connected layer(s) to compress edge features into the same hidden dimension
and address the challenges arising from high-dimensional data attributes.

– They compress the graph structure into multiple positional and structural
encodings (PE/SE), and seamlessly incorporate these PE/SEs into node and
edge features [16]. This integration is achieved through diverse PE/SE initial-
ization strategies and the utilization of several learnable modules, including
MLPs (multi-layer perceptron) and batch normalization layers, as illustrated
in Figure 2.

PGTNet for Remaining Time Prediction 7

00
00

00

GlobalAttn
(Transformer)

+
2-layer

MLP

MLP +

1 or 2
fully-connected

layer(s)

MLP

MLP

Batch
normalization

DeepSet/
SignNet

+

MLP

Embedding
layer

+ MLP

MPNN

(GIN)

Readout
layer

2-layer
MLP

Remaining time
Prediction

Graph representation
of event prefix Embedding

modules

Processing modules
(GPS layers)

+

+Node features Edge features

Learnable
module

Concatenation

SumPE/SEs

Processing modules
(GPS layers)

Embedding
modules

Local SE

Relative PE
PE/SE

initialization

Global PE

1

H

Edge
Features

Node
Features

000000

Fig. 2. PGTNet architecture: based on the GPS Graph Transformer recipe [16]. Paths
to process node and edge features are specified by blue and red colors, respectively.

Assuming a graph G = (V,E) with adjacency matrix A, node feature matrix
X̃0, and edge feature matrix Z̃0, embedding modules are described by Equa-
tion 2.

X0,Z0 = fPE/SE(X̃
0, Z̃0, A) (2)

Graph Transformers vary in their choice of function fPE/SE , which is often
a neural network with learnable parameters. Further insights into the PE/SEs
is provided in the subsequent discussion of the design space for PGTNet.
Processing modules consist of hybrid layers combining MPNN and Transformer
blocks. Each of the H layers, also referred to as GPS layers, computes a hidden
representation of nodes and edges (Xh+1, Zh+1) based on the node and edge
embedding from the previous layer (Xh, Zh), and the adjacency matrix A, as
summarized in Equations 3a, 3b, 3c, and 3d below. Parallel computations in
MPNN and Transformer blocks aim to strike a balance between local message
passing and global attention mechanisms and resolve over-smoothing and over-
squashing problems [16].

Xh+1,Zh+1 = GPSh(Xh,Zh, A) ∀h ∈ {0, 1, ...,H − 1} (3a)

Xh+1
M ,Zh+1 = MPNNh(Xh,Zh, A) ∀h ∈ {0, 1, ...,H − 1} (3b)

Xh+1
T = GlobalAttnh(Xh) ∀h ∈ {0, 1, ...,H − 1} (3c)

Xh+1 = MLPh(Xh+1
M +Xh+1

T) ∀h ∈ {0, 1, ...,H − 1} (3d)

8 K. Amiri et al.

After obtaining node embeddings XH from the last GPS layer, they are
aggregated in the readout layer to derive a graph-level representation that is
subsequently fed into a 2-layer MLP to predict the remaining time (see Equa-
tion 4). Since a simple permutation invariant function (e.g., mean or sum) is
used for the readout function in Equation 4, the readout layer accommodates
varying node counts. Therefore, PGTNet avoids the need for zero-padding [2,13]
and its computational overhead.

yG = MLP (readout(XH)) (4)

Note that edge features are solely processed by MPNN blocks and are not
utilized by Transformer blocks or in obtaining the graph-level representation.

Design space for PGTNet. The modular design of the GPS Graph Trans-
former recipe offers flexibility in choosing various types of positional/structural
encodings (PE/SEs) and MPNN/Transformer blocks.

PE/SEs aim to enhance positional encoding for Transformer blocks [10], and
enable GNN blocks to be more expressive [4]. The compression of graph struc-
ture into PE/SEs can be achieved through the utilization of various initialization
strategies (PE/SE initialization in Figure 2). Notably, Laplacian eigenvector en-
codings (LapPE) [10] furnishes node embedding with information about the
overall position of the event class within the event prefix (global PE), while it
enhances edge embedding with information on distance and directional relation-
ships between nodes (relative PE). Random-walk structural encoding (RWSE) [4]
incorporates local SE into node features, facilitating the recognition of cyclic
control-flow patterns among event classes. Graphormer employs a combination
of centrality encoding (local SE) and edge encoding (relative PE) to enhance
both node and edge features [24].

Additionally, a range of learnable modules for processing PE/SEs can be in-
tegrated into PGTNet as highlighted in [16]. These design options include simple
MLPs as well as more advanced networks such as DeepSet [25] and SignNet [11].
Lastly, while it is possible to use various MPNN and global attention blocks
within each GPS layer [16], we exclusively used the graph isomorphism net-
work (GIN) [9] and conventional transformer architecture [18]. Further details
regarding our policy for designing PGTNet are elaborated upon in Section 5.1.

5 Evaluation

This section presents the experiments used to evaluate the performance of PGT-
Net for remaining time prediction. Table 1 summarizes the characteristics of
the 20 publicly available event logs used as a basis for this. In the remainder,
Section 5.1 describes the experimental setup, followed by the results in Sec-
tion 5.2. Our employed implementation and additional results are available in
our project’s public repository.3

3 https://github.com/keyvan-amiri/PGTNet

https://github.com/keyvan-amiri/PGTNet

PGTNet for Remaining Time Prediction 9

Table 1. Characteristics of the employed event logs (time-related attributes in days).

Event log Cases Events Event
Classes

Variants Case length Case duration
Avg. Max Avg. Max

Env.permit 1434 8577 27 116 5.98 25 5.4 275.8
Helpdesk 4580 21 348 14 226 4.66 15 40.9 60.0
BPIC12 13 087 262 200 36 4366 20.04 175 8.6 137.2
BPIC12W 9658 170 107 19 2643 17.61 156 11.7 137.2
BPIC12C 13 087 164 506 23 4336 12.57 96 8.6 91.5
BPIC12CW 9658 72 413 6 2263 7.50 74 11.4 91.0
BPIC12O 5015 31 244 7 168 6.23 30 17.2 89.6
BPIC12A 13 087 60 849 10 17 4.65 8 8.1 91.5
BPIC20I 6449 72 151 34 753 11.19 27 86.5 742.0
BPIC20D 10 500 56 437 17 99 5.37 24 11.5 469.2
Sepsis 1050 15 214 16 846 14.49 185 28.5 422.3
Hospital 100 000 451 359 18 1020 4.51 217 127.2 1035.4
BPIC15-1 1199 52 217 398 1170 43.55 101 95.9 1486.0
BPIC15-2 832 44 354 410 828 53.31 131 160.3 1326.0
BPIC15-3 1409 59 681 383 1349 42.36 123 62.2 1512.0
BPIC15-4 1053 47 293 356 1049 44.91 115 116.9 927.0
BPIC15-5 1156 59 083 389 1153 51.11 153 98.0 1344.0
BPIC13I 7554 65 533 13 2278 8.68 123 12.1 771.4
BPIC13C 1487 6660 7 327 4.48 35 178.9 2254.0
Traffic fines 150 370 561 470 11 231 3.73 20 341.6 4372.0

5.1 Experimental Setup

Data preprocessing. We filter out traces with fewer than 3 events, since our
approach requires an event prefix of at least length 2 to make a prediction. Aside
from that, we do not apply any preprocessing to the available event logs.

Benchmark approaches. We compare our approach against four others:
– DUMMY : A simple baseline that predicts the average remaining time of all

training prefixes with the same length k as a given prefix.
– DALSTM [13]: An LSTM-based approach that was recently shown to have

superior results among LSTMs used for remaining time prediction [15].
– ProcessTransformer [2]: A transformer-based approach designed to overcome

LSTM’s limitations in capturing long-range dependencies.
– GGNN [3]: An approach that utilizes gated graph neural networks to incor-

porate control-flow relationships into the learning process. It employs gated
recurrent unit (GRU) within its MPNN layers, enabling the learning of the
sequential nature of graph nodes.

Data split. There is no consensus on the data split for predictive process mon-
itoring. Some papers employed a chronological holdout split [2,17], while others
opted for cross-validation [5, 14, 15]. The holdout split maintains chronological
order but may introduce instability due to end-of-dataset bias. To avoid such
instability, additional data preprocessing, as suggested by [23], is necessary.

10 K. Amiri et al.

As our benchmark approaches were not trained with such preprocessing, we
avoided additional steps and chose a 5-fold cross-validation data split (CV=5)
to enhance model’s robustness against the end-of-dataset bias. We randomly
partition the dataset into 5 folds where each fold serves as a test set once, and the
remaining four folds are used as training and validation sets. For completeness,
we also report results obtained using holdout data splits in our supplementary
GitHub repository.

Prefix establishment. We turn the three sets of traces (training, validation,
and test) into three sets of event prefixes by taking the event prefixes for each
length 1 < k < |σ| per trace. In contrast to [2, 13], we excluded event prefixes
of length 1 because a minimum of two events is required to form the graph
representation of an event prefix. Moreover, similar to [13], we excluded complete
prefixes (i.e., k = |σ|) because predicting the remaining time for such prefixes
often lacks practical value.

Training setup and configuration choices. We used the AdamW optimizer
[12] and cosine with warm-up learning rate scheduling [8] to train our model.
Training spanned 600 epochs, including 50 warm-up epochs, with a base learning
rate of 0.001 and weight decay of e−5. We used a batch size of 128, with occasional
adjustments for specific event logs. Similarly, the number of training epochs is
adjusted to account for variations in validation loss behaviours across different
event logs. The key configuration choices in our experiments include:
– PE/SE modules: LapPE+RWSE [4, 10] serves as the default module, occa-

sionally substituted by Graphormer [24]. By default, DeepSet [25] processes
PE/SEs, with SignNet [11] replacing LapPE+RWSE and DeepSet in some
experiments. PE/SEs are tested in two sizes: 8 and 16.

– Embedding modules: Nodes and edges use an embedding size of 64. Edge
features are compressed using two fully-connected layers, though in some
experiments we opt for a single layer.

– Processing modules: comprising 5 GPS layers (GIN + Transformer) [16] with
8 heads, utilizing a dropout of 0.0 for MPNN blocks and 0.5 for Transformer
blocks. In some experiments, we used 10 GPS layers with 4 heads instead,
while in others we applied a dropout of 0.2 for MPNN blocks.

– Readout layer: Mean pooling is the default configuration, occasionally re-
placed by sum pooling.

Our focus is on demonstrating PGTNet’s applicability for remaining time predic-
tion rather than an exhaustive hyperparameter search. Therefore, we evaluated
a limited set of configurations per log, selecting the best based on validation loss.

Evaluation metrics. We used Mean Absolute Error (MAE) to measure predic-
tion accuracy. Since we are interested in models that not only have smaller MAE
but also can make accurate predictions earlier, allowing more time for corrective
actions, we used the method proposed in [17], which evaluates MAE across dif-
ferent event prefix lengths. This approach provides insights into the predictive
performance of the model as more events arrive.

PGTNet for Remaining Time Prediction 11

5.2 Results

Overall results. Table 2 summarizes the experimental results for the 20 event
logs, providing the average and standard deviations of the MAEs obtained over
experiments with three distinct, random seeds for training and evaluation. The
table shows that our approach consistently outperforms the benchmark ap-
proaches across the 20 event logs, yielding an average MAE of 12.92, compared
to 24.63 for the next best approach (GGNN).

Table 2. Mean Absolute Error for remaining time prediction (MAE: in days).

Event log DUMMY DALSTM Process
Transformer GGNN PGTNet

Env.permit 5.21 3.36± 0.04 4.26± 0.04 3.52± 0.02 2.72 ± 0.08
Helpdesk 9.15 8.22± 0.23 6.33± 0.01 6.21± 0.04 4.11 ± 0.04
BPIC12 9.03 9.34± 0.41 7.11± 0.02 4.78± 0.01 2.31 ± 0.19
BPIC12W 9.16 8.22± 0.06 7.40± 0.01 5.12± 0.02 2.70 ± 0.01
BPIC12C 8.92 8.21± 0.27 6.86± 0.01 5.32± 0.01 2.77 ± 0.02
BPIC12CW 9.17 8.04± 0.09 7.46± 0.01 6.99± 0.01 5.07 ± 0.03
BPIC12O 8.39 8.21± 0.09 7.29± 0.01 6.93± 0.04 5.57 ± 0.01
BPIC12A 8.17 7.62± 0.03 7.79± 0.01 7.48± 0.01 7.38 ± 0.01
BPIC20I 27.20 20.43± 0.39 17.06± 0.11 15.67± 0.04 7.67 ± 0.19
BPIC20D 4.33 4.15± 0.12 3.65± 0.01 3.25± 0.01 3.10 ± 0.01
Sepsis 41.12 25.21± 0.66 34.77± 0.18 19.44± 0.05 16.48 ± 0.19
Hospital 59.41 43.66± 0.10 47.00± 0.07 41.84± 0.06 35.68 ± 0.03
BPIC15-1 50.22 36.48± 2.69 31.01± 0.36 16.77± 0.01 1.76 ± 0.06
BPIC15-2 83.11 63.66± 2.36 44.04± 0.48 20.76± 0.05 3.02 ± 0.07
BPIC15-3 28.76 17.69± 1.16 15.23± 0.23 7.06± 0.03 1.54 ± 0.23
BPIC15-4 56.75 53.33± 2.63 34.40± 0.42 17.97± 0.03 1.65 ± 0.06
BPIC15-5 45.97 42.89± 3.08 27.76± 0.28 13.61± 0.08 1.61 ± 0.01
BPIC13I 16.18 7.60± 0.45 13.54± 0.04 11.99± 0.04 2.23 ± 0.05
BPIC13C 152.93 91.82± 1.48 127.01± 0.85 123.28± 0.53 37.44 ± 1.49
Traffic fines 196.26 187.41± 0.53 187.08± 0.11 154.56± 0.19 113.53 ± 0.12

Average 41.47 32.78± 0.84 31.85± 0.16 24.63± 0.06 12.92 ± 0.14

Next to these absolute MAE scores, we also computed the relative MAE (i.e.,
the MAE divided by the average case duration per log) to account for differences
in the cycle times across event logs. Using these relative scores, we can visualize
the accuracy improvements across different logs, as done in Figure 3 (for clarity,
we aggregated the results of logs that stem from the same BPI collection, e.g.,
averaging the results of all BPIC15 logs).

PGTNet also excels in earliness of predictions, achieving lower MAE for most
prefix lengths across all event logs. We illustrate some of these results in Figure 4,
which depicts MAE trends for BPIC15-1, BPIC12, BPIC13I, Sepsis, Helpdesk,
and BPIC12A logs at various prefix lengths. These six logs are representative
of major MAE trends that we observed across the 20 event logs (the remaining

12 K. Amiri et al.

Help
de

sk

20
20

-lo
gs

Hos
pit

al

20
15

-lo
gs

Tra
ffi

cfi
ne

s

20
12

-lo
gs

En
vp

er
mit

20
13

-lo
gs

Se
ps

is
0

20

40

60

80

100

120

Re
la

ti
ve

 M
AE

=
 M

AE
/A

vg
 c

as
e

du
ra

ti
on

 (
%

)

PGTNet
PGTNet-minimal
GGNN
ProcessTransformer
DALSTM

Fig. 3. Remaining time prediction accuracy in terms of relative MAE (in percentage).

figures are available in our repository). To improve understandability, we exclude
uncommonly long prefixes from the visualization, so that Figure 4 focuses on
prefixes up to a length that corresponds to 90% of all prefixes in each dataset.

Summarizing the overall results in terms of MAE, relative MAE, and predic-
tion earliness, we obtain the following main insights:
– In 11 out of 20 logs, PGTNet achieves an MAE improvement of over 50%

compared to the best baseline approach. For five BPIC15 and two BPIC13
logs, MAE trends closely mirror those of BPIC15-1 and BPIC13I as depicted
in Figure 4. In BPIC12, BPIC12W, BPIC12C, and BPIC20I, the MAE trends
closely follow those observed in BPIC12. In BPIC15 and BPIC12 logs, Pro-
cessTransformer is the best baseline approach for short prefixes, whereas
GGNN exhibits competitive performance only after execution of a substan-
tial number of events. Notably, in the BPICS13 event logs, DALSTM out-
performs other baseline approaches.

– In another 7 logs, PGTNet exhibits considerable improvement in MAE (15%
to 35%), with Traffic fines, Env.permit and BPIC12O showing similar MAE
trends to Helpdesk log in Figure 4. MAE trends for BPIC12CW resemble
those of other BPIC12 logs in the first group. Notably, the Sepsis log shows a
distinct MAE trend, where GGNN achieves comparable results to PGTNet
for most prefix lengths.

– For BPIC20D and BPIC12A, the improvement is more modest, with the
latter case yielding nearly identical MAEs for all prefix lengths (see Figure 4).

PGTNet for Remaining Time Prediction 13

2 6 10 14 18 22 26 30 34 38 42 46
Prefix length

0

20

40

60

M
AE

 (d
ay

s)

BPIC15-1

2 6 10 14 18 22 26 30 34 38 42
Prefix length

0

2

4

6

8

10

M
AE

 (d
ay

s)

BPIC12

2 4 6 8 10 12 14 16 18 20
Prefix length

5

10

15

20

M
AE

 (d
ay

s)

BPIC13I

2 4 6 8 10 12 14 16 18 20 22 24
Prefix length

0

10

20

30

40

50

M
AE

 (d
ay

s)

Sepsis

2 3 4 5
Prefix length

4

6

8

10

M
AE

 (d
ay

s)

Helpdesk

2 3 4 5 6
Prefix length

0

2

4

6

8

10

M
AE

 (d
ay

s)

BPIC12A

MAE(PGTNet) MAE(GGNN) MAE(ProcessTransformer) MAE(DALSTM) MAE(DUMMY)

Fig. 4. MAE over different prefix lengths (selected event logs).

Ablation study. The remarkable performance of PGTNet can be attributed
to a synergy between the expressive capacity of the employed architecture and
the incorporation of diverse process perspectives into the graph representation
of event prefixes. To distinguish the impacts of these factors, we conducted an
ablation study for which we trained a minimal PGTNet model, relying solely
on edge weights (i.e., control-flow) and temporal features, thus omitting data
attributes from consideration. We used identical hyperparameters and configu-
rations as was done for the complete PGTNet model. Hence, the ablation study
establishes a lower boundary for contribution of the PGTNet’s architecture.

Our experiments reveal that the minimal PGTNet model consistently out-
performs ProcessTransformer in terms of MAE (see Figure 3). This underscores
PGTNet’s capabilities in capturing both local and global contexts, which is ad-
vantageous for predicting remaining time. However, the predictive performance
of the minimal PGTNet is comparable to that of the GGNN approach, sug-
gesting that learning from local control-flow structures in MPNN blocks (done
by GGNN) holds greater significance than capturing long-range dependencies
(as done by ProcessTransformer). This observation is further supported by the
overall results presented in Table 2, where GGNN outperforms DALSTM and
ProcessTransformer in all event logs, except for two BPIC13 logs. Addition-
ally, the contribution of the architecture and the incorporation of extra data
attributes varies across different event logs. While the PGTNet’s architecture
plays a decisive role for logs such as BPIC15 and BPIC20I, the improvements in
MAE for logs such as BPICS12 and BPICS13 is primarily due to the incorpora-

14 K. Amiri et al.

tion of additional features. Further details regarding our ablation study can be
found in our repository.
Impact of process complexity. The MAE improvement achieved by PGT-
Net varies significantly across different event logs. Investigating these variations,
we correlated process complexity metrics from [1, 21] with MAE improvements
achieved by PGTNet. Notably, our approach outperforms alternatives when the
number of process variants increases rapidly with respect to the number of cases.
This trend extends to other variation metrics, including ‘structure’ (average
distinct activities per case) and ‘level of detail’ (number of acyclic paths in the
transition matrix) [1]. In terms of size metrics, PGTNet exhibits superior perfor-
mance with increasing average trace length and/or number of distinct activities.
The most significant positive correlation is observed for ‘normalized sequence
entropy’, a graph entropy metric adept at capturing both variation and size
complexity [1].

This reveals that PGTNet excels in highly flexible and complex processes,
where benchmark approaches may overlook sparse but meaningful directly-follows
relations among activities. The graph representation, detailed in Section 4.1, con-
verts different process variants into non-isomorphic graphs with varying nodes,
connectivity structures, and edge weights. Graph isomorphism network (GIN)
modules, renowned for distinguishing non-isomorphic graphs [8], process this
graph-oriented data. Simultaneously, Transformer blocks capture long-range de-
pendencies. In complex processes like BPIC15, GIN blocks benefit from diverse
set of non-isomorphic graphs available for learning, while Transformer blocks
leverage insightful PE/SEs, thus providing a synergy that results in a remark-
able reduction in MAE.
Training, and inference time. We conducted experiments using an Nvidia
RTX A6000 GPU, with training and inference times detailed in Table 3. For
training time, we computed the sum of training time for all cross-validation
data splits and then averaged these times across all 20 event logs. Regarding
average inference time, we compute the time to infer the remaining time per
event prefix and report the average inference time across all event logs.

In terms of training time, DALSTM and ProcessTransformer, which use shal-
low neural networks (either with 2 LSTM layers or 1 self-attention layer), can be
trained an order of magnitude faster than the graph-based approaches, though
PGTNet is still trained faster than GGNN (12.93 vs. 18.56 hours). We see a
similar trend in terms of inference times, though essentially all approaches are
reasonably fast here, with PGTNet being the slowest with an average time just
below 3 miliseconds.

Table 3. Average training and inference time for remaining time prediction.

Time DALSTM Process
Transformer GGNN PGTNet

Training time (hours) 1.68 1.64 18.56 12.93
Inference time (miliseconds) 0.51 0.14 2.14 2.96

PGTNet for Remaining Time Prediction 15

6 Conclusion and Future Work

This paper introduces a novel approach employing Process Graph Transformer
Networks (PGTNet) to predict the remaining time of running business process
instances. Our approach consists of a data transformation from an event log
to a graph dataset, and training a neural network based on the GPS Graph
Transformer recipe [16]. Our graph representation of event prefixes incorporates
multiple process perspectives and also enables integration of control-flow rela-
tionships among activities into the learning process. This graph-oriented data
input is subsequently processed by PGTNet, which strikes a balance between
learning from local contexts and long-range dependencies.

Through experiments conducted on 20 real-world datasets, our results demon-
strate the superior accuracy and earliness of predictions achieved by PGTNet
compared to the existing deep learning approaches. Notably, our approach ex-
hibits exceptional performance for highly flexible and complex processes, where
the performance of LSTM, Transformer and GGNN architectures falls short.

While originally designed for predicting remaining times, our approach has
the potential to learn high-level event prefix representations, rendering it ap-
plicable to other tasks, including next activity prediction and process outcome
prediction. In future research, we therefore aim to apply PGTNet for these tasks,
whereas we also aim to improve the predictive accuracy of our approach by in-
vestigating the potential of multi-task learning and exploring different positional
and structural embeddings, as well as varying graph representations. Finally, we
aim to extend our approach to also be applicable to object-centric event logs.
Reproducibility: Our source code and all evaluation results are accessible in
our repository: https://github.com/keyvan-amiri/PGTNet

References

1. Augusto, A., Mendling, J., Vidgof, M., Wurm, B.: The connection between process
complexity of event sequences and models discovered by process mining. Informa-
tion Sciences 598, 196–215 (2022)

2. Bukhsh, Z.A., Saeed, A., Dijkman, R.M.: ProcessTransformer: Predictive Business
Process Monitoring with Transformer Network (2021), arXiv:2104.00721 [cs]

3. Duong, L.T., Travé-Massuyès, L., Subias, A., Merle, C.: Remaining cycle time
prediction with Graph Neural Networks for Predictive Process Monitoring. In: In-
ternational Conference on Machine Learning Technologies (ICMLT). ACM (2023)

4. Dwivedi, V.P., Luu, A.T., Laurent, T., Bengio, Y., Bresson, X.: Graph Neu-
ral Networks with Learnable Structural and Positional Representations (2022),
arXiv:2110.07875 [cs]

5. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems 100, 129–140 (2017)

6. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 70, pp. 1263–1272. PMLR (2017)

https://github.com/keyvan-amiri/PGTNet

16 K. Amiri et al.

7. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business
process monitoring using gated graph neural networks. Taylor and Francis (2020)

8. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image clas-
sification with convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

9. Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V., Leskovec, J.: Strategies
for Pre-training Graph Neural Networks (2020), arXiv:1905.12265 [cs, stat]

10. Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V., Tossou, P.: Rethinking
Graph Transformers with Spectral Attention (2021), arXiv:2106.03893 [cs]

11. Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron, H., Jegelka, S.: Sign
and Basis Invariant Networks for Spectral Graph Representation Learning (2022),
arXiv:2202.13013 [cs, stat]

12. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization (2019),
arXiv:1711.05101 [cs, math]

13. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware
remaining time prediction of business process instances. In: 2017 IEEE Symposium
series on Computational Intelligence (SSCI). pp. 1–7 (2017)

14. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time
prediction of business process instances. In: 2014 International Joint Conference
on Neural Networks (IJCNN). pp. 816–823 (2014)

15. Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep Learning for Predictive Business
Process Monitoring: Review and Benchmark. IEEE Transactions on Services Com-
puting 16(1), 739–756 (2023)

16. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe
for a General, Powerful, Scalable Graph Transformer. NeurIPS 35, 14501–14515
(2022)

17. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive Business Process Moni-
toring with LSTM Neural Networks. In: Advanced Information Systems Engineer-
ing. pp. 477–492. Springer International Publishing, Cham (2017)

18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is All you Need. In: NeurIPS. vol. 30. Curran Asso-
ciates, Inc. (2017)

19. Venugopal, I., Töllich, J., Fairbank, M., Scherp, A.: A Comparison of Deep-
Learning Methods for Analysing and Predicting Business Processes. In: 2021 In-
ternational Joint Conference on Neural Networks (IJCNN). pp. 1–8 (2021)

20. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and Cross-
benchmark Comparison of Remaining Time Prediction Methods in Business Pro-
cess Monitoring. ACM Trans. on Intelligent Systems and Technology 10(4), 34:1–
34:34 (2019)

21. Vidgof, M., Wurm, B., Mendling, J.: The Impact of Process Complexity on Process
Performance: A Study using Event Log Data (2023), arXiv:2307.06106 [cs]

22. Weinzierl, S.: Exploring Gated Graph Sequence Neural Networks for Predicting
Next Process Activities. In: BPM Workshops. pp. 30–42. Springer (2022)

23. Weytjens, H., De Weerdt, J.: Creating Unbiased Public Benchmark Datasets with
Data Leakage Prevention for Predictive Process Monitoring. In: BPM Workshops.
pp. 18–29. Springer International Publishing, Cham (2022)

24. Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.Y.: Do Trans-
formers Really Perform Badly for Graph Representation? In: NeurIPS. vol. 34, pp.
28877–28888. Curran Associates, Inc. (2021)

25. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep Sets. In: NeurIPS. vol. 30. Curran Associates, Inc. (2017)

	PGTNet: A Process Graph Transformer Network for Remaining Time Prediction of Business Process Instances

