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Abstract—Data that is recorded about the operations of an
organization constitutes a valuable source of information for
monitoring and improvement. Specific use cases include the
assessment of compliance to legal regulations, the analysis
of performance bottlenecks, or the optimization of resource
utilization. In recent years, a plethora of algorithms for operational
analysis using data series, summarized as process mining, have
been developed to support these use cases, e.g., by constructing
models for simulation and prediction or by comparing the
recorded data against a normative specification of a process.

Data series often contain sensitive information, though, about
the individuals that act as service consumers or service providers.
Personal information is only partially hidden by obfuscation and
pseudonymization and potential privacy breaches need to be
prevented for ethical, legal, and economic reasons.

This tutorial is devoted to methods for privacy-aware analysis
using data series. It covers essential notions, reviews privacy-
disclosure attacks, and outlines techniques to give formal privacy
guarantees while largely maintaining the data’s utility for
operational analysis. The discussion is structured by the adopted
perspective on the privacy of individuals, and the degree to which
a data series contains contextual information.

I. OVERVIEW

Large organizations produce an ever increasing amount of
data that is linked to their operational processes [9]. This
phenomenon is observed for traditional business processes
such as order-to-cash and procure-to-pay, as well as for
service processes in diverse domains, such as clinical pathways
in healthcare and transportation chains in logistics. In these
areas, the operations of organizations are widely supported by
information systems that record events, messages, transactions,
and service calls, which can be linked to the progress of process
execution, thereby providing an angle to monitor and improve
an organization’s operations [40].

We illustrate the essence of operational analysis using data
series in Figure 1. That is, operations and service processes,
while conducted, involve individuals as service providers and
service consumers. For example, in a healthcare environment, a
service process may describe the clinical pathway of a patient
(i.e., a service consumer) that involves providers such as nurses,
clinical assistants, medical doctors, and administrative staff [29].
Various types of systems support and control these service
processes, which yields data traces of the operations. In the
medical domain, examples for such systems are healthcare
information systems, appointment booking systems, or even
real-time locating systems that track patients and staff [37].
Through mechanism for data extraction, correlation, and

abstraction [8], [35], one then obtains a database of data series, a
set of sequences of events that indicate the operational progress
for a certain case. For instance, an event may denote the start of
a treatment step, while events are further grouped per patient.

A database of data series serves as the starting point for
operational analysis. Information is extracted from it by query
mechanisms and the results are fed into analysis algorithms.
Specific examples for such algorithms include the construction
of models to understand, assess, and simulate the service
processes [4], [30]; the derivation of predictions about outcomes
and performance characteristics [39]; the assessment of changes
of a system [1]; and the detection of congestion effects
due to competition for scarce resources [36]. Based on data
series of a clinical pathway, for instance, statistics on the
variants of treatment procedures may be derived and used
to construct models of the main patient flow at a particular
hospital department. Based thereon, what-if analysis enables
an optimization of staffing and the derivation of predictors for
the expected wait-time of patients.

Relevance of Privacy-awareness. In recent years, organi-
zations intensified their efforts to collect fine-granular and
accurate operational data. Often, this involves the collection
of sensitive data on the involved service providers and service
consumers [28] and the presence of respective databases
may violate the principle of informational self-determination,
meaning the ability of a person to control the access and use
of their personal data [3]. Potential breaches of privacy have to
be avoided not only for ethical reasons, though. In recent years,
various legal measures have been put in place, which prohibit
the processing of personal data without prior consent, with the
GDPR being a prominent example for such legislation.

Against this background, techniques to privatize data pub-
lishing have been developed, based on well-established privacy
guarantees: k-anonymity [38], which ensures that an individual
cannot be distinguished from at least k other individuals; t-
closeness [24], which ensures that the distribution of sensitive
information between equivalence groups of individuals differs
by at most a distance of t; ϵ-differential privacy [10], which
adds noise to the data to ensure that the impact of an individual
is probabilistically bound by a threshold based on ϵ. However,
to achieve these privacy guarantees, the data needs to be
transformed before publishing, which typically induces a trade-
off between the strength of privacy guarantee and the loss in
utility of the data for some analysis [22].
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Fig. 1: The essence of operational analysis using data series.

The need to investigate attacks on the privacy of individuals
is widely acknowledged in the database community. Privacy
guarantees have been explored for diverse types of data, starting
with traditional relational data [23], through social media
data [20], to models that capture the provenance of data after
some processing [7]. A similar diversity is observed for the
notions of data utility that are induced by specific queries and
functions to evaluate over the published data, such as counting
queries [19], stochastic gradient descent [44], and complex
pattern detection [42]. Overviews of these techniques can be
found in earlier tutorials [18], [26].

In this tutorial, we strive for a comprehensive overview of
techniques for privacy-aware data processing with a particular
focus: We adopt data series as the data model and operational
analysis as a use case that induces a particular set of queries
and functions that shall be evaluated over the series.

Timeliness of the Tutorial. First ideas on data-driven pro-
cess analysis have been presented more than twenty years
ago [43]. Since then, the field has experienced an enormous
development [6], [40]. With analysis techniques becoming more
elaborate, the challenge to ensure privacy while maintaining
the utility of the data grew as well. Diverse analysis algorithms
impose dedicated requirements on the properties to preserve
when transforming data series before publishing them.

Privacy-awareness in the analysis based on data series
received much attention recently, and a first consolidated set
of techniques has been proposed, as outlined in the remainder.
At the same time, there is a large number of open scientific
problems, reaching from theoretical aspects (bounds for utility
loss), through data management topics (impact of data quality
issues), to system considerations (performance optimizations).

Goals of the Tutorial. The tutorial exposes the audience to
the state of the art for privacy-aware operational analysis using
data series. It enables the participants to understand the setting
in terms of common notions of data series along with basic
queries and functions that are evaluated over them. The tutorial
raises awareness for privacy-disclosure attacks on sets of data
series and offers a precise, formal characterization of them. It
then covers methods to achieve privacy guarantees.

Participants of the tutorial are enabled to conduct research in
the field; to enhance the integration of privacy-aware operational
analysis with related questions in general data management
and engineering; and to explore the transfer of the discussed

techniques to other application scenarios.

II. TARGET AUDIENCE & ASSUMED BACKGROUND

The tutorial is primarily aimed at researchers and shall assist
them in entering the field of privacy-aware analysis using data
series. Based on the concepts presented in the tutorial, we
highlight a number of open scientific problems, which we
expect to be particularly beneficial for young researchers, who
are in the course of defining their research focus.

We expect the tutorial to also be relevant to practitioners,
who will obtain insights on how operational analysis can be
conducted in a privacy-preserving manner.

The research covered in this tutorial is rooted in data
engineering, data mining, and information systems analysis.
To follow the tutorial, a basic understanding of data structures,
graph theory, and probability theory is required. However, we
strive for a gentle introduction of the foundations through
a large number of illustrative examples. Moreover, some
basic understanding of the Python programming language will
be useful to follow the hands-on session that illustrates the
application of the concepts to real-world data.

III. SCOPE AND STRUCTURE

A. General Organization

We partition the tutorial along two dimensions, see Table I.
The privacy target dimension partitions the existing ap-

proaches into those that deal with privacy considerations related
to an intra-case perspective or an inter-case perspective. A data
series may be linked to a notion of a case that is defined by a
service consumer, i.e., data is grouped per client, customer, or
requester. However, individuals are often also involved across
cases, so that their sensitive information is distributed over
multiple data series. Assuming that the notion of a case is
induced by the service consumer, privacy requirements have
to be incorporated for the service providers that potentially
contribute to many cases. In a healthcare scenario, for instance,
a database may record treatment paths per patient. Then, privacy
requirements for the intra-case perspective relate to patients,
whereas privacy requirements for the inter-case perspective
relate to nurses, clinical assistants, medical doctors, and
administrative staff of a hospital.

The richness of the data series, in turn, characterizes the type
of information that is considered in privacy-aware analysis. Data
series capture primarily the progress of operations, i.e., they



TABLE I: Overview of techniques for privacy-awareness.

Privacy Richness of the Data Series
Target Only Sequence With Context

Intra-case
(Service
Consumer)

Noise insertion for queries
for groups of series [13],
[28], potentially including
semantic constraints [14], to
achieve differential privacy

Enrich the results of group-
ing queries with noisy
contextual information to
achieve local differential pri-
vacy [15]

Inter-case
(Service
Provider)

Strategies to merge data
series based on distance
metrics to achieve k-
anonymity [16], [33]

Combine strategies to merge
data series with those that
merge attribute values to
achieve l-diversity or t-
closeness [16], [33]; trans-
formation of the assignment
of attribute values [5]

indicate the control-flow according to which operational steps
have been conducted. Yet, they may also include contextual
information, e.g., on temporal aspects (e.g., start and end times,
durations), spatial aspects (e.g., locations, paths), or properties
of involved entities (e.g., resources, systems). Turning to the
healthcare scenario again, privacy considerations may only
relate to the sequences of treatment steps, or also include
treatment durations, patient ages, or administered drugs.

We plan for a tutorial of three hours:
Part I (0.5 hours)

◦ Introduction: Background on operational processes; use
cases for their data-driven assessment; overview of basic
analysis techniques; example scenario.

◦ Model: Data series and background knowledge; re-
identification risks.

Part II (1.5 hours)
◦ Intra-case, control-flow perspective: Formal definition of

privacy-disclosure attacks; techniques to achieve differen-
tial privacy for queries that group data series; extensions
to incorporate semantic constraints.

◦ Intra-case, contextual perspective: Attribute-disclosure
attacks that include attribute values; techniques to achieve
local differential privacy.

◦ Inter-case, control-flow perspective: Formal definition of
identify-disclosure and membership attacks; techniques to
achieve k-anonymity through merging of data series.

◦ Intra-case, contextual perspective: Formal definition of
attribute-disclosure attacks; techniques to achieve l-
diversity and t-closeness for attributes; decomposition
of events to perturb the distributions of contextual infor-
mation.

Part III (1 hour)
◦ Hands-on: Jupyter notebook to illustrate basic steps of

privacy-aware operational analysis based on real-world
data.

◦ Outlook on the broader field: Techniques for continuous
data publishing; privacy-aware computation of perfor-
mance indicators; secure multi-party computation for
privacy-aware operational analysis.

◦ Summary of current challenges and research directions.

B. Detailed Content

Part I.1: Introduction. This first part discusses the context of
operational analysis. We provide background on processes and
explain common use cases for their analysis, such as bottleneck
detection and the optimization of resource usage. Also, the
queries and functions induced by common analysis techniques
are reviewed. The concepts will be illustrated with examples
from the healthcare domain, where privacy-preserving analysis
techniques are of particular importance [31].

Part I.2: Model. To lay the foundations, we introduce common
models of data series. Those adopt a relational notion of tuples
that denote events, i.e., typed data elements, see Table II. We
further highlight the assumptions to be satisfied, e.g., in terms
of ordering and data partitioning. In Table II, for instance, the
events are ordered by the assigned timestamp, have a type
that is derived from the treatment step, and can be partitioned
based on a patient identifier.

TABLE II: Healthcare example: Events of a data series indicate
the progress of the clinical pathway of a patient.

ID Time Patient ID Step Sex Age Drug Staff ID

e42 10:31 221 Registration F 54 S26
e43 10:48 221 Vitals S11
e44 10:50 224 Registration M 23 S26
e45 10:58 221 Blood Test S11
e46 11:29 221 Admission Doctor S05
e47 11:31 224 Vitals S11
e48 11:49 221 Med. Subscription Cephalexin S05

For the introduced model of data series, we then discuss gen-
eral re-identification risks based on uniqueness measures [41].

Finally, we introduce common types of background knowl-
edge that may be employed in privacy-disclosure attacks, using
the classification presented in [33]. It separates such knowledge
based on the adopted data types (e.g., sets or sequences) and
the semantics of an event (e.g., referring only to an operational
step, or also the involved individuals).

Part II.1: Intra-case, control-flow perspective. A series often
denotes a service consumer, e.g., a patient, and the control-flow
encoded by it may reveal sensitive information, e.g., through
treatment steps that relate to an HIV infection. An adversary
may link the series with background knowledge. This way, an
adversary may re-identify an individual.

A protection against such an attack is offered by injecting
differentially private noise to the control-flow data. As a result,
the service consumer would be protected through plausible
deniability. Specifically, common analysis techniques rely on
counting queries for data series, so that a differentially private
result is achieved by having these queries return a list the
noisy counts of series prefixes. State-of-the-art approaches
tackle the problem through a step-wise construction of a prefix-
tree, where only prefixes with a positive noisy count are
expanded [28]. These techniques may be enhanced by using
the exponential mechanism to nudge the prefix-tree expansion
towards semantically meaningful prefixes [14]. Alternatively,
noisy counts can be generated by oversampling of series [13].



Part II.2: Intra-case, contextual perspective. In addition to the
control-flow information, contextual information, such as the
age and sex of a patient or the subscribed drugs, may be subject
to a privacy-disclosure attack. An adversary could link such
contextual information either background knowledge.

To prevent such an attack, it is necessary to offer protection
for the contextual information of a case. Here, one may
resort to differentially private counting queries [15], or to
oversampling of series that are at risk, and injecting noise to
the timestamps [13].

Part II.3: Inter-case, control-flow perspective. An adversary
might also try to gain sensitive information about the individ-
uals that contribute to multiple data series. In practice, this
perspective typically relates to service providers, and sensitive
information includes details on work habits and performance.

To prevent such attacks, one may minimize the deviation
in the recorded process progress to a certain degree, mainly
by grouping together similar data series. Here, the similarity
of series may be defined based on syntactic edit distances, or
also incorporate the semantics of the individual steps. Privacy
is then aimed at in terms of group-based notions, such as
k-anonymity. Specifically, all differentiating events may be
suppressed from a series, until only groups that satisfy the
privacy requirements are left [33]. As this may introduce new
types of series in the database, one may also merge series into
groups of similar series [16].

Part II.4: Inter-case, contextual perspective. It becomes easier
to gain information about individuals that participate in multiple
data series, i.e., service providers, if contextual information is
known. To prevent the respective attacks, the aforementioned
strategies for the control-flow perspective need to be enhanced
with mechanisms to anonymize the contextual information.
Notions such as l-diversity and t-closeness enable us to limit
the differences between distributions of the values of context
attributes assigned to data series [16], [33]. Then, merging of
series is governed not only by their uniqueness, but also by
the value distributions for context attributes.

Part III.1: Hands-on. A hands-on session, planned for around
30min, demonstrates the application of some of the privacy-
aware analysis techniques. To this end, we rely on a Jupyter
notebook and a real-world dataset on the treatment of Sepsis
patients at a Dutch hospital [27]. We walk the participants
through the following steps: (i) general data exploration; (ii)
queries for performance analysis; (iii) a linkage attack on the
privacy of the patients; (iv) mitigation of the attack risk through
a differentially private version of the queries.

Technically, participants may load the notebook, provided
on Github, using Google Colaboratory.1 This way, participants
are able to run and explore the code on their own laptop.

Part III.2: Outlook on the broader field. We provide an outlook
on related techniques to achieve privacy-aware processing of
data series. That is, privacy considerations may be woven

1https://colab.research.google.com/

directly into analysis techniques, e.g., the computation of
performance indicators [21] or for the analysis of the roles
of service providers [32]. We also summarize recent ideas
on on the use of Multi-Party-Computation for operational
analysis [11] and continuous publishing of data series [34].

Part III.3: Research directions. We conclude with a discussion
of challenges for privacy-aware operational analysis [12] and
outlined directions for future research.

IV. RELATED TUTORIALS

This tutorial has not been presented before. Most closely
related are tutorials given by Machanavajjhala, He, and Hay
at VLDB 2016 [25] and SIGMOD 2017 [26] on techniques
to achieve differential privacy. However, the tutorials focussed
on differential privacy for relational data. While they alluded
to privatization of network data and trajectories, they did not
cover attacks and privacy notions for sequential data. Moreover,
Anciaux, Nguyen, and Popa presented a tutorial on managing
personal data with strong privacy guarantees [2] at EDBT
2014, which covered platforms for decentralized management
of personal data. Such infrastructure considerations are largely
orthogonal to our focus on analysis algorithms.

One of the presenters gave a tutorial on temporal analysis
of complex systems [17] at ICDE 2018. It focused on sensor
data, though, and did not include privacy considerations.

V. PRESENTERS

The three presenters co-authored several research papers on
privacy-aware data analysis, including [14]–[16], [28], [41].
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