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Abstract. Process managers apply conformance checking techniques to iden-
tify deviations between the desired and the actual execution of a process. From
a process-level perspective, these deviations often involve multiple interrelated
events, for example if activities are executed in the wrong order or are unnecessar-
ily repeated. However, state-of-the-art conformance checking techniques do not
reveal these process-level deviations, instead identifying only event-level devia-
tions in the form of inserted or skipped events. To address this shortcoming, this
paper presents an approach that discovers process-level deviations from event-
level insights provided by alignment-based conformance checking techniques.
These deviations are discovered as instantiations of five commonly used patterns
of non-conformance: inserted, skipped, repeated, replaced, and swapped. The ap-
proach is designed to choose patterns according to a user’s preferences and con-
textualize them within parallelism and choices in the process model. Our evalua-
tion shows that it reliably detects process-level deviations, thus providing process
managers with more comprehensive information on process conformance.

Keywords: Process Mining · Conformance Checking · Deviation Patterns.

1 Introduction

Ensuring the compliance of business processes is paramount to an organization’s suc-
cess [9]. To manage this compliance, organizations commonly capture their desired
processes in form of normative process models [11]. If process executions deviate from
this desired behavior, detailed insights into those deviations will help process managers
to prevent future non-compliance. To obtain these insights in an automated way, they
can, for example, apply conformance checking [9], which detects deviations between
recorded process executions and desired behavior, as captured in a process model.

Deviations occur in traces when the executed activities or their order differ from
what is prescribed in the process model. From a process-level perspective, these devi-
ations often involve multiple interrelated events, e.g., if activities are executed in the
wrong order or are unnecessarily repeated. However, even state-of-the-art conformance
checking techniques do not reveal these process-level deviations. Instead, they identify
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deviations in a trace on event level, e.g., as log moves (inserted events) and model moves
(skipped events) in alignments [10]. To illustrate this, consider a loan application pro-
cess in which an approved loan is submitted for payment twice, rather than once. Then,
an alignment would show a log move on submit application. However, this does not
reveal that the activity was erroneously repeated, causing a double payout of the loan.
This process-level deviation relates to multiple events (the first correct and second er-
roneous execution of submit application) and, thus, remains implicit. For this insight, a
manager has to consult the entire alignment (not just the log and model moves) and the
process model, a manual task that is complex for long traces with many deviations.

To address this shortcoming, this paper presents an approach that discovers process-
level deviations from event-level deviations. Our goal is to provide process managers
with the process-level information they need to fully understand the process-level devi-
ations that occurred in traces, instead of the mere event-level information they get from
alignments. For that, we rely on a set of five patterns commonly used to characterize
deviations on the process level [15]: inserted, skipped, repeated, replaced, and swapped
activities (or sequences thereof). Our approach makes use of the fact that instantiations
of these patterns can be identified by aggregating event-level deviations, as found by
alignment techniques [10]. From a given alignment, we extract all potential process-
level deviations and choose the optimal interpretation of the deviations by means of a
linear program. The approach chooses patterns according to a user’s preferences and
contextualizes them within parallelism and choices in the process model. Our evalua-
tion shows that it accurately detects process-level deviations in nine labeled datasets.

The paper is structured as follows: After the preliminaries (Sect. 2), Sect. 3 illus-
trates the deviation discovery problem. Our approach is introduced in Sect. 4 and evalu-
ated in Sect. 5. We discuss related work in Sect. 6, before concluding the paper Sect. 7.

2 Preliminaries

Event log. We adopt an event model that builds upon a set of activities A. An event
e, recorded by an information system, is assumed to be related to the execution of
one of these activities. E denotes the universe of all events. For an event e, the function
act(e) : E → A returns the activity to which e belongs. A single execution of a process,
called a trace, is modeled as a sequence of events t ∈ E∗, such that no event can occur
in more than one trace. An event log is a set of traces, L ⊆ 2E

∗
. Two distinct traces that

indicate the same sequence of activity executions are of the same (trace) variant.
Process model. A process model captures execution dependencies between the activi-
ties of a process. Our work can be applied to any process model MA (independent of its
notation) that defines a set of valid execution sequences over a set of activities A ⊆ A,
where each sequence should lead the process from an initial to a final state.

t A B ≫ D
MA A B C ≫
Fig. 1: An exemplary
alignment σ

Alignments. An alignment σ between a trace t and a process
model MA is a sequence of moves that connects the activities
(of the events) in t to an execution sequence of MA [9]. Fig. 1
shows an example, with one move per column.3 Each move is a
pair (ei, ai) with ei ∈ E ∪ {≫} and ai ∈ A ∪ {≫}, where the

3 Note that in this paper, any alignment visualization places the trace above the model sequence.
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empty symbol ≫ denotes the lack of a counterpart. A move (ei, ai) is a synchronous
move if act(ei) = ai (e.g., (A,A) and (B,B)), a model move if ei =≫ and ai ∈ A
(e.g., (≫, C)), or a log move if ei ∈ t and ai =≫ (e.g., (D,≫)). Model moves signal
an activity missing from the trace, whereas log moves signal a superfluous activity.

A cost function cf : (ei, ai) → R+
0 assigns non-negative cost to each move (ei, ai)

in an alignment σ, with varying costs for different moves. Given t, MA, and cf , σ
is optimal if no other possible alignment has a lower cost than σ. The standard cost
function penalizes log and model moves equally (i.e., cf (ei,≫) = cf (≫, ai) = 1) [9],
but other cost functions allow the user to assign severity to certain moves [2] or define
milestones in traces [7], thus influencing which alignment is considered optimal.

3 Problem Illustration

To illustrate the problem of discovering process-level deviations, consider the process
model MA

1 for a loan application process in Fig. 2. This BPMN2.0 model consists of
ten activities, from creating an application (CA) to its eventual acceptance (AA) or
rejection (RA). Also consider a trace t1 = ⟨OR, AR, AR, CI, CC, PC, FA⟩.
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CA: Create Application, CR: Create Request, AR: Assign Request, PC: Personal Check, CC: Credit Check,
TCC: Thorough Credit Check, CI: Calculate Interest, FA: Finalize Application, AA: Accept Application, 
RA: Reject Application, OR: Open Rejection (not in model)  

Activities

CI 
skipped
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CR

AR, CI 
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CA 
skipped

AA or RA 
skipped

Fig. 2: Exemplary process model MA
1

Aligning t1 with MA
1 reveals multiple event-level deviations, shown in Fig. 3a. The

model moves on CA, CR, CI, and AA show that these activities are missing from t1;
the log moves on OR, AR, and CI show that these activities are executed unnecessarily
or at a wrong position. Although these moves indicate where the trace deviates from
the model, they are not connected to each other. As a result, the following underlying
issues of t1 (which we refer to as process-level deviations) are not explicitly revealed:

– Instead of creating an application (CA) and a corresponding request (CR), the case
starts by opening a previously rejected application (OR).

– The request is repeatedly assigned (AR), rather than just once.
– Interest is calculated (CI) before conducting the personal (PC) and credit checks

(CC), rather than after.
– At the end of the process, no decision is taken, since the application is neither

accepted (AA) nor rejected (RA).
The problem is that the insights provided by an alignment are far removed from these
issues. Therefore, this paper introduces an approach that can discover such process-
level deviations in alignments to provide managers with the information they need to
fully understand deviating process behavior. However, this task faces two challenges:
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≫ ≫ OR AR AR CI CC PC ≫ FA ≫
CA CR ≫ AR ≫ ≫ CC PC CI FA AA

(a) Alignment σ1 of t1 and MA
1

≫ OR ≫ AR AR CI CC PC ≫ FA ≫
CA ≫ CR ≫ AR ≫ CC PC CI FA RA

(b) Altern. alignment σ2 of t1 and MA
1

Fig. 3: Two optimal alignments of t1 and MA
1 under the standard cost function
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(a) Interpretation 1
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(b) Interpretation 2

Fig. 4: Two mappings of alignment moves in σ1 to process-level deviations

Challenge 1: Mapping alignment moves to process-level deviations. There can be
different ways to map the moves of a given alignment to process-level deviations [10].
For example, Fig. 4 shows two so-called interpretations of the moves in σ1. Among
other differences, Interpretation 1 shows a single process-level deviation at the start of
the case, replacing CA and CR by OR, whereas Interpretation 2 separates this into two
distinct issues: skipping CA, before replacing CR with OR. In light of this, our approach
has three beneficial properties when determining which interpretation to return:
P.1 It only discovers process-level deviations that are instantiations of established de-

viation patterns and known to be practical and useful for managers, i.e., inserted,
skipped, repeated, replaced, and swapped [15].

P.2 It identifies process-level deviations that are maximal, thus returning fewer, but
larger deviations where possible. For example, our approach would return Interpre-
tation 1 from Fig. 4, since this recognizes that the trace starts with one deviation,
i.e., OR replaced both CA and CR, instead of two separate, smaller ones.

P.3 It is customizable, allowing users to select and prioritize patterns according to their
preferences. For example, in an auditing context, it was found that the replace pat-
tern was too abstract to provide value [15]. In this case, our approach can be con-
figured to avoid interpretations that contain such replacements.

Challenge 2: Dealing with non-deterministic alignment search. Often, multiple op-
timal alignments can exist for the same trace, differing in the order of the contained
moves [9, p. 143] or even in the moves themselves [9, p. 161]. The algorithms (and their
implementations) used to search for alignments are, to some degree, non-deterministic,
meaning that it is typically unclear which of the optimal alignments they return. Since
the choice for a particular alignment can affect the process-level deviations derived from
it, our approach has two properties to limit the impact of non-determinism on its results:
P.4 It nudges its alignment search in a way that ensures that so-called independent

moves appear in a specific order in the obtained optimal alignment. Moves are inde-
pendent if they can be arbitrarily ordered without affecting the validity or optimality
of an alignment. Common examples are model moves on parallel activities or se-
quences of log and model moves, which can be interleaved arbitrarily [9, p.143]. We
exploit this notion of independence to obtain alignments that, where possible, con-
tain synchronous moves first, followed by model and then log moves, which simpli-
fies the detection of process-level deviations. To illustrate this, consider alignments
σ1 and σ2 from Fig. 3. In σ1, it is easier to recognize that ⟨CA, CR⟩ was replaced
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by OR, since it groups the two log moves together, whereas they are separated in
σ2. Similarly, σ1 clearly reveals that activity AR was unnecessarily repeated, since
it places the correct execution of AR before its undesired repetition, whereas σ2

uses the reverse order.
P.5 It contextualizes process-level deviations in light of choices and parallelism in a

process model. This way, the results are not affected by non-determinism with re-
spect to arbitrary selection of exclusive moves, or arbitrary orders of parallel model
and synchronous moves. For example, σ1 and σ2 differ in their final moves, where
in σ1, the request was not accepted, but in σ2, it was not rejected. Our approach
considers the execution semantics of MA

1 to recognize that the choice between
these two moves is arbitrary and should, thus, not affect the results. Therefore, no
matter which move appears in the alignment, it will reveal the true issue: The en-
tire choice at the end of the process was skipped. Similarly, for PC and CC, which
are concurrent in MA

1 , we will discover the same process-level deviation involving
these activities, independent of their order in a trace or its alignment.

In the following section, we describe an approach that has these properties to discover
process-level deviations from event-level deviations.

4 Approach

This section presents our approach for the discovery of process-level deviations. Given
a process model, a trace, and a cost function, it consists of four steps (cf. Fig. 5):
(1) Establish an optimal alignment for the trace, which involves nudging the alignment

search towards a specific order over move types (Sect. 4.1).
(2) Extract possible process-level deviations in the alignment as instantiations of devi-

ation patterns, covering all potential mappings of moves to deviations (Sect. 4.2).
(3) Determine an interpretation of a trace’s event-level deviations, defined as an optimal

mapping of all moves to a subset of the possible process-level deviations (Sect. 4.3).
(4) Contextualize process-level deviations in light of choices and parallelism in the

process model (Sect. 4.4).

Approach
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Fig. 5: Overview of our approach for process-level deviation pattern discovery

4.1 Establish Optimal Alignment

This first step establishes an optimal alignment σ for trace t and process model MA un-
der cost function cf . To obtain P.4, we strive to obtain alignments in which independent
moves are ordered by type, with synchronous moves first, followed by model and then
log moves. This will later simplify the detection of repetitions and replacements.

The idea of re-ordering moves in a cost-optimal alignment, while preserving all
other characteristics, is well-established [9, p. 143] and can be achieved in several ways,
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e.g., by adjusting the search algorithm for alignments, post-processing obtained align-
ments, or adjusting the cost function used to find them. We opt for the latter strategy,
involving minute adjustments to the cost function cf , since it makes our approach in-
dependent of a specific alignment search algorithm or implementation. To obtain the
desired move order (synchronous, model, log), we increase the costs for synchronous
moves and decrease the costs of log moves by a small factor ϵ per step in the alignment.
This nudges the alignment search to choose synchronous moves as early and log moves
as late as possible (all else being equal). We adapt the cost function as follows:

cf ′(ei, ai) =


cf (ei, ai) + i× ϵ, if act(ei) = ai (synchronous moves)
max(cf (ei, ai)− i× ϵ, 0) if ai =≫ (log moves)4

cf (ei, ai), otherwise (model moves)

We set ϵ so that ϵ× |t| is much smaller than any difference between the costs of moves
in cf . This ensures that an alignment that is optimal under cf ′ is also optimal under cf .

To illustrate this, consider the log and synchronous move on AR in Fig. 3. Under
the standard cost function, the moves are independent and can be placed at positions 4
and 5 in the alignment, in either order. However, under the adapted cost function cf ′,
these move orders receive different costs:

– ⟨(AR4, AR4), (AR5, ≫5)⟩, costs (0 + 4× ϵ) + (1− 5× ϵ) = 1− ϵ.
– ⟨(AR4, ≫4), (AR5, AR5)⟩, costs (1− 4× ϵ) + (0 + 5× ϵ) = 1 + ϵ.

Using cf ′ would thus lead to the first order (costing 1−ϵ), thereby achieving the goal of
having the synchronous move ahead of the log move in an obtained optimal alignment.

4.2 Extract Process-Level Deviations

Based on the optimal alignment σ obtained for trace t, this step extracts a set of possible
process-level deviations PD for t. This is achieved by aggregating the log and model
moves in σ into instantiations of specific deviation patterns (property P.1). We first
describe these patterns, before presenting our instantiation procedure.
Deviation patterns. Our approach expresses process-level deviations in terms of an es-
tablished set of five deviation patterns [15], referred to as inserted, skipped, repeated,
replaced, and swapped.5 As illustrated in Fig. 6, these patterns are defined as combina-
tions of alignment moves on process fragments (one or multiple consecutive activities
in the trace or model). Inserted and skipped are simple patterns consisting of one move
type, whereas the other three are more complex, combining different move types:
• The inserted pattern denotes that a trace contains a fragment that should not have

occurred at that point in the trace, recognizable as one or more consecutive log moves.
• The skipped pattern denotes that a trace misses a fragment that should have occurred

at a given part in the trace, recognizable as one or more consecutive model moves.
• The repeated pattern denotes the undesired re-execution of a process fragment that

has been previously executed in accordance with the model (e.g., activity “AR" in
Fig. 6 should have been performed once, rather than twice).

4 We avoid log moves with negative costs, which could cause issues in the alignment search.
However, this only affects the uncommon case where some log moves have cost of 0 in cf .

5 Note that the original source [15] also proposes a loop pattern, but in the context of alignments,
this is simply a specific version of the repeated pattern.
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Fig. 6: Illustration of deviation patterns based on the running example

• The replaced pattern captures that a fragment of a trace should not have been ex-
ecuted, but rather replaced a different required fragment (e.g., activity “OR” was
performed, but fragment “CA,CR” is required according to the process model).

• The swapped pattern captures that two fragments were performed in the wrong order
in a trace (e.g., “CI” was performed before “CC,PC”, rather than vice versa).

Pattern instantiation. Our approach applies Alg. 1 to discover all instantiations of
the deviation patterns in an alignment σ. The algorithm iterates over the moves in σ,
checking for each move σ[i] if it is part of instantiations of the five pattern types. Note
that these checks are, purposefully, not exclusive, meaning that the same move can be
part of multiple different process-level deviations in the result set PD.
Inserted and skipped. Identifying insertions and skips is straightforward since these
simply correspond to (sequences of) log or model moves, respectively. Given a non-
synchronous move σ[i], Alg. 1 thus creates an Insertion (or Skip) deviation for each
sequence of one or more consecutive log (or model) moves (lines 4–6).
Repeated. Thanks to the move order in σ (see Sect. 4.1), repetitions consist of syn-
chronous moves followed by log moves on the same activities. Alg. 1 checks whether
a move σ[i] is a log move (i.e., an unnecessary step) and whether a synchronous move
on the activity of σ[i] previously occurred in σ (line 7). If both hold, we instantiate a
repetition (line 8), which is extended if consecutive activities are repeated (lines 9–12).
Replaced. Thanks to the move order in σ, replacements consist of (a sequence of) model
moves, directly followed by (a sequence of) log moves. Given a model move σ[i],
Alg. 1 thus first gets a sequence seqmodel of consecutive model moves starting from
σ[i] (line 14), and a sequence seqlog of log moves starting right afterwards. If seqlog is
not empty (i.e., line 17), a replacement has been discovered.
Swapped. A swap consists of three distinct move sequences. The first sequence seq1
contains moves on activities either performed too early (log moves) or too late (model
moves). It is followed by a sequence seq2 of synchronous moves that should have hap-
pened before or after the moves in seq1, depending on the move type. The last sequence
seq3 is the inverse of seq1 (i.e., moves of opposite type on the same activities in seq1),
representing the counterpart for the activities performed too early or too late. For exam-
ple, in Fig. 6, seq1 = (CI,≫), seq2 = ⟨(CC,CC), (PC,PC)⟩, and seq3 = (≫, CI).

To identify swaps, Alg. 1 collects seq1, seq2 and a candidate sequence seq′3, starting
from move σ[i] (lines 20–23). When comparing seq′3 to seq1, two aspects need to be
considered. First, seq′3 does not have to contain the inverse moves of seq1 but can also
contain behaviorally equivalent ones. This can happen in the presence of choices, e.g.,
(≫, RA) is behaviorally equivalent to the inverse of (AA,≫), and parallelism, e.g.,
⟨(≫, PC), (≫, CC)⟩ is behaviorally equivalent to the inverse of ⟨(CC,≫), (PC,≫)⟩.
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Algorithm 1 Process-Level Deviation Extraction
Input Alignment σ, process model MA

Output Set of process-level deviations PD
1: PD ← ∅ ▷Initialize result set

2: for i = 0 to |σ| − 1 do ▷Loop over moves in alignment σ

▷ Detect insertions and skips:

3: if type(σ[i]) ̸= sync then ▷Check if σ[i] is a log or model move

4: seq ← getConsecMovesOfType(i, type(σ[i])) ▷Get sequence of consecutive moves

5: for j = 0 to |seq| − 1 do
▷ Add deviation for sub-sequence of length j + 1 according to move type

6: PD.add(new Insertion/Skip(seq[0 : j]))
▷ Detect repetitions:

▷ Check if σ[i] is a log move and was preceded by a corresponding synchronous move

7: if type(σ[i]) = log ∧ syncMoveBefore(i, act(σ[i])) then
8: seq ← ⟨σ[i]⟩ ▷Initialize sequence of repeated steps with move σ[i]

9: for j = i+ 1 to |σ| − 1 do ▷Loop over consecutive moves

▷ Check if consecutive move σ[j] is also a repetition

10: if type(σ[j]) = log ∧ syncMoveBefore(i, act(σ[j])) then
11: seq.append(σ[j]) ▷Expand the sequence of repeated steps

12: else: break ▷Otherwise stop checking consecutive moves

13: PD.add(new Repetition(seq)) ▷Add process-level deviation

▷ Detect replacements:

14: if type(σ[i]) = model then ▷σ[i] is model move?

▷ Get consecutive model moves starting from i

15: seqmodel ← getConsecMovesOfType(i, model))
▷ Get all log moves directly after seqmodel (if any)

16: seqlog ← getConsecMovesOfType(i+ |seqmodel|, log)
17: if seqlog ̸= ⟨⟩ then
18: PD.add(new Replacement(seqmodel, seqlog)) ▷Add process-level deviation

▷ Detect swaps:

19: if type(σ[i]) ̸= sync then
▷ Get all moves directly after σ[i] that are of the same type

20: seq1 ← getConsecMovesOfType(i, type(σ[i]))
▷ Get all synchronous moves directly after seq1 (if any)

21: seq2 ← getConsecMovesOfType(i+ |seq1|, sync)
▷ Get all moves directly after seq2 of the opposite type as seq1 (if any)

22: if type(σ[i]) = log then type3 ← model else type3 ← log
23: seq′3 ← getConsecMovesOfType(i+ |seq1|+ |seq2|, type3)

▷ Keep only the part of seq′3 that is the inverse of seq1 (if any)

24: seq3 ← findEquivSeq(seq′3, seq1,M
A)

25: if seq3 ̸= ⟨⟩ then
26: PD.add(new Swap(seq1, seq2, seq3)) ▷Add process-level deviation

27: return PD

Second, seq′3 may contain moves that are not relevant for the swap, but relate to other
deviations. Therefore, function findEquivSeq looks for a sequence seq3 that is a pro-
jection of seq′3, consisting of the inverse moves of seq1 (or a behavioral equivalent of
them, given MA). If such a projection exists, a swap is discovered (line 26). We provide
the details of this function in our project’s repository, linked in Sect. 5.
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Algorithm 1 ensures that every potential instantiation of a pattern in σ is identified.
However, PD will also include non-maximal subsets of instantiations, as well as differ-
ent process-level deviations related to the same moves. The next step sorts this out by
identifying an optimal subset of PD.

4.3 Determine Optimal Interpretation of Deviations

Since there can be different ways to map event-level deviations to process-level devi-
ations, we now select a subset PDopt ⊆ PD that interprets σ in an optimal manner,
i.e., it uses maximal process-level deviations (P.2) and respects the customizable user
preferences (P.3). To determine PDopt, we define an optimization problem by means of
a linear program (LP) [22]. LPs can be used to determine an optimal solution to a math-
ematical model by optimizing a linear objective function for a set of decision variables,
subject to linear constraints. In our case, we solve a special type of LP, called binary
program (BP), in which all decision variables are binary:
Input Parameters
ED Set of all event-level deviations, i.e., all log and model moves in σ
PD Set of extracted process-level deviations in the trace
ρed,pd Parameter capturing if ed ∈ ED is part of pd ∈ PD, with ρed,pd = 1 if true, else 0

αpd
Penalty of deviation pd, based on its pattern type;
default: αpd = 1.0 if swapped, 1.1 if replaced, 1.2 if repeated, 1.3 if inserted/skipped

Decision Variable
Ypd Decision whether pd ∈ PD is included in PDopt, with Ypd = 1 if true, else 0

Objective Function
Minimize

∑
pd∈PD

Ypd × αpd subject to
∑

pd∈PD
Ypd × ρed,pd = 1 ∀ ed ∈ ED

Our BP takes as input the sets of event-level (ED, consisting of all log and model moves
in σ) and process-level deviations (PD), the parameters ρed,pd, capturing whether an
ed ∈ ED is part of pd ∈ PD, and a penalty αpd for each pd, based on its pattern
type. It has one (binary) decision variable Ypd per process-level deviation pd ∈ PD,
where Ypd = 1 indicates that deviation pd is part of the optimal interpretation PDopt.
The resulting interpretation PDopt fulfils P.2 and P.3 as follows:
P.2 PDopt contains maximal process-level deviations because the objective function

minimizes the sum of the decision variables such that PDopt contains the largest
process-level deviations. PDopt is guaranteed to cover each event-level deviation
ed ∈ ED exactly once due to the constraint

∑
pd∈PD Ypd×ρed,pd = 1, ∀ed ∈ ED.

P.3 The customizable user preferences are reflected by αpd, which assigns a priority
to certain pattern types: The lower the penalty for a type, the higher its preference.
If the assigned penalties differ slightly per pattern type (as is the case in the de-
fault setting), this also ensures consistency across similar inputs, where multiple
interpretations with different pattern types would minimize the objective function.

Multiple readily-available solvers can be applied to solve the program. They all vary the
decision variables in their allowed value range to minimize the objective function, guar-
anteeing an optimal solution. We use the CPLEX solver [16]. Applied to our running
example, the BP aggregates the event-level deviations into four process-level deviations,
yielding the outcome previously illustrated in Fig. 4a.
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4.4 Contextualize Process-Level Deviations

In this final step, the elements of the optimal interpretation PDopt are contextualized
within choices and parallelism in the process model to reflect generalized process-level
insights, achieving property P.5. Concretely, we first extract all block structures from a
process model MA, identifying those indicating choices (XOR-blocks) and parallelism
(AND-blocks). We use these blocks to indicate when process-level deviations in PDopt

apply to an entire choice or parallel construct, rather than just individual paths through
them. Finally, the deviations in PDopt are verbalized and presented to the user.
Extracting block structures. A block structure consists of multiple paths (i.e., branches)
through a part of a process model that all start in one and end in another activity (in
graph-based process models, these are single-exit-single-entry fragments) [17]. We fo-
cus on XOR-blocks, in which branches are mutually exclusive (e.g., the choice between
AA and RA in Fig. 2), and AND-blocks, in which branches can be executed in an arbi-
trary order (e.g., the parallel construct between PC and the choice of TCC and CC).

To obtain block structures for a process model MA, we use an existing PM4Py
function [6], yielding sets X of extracted XOR-blocks and C of AND-blocks. We rep-
resent these block structures in the form of process trees [17], to compactly capture
them. These process trees are mathematical trees in which leaves are labeled with ac-
tivities a ∈ A and internal nodes are labeled with operators o ∈ ϕ, where the set of
operators ϕ = {→,×,∧,⟲} indicate sequence, choice, parallel, or loop behavior, re-
spectively. For our running example, we obtain X = {×(AA,RA), ×(TCC,CC)} and
C = {∧(PC,×(TCC,CC))}, with the second XOR-block nested within the AND-block.
Indicating missing XOR-blocks. So far, skipped and replaced deviations capture a
missing sequence of activities in a trace. However, if the missing sequence is a branch in
an XOR-block, this specific branch was arbitrarily chosen during the alignment search.
Thus, we want to generalize that this entire XOR-block is missing, rather than just one
branch of it. For instance, rather than capturing that Accept Application (AA) is missing,
we indicate that the choice between rejecting or accepting an application was missing,
i.e., that the block ×(AA,RA) was skipped. We achieve this by checking if the sequence
of model moves in pd ∈ PDopt (if it is a skip or replacement) corresponds to a valid
sequence of an XOR-block in set X . If so, we refine pd with that information.
Indicating deviating AND-blocks. We also want to recognize when different traces
contain the same process-level deviation involving concurrent activities in an AND-
block, independent of the order of these activities in the trace. We achieve this by
checking if a fragment of deviation pd ∈ PDopt, consisting of moves of the same
type, corresponds to an execution sequence of an AND-block in C. If so, we refine pd
with that information. In this way, we would, for instance, be able to capture that swap-
ping Credit Check, Personal Check (CC,PC) with the activity Calculate Interest (CI),
corresponds to the same deviation as a swap of (PC,CC) with CI in another trace.
Output of process-level deviations. Our approach yields a set of contextualized process-
level deviations PDopt per trace. When presenting the results to a user, we verbalize
PDopt using a standard template for each pattern in order to make it easier to interpret.
In our running example, our approach then yields the output in Fig. 7.

Finally, we can aggregate the process-level deviations of all traces in an event log
L, resulting in a multi-set of identified issues and their respective frequencies.
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Output

19.02.24

Deviation Pattern Discovery 20

XOR-block (Accept Application, Reject Application) is skipped

⟨Create Application, Create Request⟩ is replaced by Open Rejection

Assign request is repeated

Calculate Interest is executed before, rather than after AND-block (Credit Check, Personal Check)

Fig. 7: Exemplary output for our running example

5 Evaluation

We implemented our approach in a Python prototype6, using the PM4Py library [6].
Based on that, we evaluate its capability to re-discover process-level deviations in la-
beled data (Sect. 5.1) and illustrate its potential practical value by showing that it can
find process-level deviations in real-life scenarios (Sect. 5.2). Its computational com-
plexity is dominated by the alignment computation in step 1, which can be exponential
in the size of the trace and the model. In practice, however, our complete approach took
less 50 seconds for each log-model pair in this section, as shown in our repository.

5.1 Re-discovering Process-Level Deviations in Labeled Datasets

This section describes experiments conducted to assess whether our approach can detect
known process-level deviations in event logs, where each trace is individually labeled
by independent researchers with the process-level deviations it contains.
Data. We evaluate our approach on nine synthetic, labeled event logs as illustrated
in Tab. 1. The first log [15] was created for the (manual) identification of deviation
patterns in traces; traces can contain multiple process-level deviations. The remaining
eight logs [19] were created for anomaly detection. Based on eight process models,
the authors simulated event logs with control-flow anomalies to evaluate whether these
can be detected without a process model. Each trace contains at most one anomaly.
The anomalies are grouped into the categories inserted, skipped, rework (corresponds
to repeated), early, and late (both correspond to swapped). These logs do not contain
replacements. Although created for a different purpose, we can use these labelled traces
to check if we can discover process-level deviations w.r.t. the provided process models.
Baselines. To illustrate the importance of the different parts of our approach, we com-
pare its performance to versions of our approach that skip certain steps:
(a) Omit Step 1: This baseline does not use the adjusted alignment cost function to

order moves in the alignment. Instead, it uses the standard cost function, leading to
less-deterministic move orders in obtained alignments.

(b) Omit Step 2 & 3: This baseline does not aim to establish any process-level devia-
tions but just returns the most basic interpretation, achieved by simply mapping the
log and model moves to inserted and skipped patterns.

(c) Omit Step 4: This baseline does not aim to contextualize deviations within exclusive
and concurrent behavior. Instead, it skips the last step of the approach and returns
the non-contextualized process-level deviations.

6 https://dx.doi.org/10.6084/m9.figshare.25942474

https://dx.doi.org/10.6084/m9.figshare.25942474
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Table 1: Descriptive statistics for used event logs

[15]
[19]

Gigantic Huge Large Medium P2P Paper Small Wide
Activities in Model 9 154 109 85 65 27 27 41 68
Events in Log 152 29,829 43,210 57,524 31,991 43,193 56,814 43,437 31,910
Deviating Variants 18 671 796 1115 662 583 647 653 559

Benchmark. We compare our approach to existing work by García-Bañuelos et. al. [12],
which also detects deviation patterns in event data. In contrast to our work, their ap-
proach targets an entire event log at once, rather than detecting patterns per trace. Still,
we can use it as a benchmark for our approach by applying it to (logs consisting of) one
trace at a time. When used per trace, their approach returns patterns that can be directly
mapped to the patterns that we use. Next to that, it detects additional patterns that are
only visible when considering all traces at once, e.g., related to concurrency in the event
log. We provide details on the adaptations necessary to make their approach work for
individual traces, as well as further conceptual differences in our repository.
Metrics. We measure the capability to discover process-level deviations using precision
and recall (Eq. 1). If a trace contains a certain process-level deviation, its classification is
a true positive (TP) if both pattern and fragment of the deviation are identified correctly
and a false negative (FN) otherwise. The logs from [19] do not label fragments, so they
are assessed based on pattern only. Conversely, a trace without a certain process-level
deviation is a true negative (TN) if that deviation is not detected in it and a false positive
(FP) otherwise. A classification that does not properly contextualize a deviation in an
XOR- or AND-block is counted as half-correct, increasing both FN and TP by 0.5.

Prec. =
TP

TP + FP
Rec. =

TP

TP + FN
(1)

Results. Table 2 displays precision and recall for the nine event logs and compares
the performance of our full approach to the baselines and the benchmark. Values for the
eight event logs of [19] are averages, information per log can be found in our repository.

Our full approach has perfect recall and precision for all deviation patterns in all
event logs. Thus, we were able to correctly discover all process-level deviations accord-

Table 2: Precision and recall for used event logs

Log Pattern Support Full Approach Omit Step 1 Omit Step 2 & 3 Omit Step 4 [12]
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

[15]

inserted 6 1.00 1.00 0.60 1.00 0.24 1.00 1.00 1.00 0.06 0.83
skipped 5 1.00 1.00 1.00 1.00 0.42 1.00 1.00 0.90 0.23 1.00
repeated 12 1.00 1.00 1.00 0.67 0.00 0.00 1.00 1.00 0.27 0.55
replace 3 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.27 1.00
swap 4 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.27 1.00

[19]

inserted 1919 1.00 1.00 0.87 1.00 0.48 1.00 1.00 1.00 0.42 1.00
skipped 692 1.00 1.00 1.00 1.00 0.42 1.00 1.00 0.64 0.38 0.99
repeated 1163 1.00 1.00 1.00 0.75 0.00 0.00 1.00 1.00 0.43 1.00
swap 1912 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.64 0.39
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ing to the provided labels. However, the performance of the baselines and the bench-
mark indicate that only our full approach addresses this task in a satisfactory way.
Omit Step 1. If we do not enforce a certain order of alignment moves, we obtain lower
recall values for repetitions, meaning that fewer are correctly discovered. Instead, these
deviations are interpreted as insertions, shown by lower precision values for that pattern.
Due to the nature of this task, the results for this baseline are highly non-deterministic,
so another execution of this baseline might obtain different values.
Omit Step 2 & 3. If we do not establish any process-level deviations, we obtain lower
precision values for the inserted and skipped patterns, which means that they are de-
tected too frequently, whereas the three other patterns are not detected at all.
Omit Step 4. If we do not contextualize process-level deviations within XOR- and AND-
blocks, we obtain lower recall values for skipped patterns, showing that they are not
correctly identified. This effect does not occur for the inserted and repeated patterns
as they are simulated as additional, model-external activities, which are not part of an
XOR- or AND-block. Further, it does not affect swapped patterns as no complete AND-
blocks are swapped. It is also not visible for replacements because those in [15] do not
need to be contextualized and there are no replacements in [19].
Benchmark [12]. The benchmark approach performs worse than our approach, espe-
cially with respect to precision. This is because it does not identify maximal deviations,
instead returning separate deviations for each element of a deviating process fragment,
leading to many false positives. To the same effect, the returned deviations are not mu-
tually exclusive, meaning that the approach returns e.g., a replacement of A by B, an
insertion of B, and a skip of A instead of just the replacement. Further, the approach
does not uncover all process-level deviations, manifesting in worse recall. This happens
if the approach returns only one of many deviations in a trace and if it mixes up differ-
ent pattern types and, e.g., returns insertions as repetitions. In addition, some swaps are
missed completely and replacements are wrongly discovered in the logs from [19].

Performance between the logs differs due to their individual characteristics. For
example, the logs of [19] have relatively many inserted and skipped patterns, meaning
that omitting Steps 2 and 3 has a less drastic impact than for [15]. Further, the log
from [15] contains many repetitions in form of loops, which are not correctly recognized
when omitting Step 1, indicated by lower recall. The benchmark performs worse for
[15] as it is less able to detect the more complex process-level deviations in it.

5.2 Illustration of Process-Level Deviation Discovery in Real-Life Application

We next demonstrate the potential practical value of our approach by showing that it
reveals process-level deviations in a well-known real-life event log. For that, consider
the loan application process in Fig. 8. It is a part of the BPI Challenge 2012 process,
where all activities start with A_ (BPIC 12A). After submission, the approval process
moves through four steps, with the option to be terminated by either A_DECLINED
and A_CANCELLED at any stage. If, after the four steps, the loan is approved, the two
parallel activities A_REGISTERED and A_ACTIVATED will follow. Although this is
a rather simple process, it serves as a suitable example for our approach as it clearly
illustrates how event-level deviations can be set into process-level context.
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Evaluation

27.09.2023

Deviation Pattern Discovery 37

Illustration with real-life data2
In some publicly available datasets, the approach shows interesting findings
e.g., BPIC12A
-> discuss what the added value is

A_SUBMITTED A_PARTLY 
SUBMITTED   

A_PREACCEPTED A_ACCEPTED A_FINALIZED

A_REGISTERED

A_APPROVED

A_ACTIVATED

X

X X X

X

+

X

+

A_DECLINED

A_CANCELLED

Fig. 8: Process model for BPI Challenge 2012 (only A_ Activities)

For this process, the BPIC 2012 event log7 contains 13,087 execution traces in
17 variants. In the seven variants that deviate from the model, our approach discov-
ers four distinct process-level deviations, shown in Tab. 3. Among these deviations,
the first three are very similar: They involve a swap of A_APPROVED with either
A_REGISTERED, A_ACTIVATED, or both. For the two variants where both activities
are swapped, we identify the same process-level deviation, since they are contained in
an AND-block. The fourth process-level deviation occurs in three variants, which are
terminated prematurely without executing either A_CANCELLED or A_DECLINED.
Our approach discovers the skipping of the XOR-block in all three variants.

Table 3: Discovered process-level deviations for deviating variants in BPIC 12A
Process-Level Deviation Deviating Variant Count

APP swapped with REG ⟨SUB,PAR,PRE,ACC,FIN,REG,APP,ACT⟩ 532

APP swapped with ACT ⟨SUB,PAR,PRE,ACC,FIN,ACT,APP,REG⟩ 322

APP swapped with ∧(REG, ACT)
⟨SUB,PAR,PRE,ACC,FIN,ACT,REG,APP⟩ 154
⟨SUB,PAR,PRE,ACC,FIN,REG,ACT,APP⟩ 183

x(CAN, DEC) skipped
⟨SUB,PAR,PRE,ACC,FIN⟩ 327
⟨SUB,PAR,PRE⟩ 69
⟨SUB,PAR,PRE,ACC⟩ 3

SUB = A_SUBMITTED; PAR = A_PARTLY SUBMITTED; PRE = A_PREACCEPTED;
ACC = A_ACCEPTED; FIN = A_FINALIZED; REG = A_REGISTERED;
APP = A_APPROVED; ACT = A_ACTIVATED; CAN = A_CANCELLED; DEC = A_DECLINED

6 Related Work

The adjustment of alignment cost functions as well as the discovery of high-level devi-
ation patterns has been addressed by previous works. Deviation patterns have also been
used in research on model repair.
Adjustment of alignment cost function. Alignment cost functions can be adjusted to
obtain alignments with specific characteristics. For example, the cost function can be
defined based on historic data to calculate alignments closest to previous conforming
traces [3]. It can also incorporate the severity of (context-aware) deviations, including
process-level deviations that are known to exist [1, 2]. Alternatively, the cost function
can be adjusted to maximize the number of synchronous moves and introduce unskip-
pable events in alignments [7] or to increase computational efficiency [8]. Similarly,

7 https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F

https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
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Sect. 4.1 describes how we adapt the cost function provided as input. However, our
adaptations do not change any characteristics of the resulting alignment, except for the
order of independent moves. Hence, our approach can be used in conjunction with any
cost function, including those in the cited papers.

Deviation pattern discovery. In a framework to categorize deviation patterns [10], the
authors stress that process-level deviations can be discovered from skipped and inserted
activities. Although an algorithmic idea for that is sketched, no approach is provided.

Alternatively, two existing approaches discover process-level deviations on the log
level instead of the trace level. The first approach conducts a conformance check based
on log-level event structures [12]. It detects process-level deviations in entire event logs
but can, in principle, be used for trace-level feedback, which is equivalent to our five
pattern types. In Sect. 5.1, we use it as a benchmark by applying it to each trace individ-
ually. Given the different scope, additional patterns are found if considering the entire
event log at once. The approach does not consider deviations on process fragments in
the five pattern types used by us and it does not account for the same deviation mul-
tiple times in one trace. Returned deviations are not mutually exclusive. The second
approach discovers sets of highly correlated event-level deviations, which are assumed
to constitute a process-level deviation [13]. Such a statistical approach might miss rare
process-level deviations, which can have major impact on the organization. Also, as no
predefined patterns are used, the user is required to interpret the deviation.

If process-level deviations are previously known and expected to occur, they can be
included in a process model. A so-called “break-the-glass” alignment assigns specific
costs to these deviations [2] and allows for their detection in process executions. Alter-
natively, these deviations can also be detected by means of token-replay [5]. However,
these approaches are limited to known and explicitly modeled process-level deviations.

Finally, some approaches classify event-level deviations as either skipped, swapped,
or duplicated [21, 24]. However, the discovery is restricted to these three pattern types.
Also, event-level deviations are not aggregated, but rather each alignment move is clas-
sified. Similarly, other approaches classify data-aware alignment moves as “deviation
patterns”, defined as a combination of deviations in control-flow and data perspec-
tive [18]. Thus, they do not discover process-level deviations. Further, an approach
to workaround detection classifies activities as repeated, substituted, interchanged, by-
passed, or added [23]. Although these are similar to our deviation patterns, there is a
conceptual difference between (typically intentional) workarounds and (usually unin-
tended) deviations. Also, only individual activities are classified by means of machine
learning, thus not ensuring correct classification and not setting deviations into context.

Model repair. In research on model repair, some approaches base their repairs on
deviation patterns. For example, given a process model, one approach detects high-
level anomalous behavior in an event log and includes it in a repaired version of the
model [14]. However, this anomalous behavior does not use predefined patterns but
rather is defined as often co-occurring low-level deviations. Another approach consid-
ers the same types of patterns as [12] and allows users to incrementally include them in
the model [4]. The identification of these patterns is equivalent to our benchmark. Last,
one approach repairs model by assuming the existence of skips and repetitions [20].
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7 Conclusion

In this paper, we propose an approach that discovers process-level deviations from
event-level insights provided by alignments. Relying on a set of five commonly used
patterns, this four-step approach accounts for user’s preferences and contextualizes de-
viations within choices and parallelism in process models. Our evaluation shows that
all process-level deviations are discovered in labelled datasets, addressing the two main
challenges of this tasks. Also, we reveal process-level deviations in a real-life event log.

Our approach is subject to a few limitations. First, we use trace alignments as the
basis for our approach, which are not initially contextualized in the control-flow con-
structs of a process model. However, since alignments provide a symmetric view of how
a trace fits to a process model and can be considered state-of-art for trace level feed-
back [9], they provide a solid foundation to discover process-level deviations in traces.
Therefore, in contrast to the benchmark we compared against [12], our approach re-
quires an additional contextualization step. Second, although we have reduced the non-
determinism of both the alignment computation (by adjusting the cost function) and the
BP solution (by assigning slightly different penalties for pattern types), we cannot elim-
inate it completely and therefore cannot prove that our approach always behaves fully
deterministically. Still, we consider this risk to be low since this situation did not occur
in any of our experiments. Third, we define an optimal interpretation of an alignment
based on based on the assumption that maximal process-level deviations are preferred
to non-maximal ones. This optimality assumption might not hold in every setting, for
example in strongly deviating traces. However, we consider it to be reasonable as it is
in line with current research findings [15]. Last, in very rare edges cases, our adjusted
cost function cf ′ will influence not only the move order but also the move choice (while
maintaining optimality under cf ). For example, consider a process model with a loop
on activities X and Y and a trace that only executes X. Under cf ′, a log move on X will
be favored over a model move on Y as we make the log move less expensive. However,
since model move (i.e., skipping half of the loop) and log move (i.e., inserting half of
the loop) reflect the same insight, this does not reduce the practicality of our approach.

The output of our approach can be used in the future to provide deeper insights into
process conformance. To show its practical value, we aim to assess the informativeness
of the approach by conducting a user study and evaluating whether the output is use-
ful for managers. Further, we want to research if we can further characterize deviating
behavior and, e.g., detect early terminations of traces. In the same context, we aim to
study how similarities between process-level deviations and identify dependencies be-
tween different deviation patterns such as links (e.g., if A is skipped, Z is also skipped).
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