
Looking for Change: A Computer Vision
Approach for Concept Drift Detection in

Process Mining

Alexander Kraus1 and Han van der Aa2

1 Data and Web Science Group, University of Mannheim, Germany
2 Faculty of Computer Science, University of Vienna, Austria

alexander.kraus@uni-mannheim.de

han.van.der.aa@univie.ac.at

Abstract. Concept drift in process mining refers to a situation where
a process undergoes changes over time, leading to a single event log con-
taining data from multiple process versions. To avoid mixing these ver-
sions up during analysis, various techniques have been proposed to detect
concept drifts. Yet, the performance of these techniques, especially in sit-
uations when event logs involve noise or gradual drifts, is shown to be
far from optimal. A possible cause for this is that existing techniques
are developed according to algorithmic design decisions, operating on
assumptions about how drifts manifest themselves in event logs, which
may not always reflect reality. In light of this, we propose a completely
different approach, using a deep learning model that we trained to learn
to recognize drifts. Our computer vision approach for concept drift de-
tection (CV4CDD) uses an image-based representation that visualizes dif-
ferences in process behavior over time, which enables us to subsequently
apply a state-of-the-art object detection model to detect concept drifts.
Our experiments reveal that our approach is considerably more accurate
and robust than existing techniques, highlighting the promising nature
of this new paradigm.

Keywords: Process mining · Concept drift detection · Object detection
· Computer vision · Deep learning.

1 Introduction

Business processes are widely supported by information systems, which record
data generated during the execution of process instances. Such data, captured in
the form of event logs, forms the basis for process mining, a family of techniques
that analyze how business processes are truly executed [1]. The event logs used in
process mining represent snapshots of data generated during process execution
over a specific period of time. Due to their dynamic environments, business
processes under analysis are often not in a steady state but are rather subject to
changes [3]. These changes can result in the presence of concept drifts in event
logs, i.e., situations in which an event log contains data from multiple versions of

2 Alexander Kraus and Han van der Aa

a process. To avoid polluting process mining results by mixing up these different
versions, concept drift detection strives to identify them [3].

The importance of concept drift detection in process mining has been widely
acknowledged [24], resulting in a range of proposed concept drift detection tech-
niques [7, 21]. What these techniques have in common is that they are all de-
veloped according to certain algorithmic design decisions, relying on heuristic
strategies to identify concept drifts. Essentially, these techniques operate based
on assumptions about how drifts manifest themselves in event logs. However,
such assumptions and their corresponding design decisions may not hold in all
settings, which means that the techniques may break down in situations that
involve noise, drifts of different types, or change severity. As a result, existing
techniques cannot consistently detect concept drifts with proper latency.

To overcome this problem, we propose a computer vision approach for con-
cept drift detection (CV4CDD) that follows a completely different paradigm. More
precisely, our approach uses a machine learning (ML) model that was trained
on a large collection of labeled data, allowing it to learn how drifts actually
manifest themselves in event logs. The possibility of training such a model has
only recently emerged, thanks to a tool for generating large collections of logs
with known concept drifts [8]. Still, even with such labeled data at hand, the
question of how to tackle concept drift detection through (supervised) ML is far
from straightforward. This is due to the difficulty of capturing the progression of
an entire process over time, in a manner suitable as input for an ML model. To
deal with this, we draw inspiration from works that use image-based representa-
tions to encode multi-faceted data about processes [19,20]. Specifically, we turn
an event log into an image that visualizes differences in process behavior over
time. This enables us to employ a state-of-the-art object detection model [13]
(from the field of computer vision), fine-tuned on a large collection of event logs
with known concept drifts, to recognize where drifts occur in unseen event logs.
Our experiments reveal the efficacy of this idea, showing that our approach is
considerably more accurate and robust than existing techniques.

In the remainder, we define the scope of the work in Section 2, including
the input to the problem and desired output. Our CV4CDD approach is detailed
in Section 3. Section 4 presents the evaluation of our approach against state-of-
the-art techniques. Finally, Section 5 reflects on related work before Section 6
concludes the paper.

2 Problem Definition

This section outlines the concept drift detection problem that our work focuses
on. We start by defining the input to the problem, before describing the scope,
and desired output.

Problem input. Our approach takes as input an event log L, which we define
as a collection of events e recorded by an information system during process
execution. Each event e ∈ L needs to at least have a case ID, an activity, and a
timestamp. We use ΣL to refer to the set of traces, where each σ ∈ ΣL represents

A Computer Vision Approach for Concept Drift Detection 3

a sequence of events from L with the same case ID, ordered by their timestamps.
Traces in ΣL are ordered by the timestamp of their first event.

Scope. Our work focuses on the most important problem in concept drift de-
tection, i.e., the detection of process changes in the control-flow perspective of a
process. A process change refers to a situation where a business process under-
goes a modification that affects the characteristics and behavior of the process,
leading to a new process version, i.e., a specific variant of a business process.
The detection of process changes consists of two sub-tasks [16]:

1. Change point detection, which aims to detect if and when a process change
occurred in an event log. This is captured in the form of process change
point p, a moment in an event log when the process behavior starts to differ
significantly from the previous behavior.

2. Change characterization, which considers how process changes manifest them-
selves over time. In our work, we focus on the two fundamental kinds of pro-
cess changes: sudden and gradual drifts, as illustrated in Figure 1. A sudden
drift is described by an abrupt change in process behavior after a certain
process change point, while a gradual drift is characterized by a transition
period between two change points when a current process version is replaced
by a new one, and both versions coexist during a transition period [3].

Sudden drift Gradual drift

𝑣1

Time

𝑣2

Time

P
ro

ce
ss

v
er

si
o

n

𝑣1

𝑣2

P
ro

ce
ss

v
er

si
o

n

𝑝 𝑝𝑠 𝑝𝑒

Fig. 1: The scope of our work: detecting sudden and gradual drifts and the cor-
responding process change points (adapted from [3]).

Output. Given the above, the desired output of the problem we consider is a
collection of detected concept drifts Dd = {dd1, . . . , ddn}, where each concept drift
is characterized by a drift type ddi .type (either sudden or gradual) and one or two
change points, i.e., ddi .p for sudden drifts or ddi .ps and ddi .pe for gradual ones.

3 Approach

This section introduces CV4CDD, our computer vision approach for concept drift
detection. As visualized in Figure 2, CV4CDD consists of two main steps. First, we
transform an event log into an image that captures the behavioral (dis)similarity
of a process over time. Then, the image is passed to our fine-tuned computer
vision model, which identifies if drifts are present in an event log and, if so,
determines their type (sudden or gradual) and corresponding change points.

4 Alexander Kraus and Han van der Aa

Event

log
1. Transformation

Concept

drifts

2. Drift detection

Computer vision modelProcess

(dis)similarity

Fig. 2: CV4CDD: overview of the main steps.

3.1 Transformation of Event Log into Image

The first approach step takes as input an event log and transforms it into an
image as output. The image visualizes behavior (dis)similarity of a process over
time recorded, which can be used to recognize concept drifts. The transformation
includes four steps, as depicted in Figure 3.

Split traces
into windows

Calculate behavioral
representation

Measure
similarity

Transform
into image

Event

log

Fig. 3: First approach step: transforming an event log into an image.

Split traces into windows. The approach first splits the chronologically or-
dered traces in ΣL into an ordered collection of N windows, W := ⟨w1, . . . , wN ⟩.
These windows are non-overlapping and collectively cover all recorded traces in
ΣL, with each window wi containing approximately |ΣL|/N traces.

During the fine-tuning of the computer vision model, we use 200 as a default
value for the number of windows N so that each window wi covers about 0.5%
of all traces from the log. For the training collection (see Section 4.1), with logs
containing 2,000–8,000 traces, this setting provides an effective representation
per log. We recommend using 200 windows also as the default setting for detect-
ing concept drifts using CV4CDD on a new event log. However, for small event logs
(e.g., with fewer than 2,000 traces), decreasing the number of windows avoids
having too few traces per window. Conversely, larger event logs (especially those
spanning a long time range) may benefit from having more windows, to prevent
drifts occurring within the span of a single window.

Calculate behavioral representation. After establishing W , the approach
computes a behavioral representation, B(wi), for each set of traces in wi to char-
acterize the recorded process behavior. B(wi) consists of two-dimensional tuples,
each storing a behavioral pattern and its frequency. A common behavioral rep-
resentation used in process mining is to capture the directly-follows frequencies
observed during a time window [7], which we use as the default behavioral rep-
resentation. It counts how often two activities were observed to directly succeed

A Computer Vision Approach for Concept Drift Detection 5

each other for a case. However, it is important to note that the choice for a
behavioral representation is flexible, provided that it yields a numeric frequency
distribution over a predefined set of relations or patterns across the window.
Therefore, CV4CDD can also cover other types of relations (e.g., eventually fol-
lows), sets of relation types, such as those of a behavioral profile [23], or declar-
ative process constraints [6].

Measure similarity. Next, our approach compares the behavioral represen-
tations obtained for the different windows, quantifying their similarity. This
comparison is done for each pair wi and wj from W , resulting in a symmet-
ric similarity matrix denoted as S. Each entry S[i, j] in this matrix shows the
similarity between the behavior represented by B(wi) and B(wj).

The similarity matrix S can be established using various similarity measures.
Common options employed in process mining contexts include the cosine simi-
larity (our default choice) and the Earth mover’s distance [4].

Figure 4 illustrates the calculation of the similarity measure between two
windows, using a behavioral representation based on directly-follows frequencies
and the cosine similarity measure.

Windows Traces
Behavioral

representation
Similarity
measure

wi
〈a,b,c〉2

〈a,c〉 B(wi) =

a → b : 2
b → c : 2
a → c : 1
c → d : 0

 S[i, j] = sim(B(wi), B(wj))

= cosine(

2
2
1
0

 ,

1
1
1
1

)
= 0.83

wj
〈a,b,c〉
〈a,c,d〉 B(wj) =

a → b : 1
b → c : 1
a → c : 1
c → d : 1

Fig. 4: Illustration of the similarity calculation between two windows.

Transform into image. Finally, to enable image-based concept drift detection,
the similarity matrix S is visualized in the form of an image. Figure 5 depicts a
few examples of this transformation, covering different drift scenarios recorded
in an event log.

To convert a similarity matrix into an image, our approach normalizes the
matrix values to a range between 0 and 1, where the maximum similarity cor-
responds to 1 and the minimum similarity is 0. Each normalized value is then
scaled by 255 and converted to integers, resulting in a range between 0 and
255. Finally, using the Python Imaging Library3 and a color map, images are
generated from the normalized values.

3 Available online: https://python-pillow.org

https://python-pillow.org

6 Alexander Kraus and Han van der Aa

a) Sudden drift b) Gradual drift c) Gradual and

 sudden drifts

d) Gradual, gradual,

 and sudden drifts

sudden

sudden sudden

gradual

gradual
gradual

gradual

𝑤𝑁

𝑤1

𝑤𝑖

High

Low

B
eh

av
io

ra
l

si
m

il
ar

it
y

𝑤1 𝑤𝑁𝑤𝑖

Windows
𝑤1 𝑤𝑁𝑤𝑖

Windows
𝑤1 𝑤𝑁𝑤𝑖

Windows
𝑤1 𝑤𝑁𝑤𝑖

Windows

Fig. 5: Output of the first approach step (incl. annotations).

It is important to note that CV4CDD can also work with other types of im-
ages that record changes in process behavior over time. For instance, it could
use images obtained from the Visual Drift Detection techniques introduced by
Yeshchenko at el. [25]. In this case, a new annotation and training procedure for
the drift detection model (see Section 3.2) may be necessary, though.

3.2 Drift Detection

The second step of CV4CDD takes as input the image obtained from the previous
step and applies a fine-tuned object detection model to detect concept drifts. In
this section, we present an overview of the object detection task and employed
object detection model, elaborate on the training data and its annotation, and
clarify the training configurations.

Object detection using RetinaNet. Object detection is a fundamental task
in computer vision, where the goal is to identify and locate objects within im-
ages. Deep learning methods have significantly advanced this field by directly
learning features from data, leading to breakthroughs in object detection [13].
RetinaNet [11] is a recent addition to deep learning-based object detection mod-
els. Known for its effectiveness and reliability, RetinaNet has become widely
adopted in both research and practical applications, setting new standards in
object detection performance.

The RetinaNet model has three main parts [11]. First, a backbone network
extracts features from input images, capturing important patterns for identify-
ing objects. Second, a feature pyramid network is added on top of the backbone
to create a multi-scale pyramid of feature maps, combining features from dif-
ferent levels of the backbone, enabling effective detection of objects of various
sizes. Finally, the model includes two subnetworks for classification and bounding
box regression, enabling accurate object detection. As a result, the RetinaNet
architecture is well-suited for detecting concept drift in images because it can
effectively handle noise and identify sudden and gradual drifts across various
sections of an image.

Training data and annotation.We use a training set of event logs with known
concept drifts. Each event log in the training set is transformed into an image

A Computer Vision Approach for Concept Drift Detection 7

using the first step of our CV4CDD approach (Section 3.1). Then, each image is
annotated based on the drift information stored in the gold standard, captur-
ing where different drifts occur and what their types are. For the annotation,
we define bounding boxes using widely-employed COCO (Common Objects in
Context) format [12].

In our case, we use these bounding boxes to capture where drifts of certain
types occurred in the image, as shown for various scenarios in Figure 5. To
annotate sudden drifts, characterized by a single change point p that belongs to
a window wi, we establish a bounding box around wi that spans 5 windows in
both directions from wi. For gradual drifts, we create annotations using windows
that correspond to the start and end change points. Each change point ps and pe
is associated with a trace index, which belongs to a particular window in W . The
corresponding windows wi and wj , allow us to link ps and pe to their window
indices i and j. We use these indices to define a bounding box for gradual drift
within an image.

Training configurations. To operationalize CV4CDD, we specifically use the
RetinaNet model from the TensorFlow Model Garden4, based on the SpineNet
backbone (ID 143). The model is pre-trained on the COCO dataset5, a widely-
used dataset for object detection. To adapt it to our specific task, we fine-tune
the model on a training set and halt fine-tuning using a validation set to prevent
overfitting.

Image input, batch size, anchor boxes. We use a fixed input size of 256×256 for
fine-tuning the model6 with a batch size of 64, taking 312 iterations per epoch.
The model undergoes 500 epochs of training, with augmented images to increase
diversity and robustness by scaling up to two times or down to one-tenth of their
original size. We employ anchor boxes with a 1:1 aspect ratio, concentrating
exclusively on square-shaped bounding boxes, since all annotations correspond
to squares of different sizes along the diagonal of the image.

Optimization and learning rate. We use stochastic gradient descent with a mo-
mentum of 0.9 and clip norm of 10, known for its simplicity and efficiency in
training deep learning models, especially with large datasets. Momentum aids
convergence by leveraging past gradients, while gradient clipping prevents ex-
ploding gradients, ensuring stability, particularly in complex neural networks.
Additionally, we employ a cosine learning rate, widely adopted for its simplicity
and ability to enhance convergence and generalization. This schedule adjusts the
learning rate throughout training, following a cosine-shaped function.

Based on the fine-tuned RetinaNet model, our CD4CDD approach can be di-
rectly applied to unseen event logs to detect concept drifts.

4 TensorFlow Model Garden, Available online: https://github.com/tensorflow/models
5 COCO dataset, Available online: https://cocodataset.org/
6 If an input image provided for inference has a different pixel size, i.e., because it
was established using a different number of windows N , RetinaNet automatically
rescales the image to the default size.

https://github.com/tensorflow/models
https://cocodataset.org/

8 Alexander Kraus and Han van der Aa

4 Evaluation

This section reports on the experiments we conducted to evaluate the perfor-
mance of our CV4CDD approach for concept drift detection, in particular, also in
comparison to a range of baselines. To ensure reproducibility, we have made the
data collection, implementation, configurations, and raw results accessible in our
public repository7.

Section 4.1 describes the data that we used, Section 4.2 reports on Experi-
ment 1, focusing on change point detection, and Section 4.3 on Experiment 2,
focusing on drift detection.

4.1 Data Collection

Our data collection comprises two datasets, summarized in Table 1.

CDLG dataset. To train, validate, and test our drift detection approach, we
require a large collection of event logs that contain known (i.e., gold-standard)
concept drifts of sudden and gradual types. Since such a collection is not publicly
available, we, therefore, generated synthetic datasets using CDLG (Concept Drift
Log Generator) [8], a tool for the automated generation of event logs with concept
drifts, which comes with a wide range of parameters.

Table 1: Characteristics of the two datasets.

Number of
CDLG dataset

CDRIFT dataset
Training Validation Test

Event logs 20000 1250 3750 115
→ without drifts 5022 302 873 0
→ with noise 10064 617 1860 60
Change points 44997 1906 8547 156
Drifts 29943 1893 5691 156
→ Sudden drifts 14889 953 2835 156
→ Gradual drifts 15054 940 2856 0

We used CDLG to generate 25,000 event logs, allocating 80% for training, 5%
for validation, and 15% testing. Key settings used for their generation:
– The logs are generated from process trees containing between 6 and 20 ac-

tivities, as well as sequential, choice, parallel, and loop operators.
– Each event log has between 2,000 and 8,000 traces (with an average of around

4,600 traces per log), and the average trace length varies from 1 to 65 events.
– The event logs have 0 to 3 drifts each (with equal probability). Drifts are

either sudden or gradual, yielding a maximum of 6 change points per log.

7 Project repository: https://gitlab.uni-mannheim.de/processanalytics/cv4cdd.

https://gitlab.uni-mannheim.de/processanalytics/cv4cdd

A Computer Vision Approach for Concept Drift Detection 9

– Each drift introduces changes to about 30% of the process tree elements
(activities and operators), through deletion, insertion, or swapping.

– A quarter of the logs contain randomly inserted noise in 30% of the traces
and another quarter in 60% of the traces. The other half are noise-free.

CDRIFT dataset. To assess the generalizability of our approach and verify
that its performance is not restricted to the characteristics of the CDLG dataset,
we also consider a dataset used in a recent experimental study [2], which we re-
fer to as the CDRIFT dataset. This set consists of 115 synthetic event logs,
previously employed in evaluating various concept drift detection techniques,
stemming from three sources [5, 18, 24]. The logs have about 1700 traces on av-
erage and contain between 1 and 3 sudden drifts. Notably, the CDRIFT dataset
does not contain any gradual drifts.

4.2 Experiment 1: Change Point Detection

In this section, we present the experiment conducted to evaluate the change
point detection performance of our approach in comparison to existing baselines.
We isolate this task from change characterization, given its fundamental role in
concept drift detection, as also evidenced by the various techniques that have
been proposed to address it. In the following, we discuss the evaluation setup
and obtained results.

Evaluation Setup. Below we elaborate on the details of the baselines, evalua-
tion measures, as well as configurations used to evaluate our approach.

Baselines. We compare our approach to seven change point detection techniques
that were used in a recent benchmark study by Adams et al. [2]:
1. Bose/J by Bose et al. [3] uses non-overlapping and continuous fixed-size

windowing with activity pair-based feature extraction and statistical testing.
2. Adwin/J by Martjushev et al. [16] improves the Bose/J technique by in-

troducing adaptive windowing using the ADWIN approach.
3. ProGraphs by Seeliger et al. [22] implements non-overlapping and contin-

uous adaptive-size windowing, uses graph-based process features alongside
Heuristics Miner, and employs statistical testing.

4. ProDrift by Maaradji et al. [15] employs non-overlapping continuous fixed
and adaptive-size windowing, statistical testing, and an oscillation filter.

5. Rinv by Zheng et al. [26] uses behavioral profiles, a process similarity mea-
sure, and DBSCAN clustering.

6. EMD by Brockhoff et al. [4] employs a sliding window approach with local
multi-activity feature extraction and the Earth Mover’s Distance.

7. Lcdd by Lin et al. [10] uses both static and adaptive sliding windows, in-
corporates directly-follows relations, and ensures local completeness.

Evaluation measures. We report on results obtained using established evalua-
tion measures for change point detection [2]. Specifically, for each event log,
we compare the sequences of detected P d =

〈
pd1, . . . , p

d
n

〉
and gold-standard

P g = ⟨pg1, . . . , pgm⟩ change points (n,m ≥ 0), where each change point is repre-
sented by the ordinal number of the first trace that started after the change.

10 Alexander Kraus and Han van der Aa

To identify which gold-standard change points have been successfully de-
tected, we use the linear program proposed by Adams et al. [2] to establish
a pairwise mapping between the points in P d and P g. This program finds an
optimal mapping M , assigning as many points to each other as possible, while
minimizing the distance between corresponding change points. Note that no
point in P d is assigned to multiple points in P g or vice versa. Furthermore, M
will only include pairs pdi ∼ pgj that are within an acceptable distance from each
other, which we refer to as the allowed latency. We define latency as a percentage
of the total traces in ΣL, i.e., it must hold that |pdi − pgj | ≤ |ΣL| ∗ latency . We
report on results obtained using latency levels of 1%, 2.5%, and 5%.

Due to the consideration of latency, each correspondence in M is regarded as
a true positive. From this, we derive precision (Prc.) as |M |/|P d|, i.e., the fraction
of detected change points that are correct according to the gold standard, recall
(Rec.) as |M |/|P g|, i.e., the fraction of correctly detected gold-standard change
points, and the F1-score as the harmonic mean of precision and recall.

Configurations. We fine-tuned the RetinaNet model used by our approach with
the CDLG training and validation sets and the method and parameters described
in Section 3.2. Given such a fine-tuned model, the only parameter to set for
inference is the number of windows N to be used. For this, we use the default
number of windows N = 200 for the CDLG test set, whereas we reduce it to 100
windows for the CDRIFT dataset. In this way, we account for the lower number
of traces in the latter dataset, ensuring that each set captures a comparable
amount of process behavior across both datasets.

When reporting on the performance of the baseline techniques, we use the pa-
rameter settings that we found to achieve the highest F1-score. To find these set-
tings for the CDLG data set, we applied the experimental framework by Adams
et al. [2], which assesses different parameter configurations, on the CDLG valida-
tion set. For the CDRIFT dataset, we ran experiments using all configurations
that are tested in the Adams et al. [2] framework and report on the results ob-
tained using the best parameter settings. The exact parameter settings used for
the different techniques per dataset are detailed in our repository.

Results. In the following, we present the results obtained for change point
detection for the two datasets, also focusing on different latency and noise levels.8

Overall results. Table 2 summarizes the change point detection results.
For the CDLG test set, our CV4CDD approach consistently outperforms the

baselines, demonstrating F1-scores ranging from 0.76 at 1% latency to 0.80 at 5%
latency. It already reaches its peak performance at just 2.5% latency, surpassing
the best baseline, EMD, by 0.26. In terms of recall, our approach outperforms
the baseline scores by 0.21 and 0.17 at 1% and 2.5% latencies, respectively. How-
ever, at a 5% latency, the Lcdd, EMD, and Rinv techniques achieve compara-
ble recall scores, each exceeding 0.60. Despite this, they exhibit lower precision,

8 Given the non-determinism involved in training deep learning models, we repeated
the training and inference procedure of our approach five times. These repetitions
yielded standard deviations of just 0.0087 in recall, 0.0029 in precision, and 0.0067 in
F1-score (for CDLG test). We report on the results of the first run in the remainder.

A Computer Vision Approach for Concept Drift Detection 11

Table 2: Overall change point detection results.

Dataset Technique
Latency 1% Latency 2.5% Latency 5%

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

CDLG (test)

Bose/J 0.09 0.02 0.03 0.20 0.05 0.07 0.36 0.08 0.13
Adwin/J 0.57 0.29 0.38 0.76 0.39 0.51 0.87 0.44 0.59
ProGraphs 0.23 0.17 0.19 0.58 0.41 0.48 0.80 0.57 0.66
ProDrift 0.80 0.26 0.39 0.96 0.31 0.47 0.98 0.32 0.48
Rinv 0.39 0.40 0.40 0.51 0.52 0.52 0.61 0.61 0.61
EMD 0.50 0.44 0.47 0.57 0.51 0.54 0.71 0.63 0.67
Lcdd 0.29 0.38 0.33 0.38 0.50 0.44 0.52 0.68 0.59

CV4CDD 0.90 0.65 0.76 0.95 0.69 0.80 0.96 0.69 0.80

CDRIFT

Bose/J 0.08 0.07 0.07 0.60 0.52 0.56 0.75 0.66 0.70
Adwin/J 0.15 0.11 0.13 0.40 0.29 0.34 0.71 0.51 0.59
ProGraphs 0.21 0.18 0.19 0.48 0.41 0.45 0.78 0.67 0.72
ProDrift 0.91 0.32 0.48 1.00 0.35 0.52 1.00 0.35 0.52
Rinv 0.01 0.00 0.00 0.23 0.18 0.20 0.47 0.36 0.41
EMD 0.05 0.03 0.04 0.88 0.59 0.71 0.97 0.66 0.79
Lcdd 0.00 0.01 0.01 0.02 0.04 0.02 0.24 0.64 0.35

CV4CDD 0.44 0.38 0.41 0.96 0.84 0.90 1.00 0.87 0.93

Note: support for CDLG (test): 8547 change points, CDRIFT: 156 change points.

resulting in significantly lower F1-scores. Finally, in terms of precision, Pro-
Drift achieves scores of over 0.96 for the 2.5% and 5% latency levels, which
is slightly higher than the precision of our approach (by 0.01 and 0.02, respec-
tively). However, its recall values are notably low, particularly in the presence
of noise (detailed below), leading to F1-scores between 0.39 and 0.48, compared
to the 0.80 achieved by our approach.

For the CDRIFT dataset, we obtain overall similar results. Our CV4CDD ap-
proach outperforms the baselines for 2.5% and 5% latencies, achieving F1-scores
of 0.90 and 0.93, respectively. These higher values can be attributed to the fact
that the CDRIFT dataset contains only sudden drifts, which are relatively easier
to detect for our approach. Only at 1% latency does ProDrift achieve a slightly
higher F1-score of 0.48 compared to 0.41 for our approach. The reason for the
lower performance of our approach is rather technical. It is mainly attributed to
the annotation of sudden drifts using bounding boxes of ±5 windows spanning
around the position of an actual sudden drift in an image. In scenarios with 100
windows and a latency of just 1%, inaccuracies arise during the transformation
from the coordinates of the bounding box to the corresponding window index
and subsequently to the first trace within the window, leading to low precision
and recall. This is supported by the correctly positioned bounding boxes in the
respective images, along with the observation that accuracy sharply increases to
its peak values at the next latency of 2.5%.

12 Alexander Kraus and Han van der Aa

Noise impact. To evaluate the robustness of our approach, we report the results
for the event logs with different noise levels in the CDLG test set (using 5%
latency), summarized in Table 3.

Table 3: Noise impact on change point detection.

Technique
W/o noise With 30% noise With 60% noise

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

Bose/J 0.33 0.09 0.14 0.42 0.08 0.14 0.40 0.07 0.12
Adwin/J 0.86 0.44 0.58 0.87 0.41 0.56 0.89 0.47 0.62
ProGraphss 0.75 0.56 0.64 0.82 0.58 0.68 0.89 0.57 0.70
ProDrift 0.98 0.62 0.76 1.00 0.01 0.01 0.00 0.00 0.00
Rinv 0.79 0.82 0.80 0.40 0.38 0.39 0.43 0.43 0.43
EMD 0.71 0.64 0.67 0.72 0.63 0.67 0.71 0.63 0.67
Lcdd 0.78 0.83 0.80 0.33 0.61 0.43 0.35 0.44 0.39

CV4CDD 0.96 0.70 0.81 0.96 0.70 0.81 0.95 0.66 0.78

Results for the CDLG test set, 5% latency, with support: 8547 change points.

Our CV4CDD approach maintains consistent performance regardless of noise,
achieving the highest F1-scores from 0.81 for logs without noise to 0.78 for
logs with 60% noisy traces. In noise-free conditions, three baselines (ProDrift,
Lccd, and Rinv) come close to our results. The Lccd technique shows an
outstanding recall of 0.83, while ProDrift maintains its lead in precision, also
seen for the noise-free CDRIFT dataset. However, all three of these baselines
experience a notable decline in accuracy when noise is introduced, particularly
ProDrift. Conversely, baselines with lower accuracy on the noise-free logs,
for instance, EMD and ProGraphs, demonstrate less vulnerability to noise.
This reveals that the baselines are subject to a trade-off between performance
in noise-free conditions and robustness to noise, which does not apply to our
approach.

4.3 Experiment 2: Concept Drift Detection

This section discusses the experiment we conducted to evaluate the performance
of our approach to detect sudden and gradual drifts in comparison to a state-
of-the-art baseline technique. This experiment includes a combined evaluation
of both the change point detection and change characterization tasks. In the
following, we discuss the evaluation setup and obtained results.

Evaluation Setup. First, we provide information regarding the baseline, con-
figurations, and evaluation measures used to characterize performance accuracy.

Baseline. We compare our approach against the ProDrift technique proposed
by Maaradji et al. [15]. We selected this technique because it stands out as the
only existing technique that focuses on the automated detection of both sudden
and gradual drifts in event logs, without requiring a manual indication of the

A Computer Vision Approach for Concept Drift Detection 13

drift type to be searched (e.g., in contrast to Bose/J [3]). For our experiment,
we use the stand-alone Java implementation ProDrift 2.59.

Configurations. We use the same configuration for our CV4CDD approach as for
Experiment 1, i.e., with 200 windows for the CLDG test set.

For the ProDrift 2.5 baseline, we follow their tool manual and executed the
tool with a run-based drift detection mechanism with activated parameters for
parallel search of sudden and gradual drifts. We conducted tests with different
window sizes (50, 100, 150, 200, 250, or 300 traces) along with adaptive window-
ing, which enables the tool to dynamically adjust the window size to balance
detection accuracy and drift detection latency. The best results were obtained
using a window size of 150, for which we report the results in the remainder.

Evaluation measures. We report on precision, recall, and F1-score by comparing
a collection of detected drifts Dd to the gold-standard drifts Dg.

Given detected Dd(s) ⊆ Dd and gold standard sudden drifts Dg(s) ⊆ Dg,
the comparison is the same as for change point detection (Section 4.2), which
we use to track true positives (tp), false positives (fp), and false negatives (fn).

For gradual drifts, we consider that their detection involves the correct recog-
nition of two change points. Naturally, given detected Dd(g) ⊆ Dd and gold
standard gradual drifts Dg(g) ⊆ Dg, a true positive (tp) occurs if there is a
detected gradual drift ddk ∈ Dd(g) of which both the start and end change points
correspond to those of a gold-standard gradual drift dgl ∈ Dg(g) (given a certain
latency level). However, if only the start or end point of dgl is detected correctly,
we still count it as 0.5 of a true positive (as well as 0.5 of a false positive).

Given these scores, we compute precision (Prc.) as tp/(tp+fp), recall (Rec.)
as tp/(fn+ tp), and the F1-score per drift type, as well for the overall detection
(using weights to account for their different support values).

Results. Table 4 presents the sudden and gradual drift detection results ob-
tained for our approach and the baseline on the CDLG test set.

Our CV4CDD approach achieves an overall weighted F1-score ranging from
0.77 to 0.81 across various latency levels, which aligns with the change point
detection accuracy results in Experiment 1. Specifically, for sudden drifts, preci-
sion consistently surpasses 0.98 across all latencies, while recall remains around
0.76. For gradual drifts, we observe the lowest precision of 0.90 at a 1% latency,
although recall ranges between 0.55 and 0.61. In contrast, the baseline’s weighted
F1-scores are notably lower, reaching approximately 0.26 for 5% latency. This is
mainly because the baseline fails to detect gradual drifts, scoring close to 0 at
all latency levels.

We identified several factors that may contribute to the low performance
of the baseline. First, the CDLG test set includes more varied drift scenarios
than were used in the original evaluation of ProDrift [15], thus providing a more
representative assessment of its performance. Specifically, our evaluation includes
logs of different sizes, numbers and types of drifts per log, change severities, and
noise levels. Among others, since ProDrift fails to detect change points in the

9 Available at http://apromore.org/platform/tools

http://apromore.org/platform/tools

14 Alexander Kraus and Han van der Aa

Table 4: Overall sudden and gradual drift detection results obtained on the
CDLG test set.

Technique Drift
Latency 1% Latency 2.5% Latency 5%

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

CV4CDD Sudden 0.98 0.75 0.85 0.99 0.76 0.86 0.99 0.76 0.86
(Our approach) Gradual 0.90 0.55 0.68 0.99 0.60 0.75 1.00 0.61 0.76

Overall 0.94 0.65 0.77 0.99 0.67 0.81 1.00 0.69 0.81

ProDrift Sudden 0.27 0.35 0.30 0.41 0.54 0.47 0.46 0.60 0.52
(Baseline) Gradual 0.01 0.00 0.00 0.01 0.00 0.00 0.04 0.00 0.00

Overall 0.14 0.18 0.15 0.21 0.27 0.23 0.25 0.30 0.26

Support for sudden drifts: 2835, gradual drifts: 2856.

presence of noise (see Experiment 1), it thus also fails to detect drifts (both
sudden and gradual) for these logs. Second, the evaluation in the original paper
reported the accuracy obtained using an optimal oscillation filter parameter,
which mitigates the impact of infrequent events or data gaps on the detection
accuracy. However, the public ProDrift tool does not allow us to control this
parameter, potentially affecting accuracy. Finally, we consider stricter detection
latencies, given the importance of timely drift detection.

When examining event logs without drifts, our CV4CDD approach demon-
strates a reasonable precision of 0.76 and a recall of 1.00 across all latency
levels. The baseline achieves similar recall, but a precision of about 0.59. This
indicates that the baseline is more prone to mistakenly detect drifts in event
logs, especially those with noise, that do not actually have any.
Overall, our CV4CDD approach showcases a considerable improvement in the de-
tection and characterization of process change points, demonstrating superior
performance in latency and noise robustness compared to existing techniques.

5 Related Work

Since establishing the problem and importance of concept drift detection in pro-
cess mining more than a decade ago [24], various techniques have been proposed
to address this problem, as highlighted in recent literature reviews [7,21]. In this
section, we discuss such existing techniques, specifically those that focus on the
same tasks that we tackle with our approach.

Table 5 provides an overview of such techniques, including their scope and au-
tomation level. As shown, all selected techniques can detect change points. They
use a wide range of ways to tackle this task, including statistical testing, var-
ious kinds of feature representations, windowing strategies, and clustering (see
Section 4.2 for more details on the most important techniques). Many of the
techniques achieve good results, as demonstrated in a recent evaluation frame-
work [2]. However, our evaluation experiments demonstrate that our proposed

A Computer Vision Approach for Concept Drift Detection 15

Table 5: Classification of different concept drift detection techniques.

Technique
Change point

detection
Change

characterization

Various works [4, 9, 10,14,17,22,26] ✷

Yeshchenko at el. [25] ✷ (✷)
Bose et al. [3] ✷ (✷)
Martushev et al. [16] ✷ (✷)
Maaradji et al. [15] ✷ ✷

Our approach (CV4CDD) ✷ ✷

Legend: “✷” - automated, “(✷)” - semi-automated.

CV4CDD approach outperforms them. Furthermore, the majority of existing tech-
niques do not go beyond the detection of change points, meaning that they are
only able to recognize when a process’s behavior significantly changed, but they
do not provide insights into how that change manifested itself.

As shown in Table 5, a few techniques provide an exception to this, since
they aim to both detect and characterize changes (though often only semi-
automatically). Yeshchenko et al. [25] introduced Visual Drift Detection (VDD),
which automatically identifies change points based on grouping similar declar-
ative behavioral constraints, yet its capacity is limited due to the manual in-
terpretation required for identifying gradual drifts. Bose et al. [3] proposed a
technique for automated detection of sudden and gradual drifts using statistical
testing of feature vectors, but it necessitates users to pre-specify the drift type
and manually select relevant features. Martushev et al. [16] enhanced this by
introducing adaptive windowing, though users still need to specify drift types
beforehand. Maaradji et al. [15] introduced ProDrift, a technique that addresses
previous limitations by offering automated detection of both sudden and gradual
drifts. However, its statistically-based design struggles to detect gradual drifts,
especially for noisy event logs, as evidenced in our evaluation. By contrast, our
approach does not face such limitations, greatly outperform ProDrift in terms
of detection accuracy and latency.

6 Conclusion

In this paper, we proposed CV4CDD, a novel, computer vision approach for con-
cept drift detection in event logs. Our approach is based on an object detec-
tion model (RetinaNet) that was fine-tuned using a large collection of event
logs with known concept drifts. In the conducted experiments, we demonstrated
that CV4CDD considerably outperforms available baselines for change point detec-
tion and characterization on several datasets, including well-established datasets
commonly used to evaluate concept drift detection techniques. Here it is worth
noting that CV4CDD stands out not only as the first approach using techniques
from computer vision for concept drift detection in process mining, but as the
first approach using supervised machine learning in general.

16 Alexander Kraus and Han van der Aa

In future work, we aim to enhance our approach and expand its scope and
capability. We plan to conduct sensitivity analyses on various design decisions,
such as window size, behavioral representations, and similarity measures, to
better understand their impact on the achieved accuracy. Our ultimate objective
here is to automate the selection of appropriate configurations for these design
decisions to achieve the optimal visual representation of an event log for detecting
concept drift. Furthermore, we intend to broaden the scope of our work by aiming
to identify and characterize more complex drift types in event logs, such as
incremental and recurring drifts that encompass multiple interconnected process
changes. Additionally, we plan to extend concept drift detection to other process
perspectives, such as time, resources, and data.

Acknowledgment

We acknowledge the work of Jonathan Kößler for conducting the initial testing
of the paper’s idea in his master’s thesis.

References

1. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
2. Adams, J.N., Pitsch, C., Brockhoff, T., van der Aalst, W.: An experimental eval-

uation of process concept drift detection. Proc. VLDB Endow. 16(8) (2023)
3. Bose, R.J.C., Van Der Aalst, W., Žliobaitė, I., Pechenizkiy, M.: Dealing with con-

cept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–
171 (2013)

4. Brockhoff, T., Uysal, M.S., van der Aalst, W.: Time-aware concept drift detection
using the earth mover’s distance. In: Proc. ICPM. pp. 33–40. IEEE (2020)

5. Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation goals for online
process mining: A concept drift perspective. IEEE Trans. Serv. Comput. 15(4),
2473–2489 (2022)

6. van Der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. CSRD 23, 99–113 (2009)

7. Elkhawaga, G., Abuelkheir, M., Barakat, S.I., Riad, A.M., Reichert, M.: CONDA-
PM: a systematic review and framework for concept drift analysis in process min-
ing. Algorithms 13(7), 161 (2020)

8. Grimm, J., Kraus, A., van der Aa, H.: CDLG: A tool for the generation of event
logs with concept drifts. In: BPM Demos. vol. 3216, pp. 92–96. CEUR-WS (2022)

9. Hompes, B., Buijs, J.C., van der Aalst, W., Dixit, P.M., Buurman, J.: Detect-
ing changes in process behavior using comparative case clustering. In: CEUR-WS
proceedings of SIMPDA. pp. 54–75. Springer (2015)

10. Lin, L., Wen, L., Lin, L., Pei, J., Yang, H.: LCDD: detecting business process drifts
based on local completeness. IEEE Trans. Serv. Comput. 15(4), 2086–2099 (2020)

11. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. pp. 2980–2988 (2017)

12. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Proc. ECCV. pp.
740–755. Springer (2014)

A Computer Vision Approach for Concept Drift Detection 17

13. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.:
Deep learning for generic object detection: A survey. IJCV 128, 261–318 (2020)

14. Lu, X., Fahland, D., van den Biggelaar, F.J., van der Aalst, W.: Detecting deviating
behaviors without models. In: BPM workshop. pp. 126–139. Springer (2016)

15. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual
drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng.
29(10), 2140–2154 (2017)

16. Martjushev, J., Bose, R.J.C., Van Der Aalst, W.: Change point detection and
dealing with gradual and multi-order dynamics in process mining. In: Proc. BIR.
pp. 161–178. Springer (2015)

17. Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.: Multi-perspective com-
parison of business process variants based on event logs. In: Proc. ER. pp. 449–459.
Springer (2018)

18. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.:
Detecting drift from event streams of unpredictable business processes. In: Proc.
ER. pp. 330–346. Springer International Publishing, Cham (2016)

19. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D., Modugno, G.: Or-
ange: outcome-oriented predictive process monitoring based on image encoding
and cnns. IEEE Access 8, 184073–184086 (2020)

20. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate business process representation
learning utilizing gramian angular fields and convolutional neural networks. In:
Proc. BPM. pp. 327–344. Springer (2021)

21. Sato, D.M.V., De Freitas, S.C., Barddal, J.P., Scalabrin, E.E.: A survey on concept
drift in process mining. ACM Computing Surveys 54(9), 1–38 (2021)

22. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using
graph metrics on process graphs. In: Proc. S-BPM. vol. 9, pp. 1–10. ACM (2017)

23. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based
on synthesis from well-structured behavioral profiles. Int. J. Coop. Inf. Syst. 21(01),
55–83 (2012)

24. Van Der Aalst, W., Adriansyah, A., De Medeiros, A.K.A., Arcieri, F., Baier, T.,
Blickle, T., Bose, J.C., Van Den Brand, P., Brandtjen, R., Buijs, J., et al.: Process
mining manifesto. In: BPM conference. pp. 169–194. Springer (2011)

25. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Visual drift detection
for event sequence data of business processes. IEEE Trans. Vis. Comput. Graph.
28(8), 3050–3068 (2021)

26. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In:
OTM Conferences. pp. 524–542. Springer (2017)

	Looking for Change: A Computer Vision Approach for Concept Drift Detection in Process Mining

