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Abstract—Business process simulation (BPS) is a versatile
technique for estimating process performance across various
scenarios. Traditionally, BPS approaches employ a control-flow-
first perspective by enriching a process model with simulation
parameters. Although such approaches can mimic the behavior
of centrally orchestrated processes, such as those supported by
workflow systems, current control-flow-first approaches cannot
faithfully capture the dynamics of real-world processes that
involve distinct resource behavior and decentralized decision-
making. Recognizing this issue, this paper introduces AgentSimu-
lator, a resource-first BPS approach that discovers a multi-agent
system from an event log, modeling distinct resource behaviors
and interaction patterns to simulate the underlying process. Our
experiments show that AgentSimulator achieves state-of-the-art
simulation accuracy with significantly lower computation times
than existing approaches while providing high interpretability
and adaptability to different types of process-execution scenarios.

Index Terms—Business Process Simulation, Multi-Agent Sys-
tem, Process Mining

I. INTRODUCTION

Business process simulation (BPS) is a widely used tech-
nique to estimate the impact of changes to a process with
respect to key performance indicators, such as cycle time,
resource utilization, or waiting time for a given activity—a
practice known as counterfactual reasoning or “what-if” anal-
ysis [1]. BPS has the potential to drastically reduce the risks
of process change and facilitate process improvement with
tangible outcomes, as decision makers can compare process
designs without already having to implement the changes.
Nevertheless, the effectiveness of BPS relies heavily on the
availability of a simulation model that precisely mirrors the dy-
namics of a given process across dimensions such as control-
flow, time, and resource behavior. Manually constructing these
simulation models is time-consuming and error-prone due to
several pitfalls [2]. Therefore, various approaches have been
developed for the automated discovery of process simulation
models based on historical execution data contained in event
logs [3]–[7]. Most commonly, such data-driven simulation ap-
proaches discover a process model—capturing the control flow
of an entire process—and subsequently augment this model
with simulation parameters, such as arrival rates, resources,
and processing times.

In this paper, we argue that there are settings in which
such control-flow-first simulation models cannot provide a
faithful representation of the dynamics of real-world processes,
leading to simulation inaccuracies. This particularly applies to
processes involving distinct resource behavior or decentralized
decision-making. Although certain processes are indeed cen-
trally orchestrated, such as those supported by workflow sys-
tems [1], other processes provide higher operational flexibility
to the actors involved. In such settings, each actor in a process
performs their part from their own perspective and, to some
extent, in their own manner, i.e., they receive a case from a
co-worker, conduct one or more tasks they deem necessary,
and pass on the case to the next individual or system. This
can result in processes where specific traits or preferences of
actors can influence a case’s execution. Such characteristics are
difficult for existing control-flow-first approaches to capture.

Therefore, we use this paper to propose AgentSimulator,
a resource-first approach for data-driven process simulation.
By discovering a multi-agent system (MAS) from an event
log, AgentSimulator can simulate the execution of a process
through autonomous and interacting agents, corresponding to
real-world actors and systems. This allows AgentSimulator to
achieve various benefits in comparison to existing approaches
for data-driven process simulation:

• our approach provides full flexibility over the behavior
of individual resources involved in a process, allowing
to capture differences in terms of control-flow behavior,
interaction preferences, and capabilities;

• agent-based systems are highly interpretable and allow
for a high degree of adaptability, which is crucial to per-
forming what-if analyses, and thus provides a substantial
advantage over black-box deep learning models;

• our approach requires significantly lower run times than
previous approaches, making it more feasible to run
a large number of simulations, which is necessary to
achieve stable and confident results given the stochastic
nature of simulation models;

• and finally, our approach yields state-of-the-art simulation
accuracy across a variety of event logs.

The remainder starts with a motivating scenario (Section II),
followed by the presentation of the AgentSimulator approach



itself (Section III). Then, Section IV reports on evaluation
experiments, highlighting the benefits of our approach. Finally,
Section V discusses related work, before Section VI concludes
the paper.

II. MOTIVATION

This section illustrates the benefits of shifting simulation
models from a control-flow-first to a resource-first perspective.

For this illustration, we consider a simplified credit applica-
tion process, for which a schematic visualization is shown in
Figure 1. As depicted, the process starts when an application
is received by the system, after which the applicant’s credit
history and income sources need to be checked by a clerk
(in any order). Once both checks have been completed, the
application is passed on to a credit officer, who assesses
the application and notifies the applicant of the outcome. As
shown, there are three clerks (Steve, Oliver, and Angela) and
two credit officers (Maria and Patrick) involved in the process.

Even for such a simple scenario, we may observe various
ways in which the involvement of specific actors in a case can
influence its execution:

• Process performance. The execution time of an activity
may depend on the employee who performs it. For
example, Steve (a less experienced, Junior Clerk) might
need 45 minutes to check the credit history and the
income sources, respectively. For the same activities,
the Senior Clerks Oliver and Angela only need 15 to
20 minutes. Considering these performance differences
between resources is critical for accurate simulation, as
has been recently demonstrated [8].

• Resource availability. Employees involved in a process
may have different availabilities, owing to factors such
as part-time work and other duties. Such considerations
are particularly relevant in decentralized processes, where
cases may be handed over directly from employee to em-
ployee, rather than by a central workflow system that can
assign a case to the next available person. For example, if
Angela hands over an application specifically to Patrick,
rather than to the next available credit officer, this can
lead to considerable delays in the case’s execution if
Patrick is not available for the next working days. Such
irregularities should be reflected in a simulation model,
calling for individual resource calendars, as again was
recently demonstrated to positively impact accuracy [8].

• Control-flow behavior. Control-flow-first simulation mod-
els impose the assumption that the sequence of activities
performed for a given case is independent of the actors
involved in it. However, there can be various reasons
why this is not the case. In our scenario, for example,
we may observe that Angela always checks the credit
history first, before checking the income sources, whereas
other actors may alternate these orders. Furthermore,
there may even be actor-specific rules that influence the
possible sequences of a case. For example, it may be
necessary that any application handled by a Junior Clerk

Fig. 1: Sketch of the credit application process.

(e.g., Steve) needs to go through an additional verifica-
tion step performed by a Senior Clerk. Capturing such
actor-dependent behavior is difficult and often generally
omitted from control-flow-first simulation models, despite
it having a considerable impact on process execution.

• Interaction patterns. Finally, owing to a lack of central
orchestration, there may be specific interaction patterns
among actors. For example, we may observe that Steve
always collaborates with Oliver, since they both work
in Mannheim, while he has no contact with Angela in
Hamburg. Such specific patterns influence the workload
of individual resources, e.g., leading to an imbalance
between Oliver and Angela, which is missed by general
simulation models. Furthermore, as described above, spe-
cific interaction patterns may lead to additional delays
when the availability of individual resources differs.

All of the above factors influence the execution of cases
in a process. Therefore, process simulation models should
reflect these as faithfully as possible in order to appropriately
mimic the dynamics of a real-world process. The former
two aspects have already been recognized and captured by
control-flow-first models [8]. However, especially the latter
two can be much more naturally incorporated by an agent-
based simulation model, where the behavior of each resource
is explicitly captured. This is achieved by our AgentSimulator
approach, described next.

III. OUR APPROACH: AGENTSIMULATOR

This section introduces AgentSimulator, our data-driven
agent-based business process simulation approach, with a
high-level overview in Figure 2. To adopt a resource-first
perspective, AgentSimulator models agents in a MAS (see
Section III-A), which is (along with general simulation param-
eters) discovered from an event log in the discovery phase (see
Section III-B). Following the MAS discovery, we can simulate
the process and generate a new event log (see Section III-C).
We detail our approach for both discovery and simulation,
also discussing alternative design choices for different process
types, highlighting AgentSimulator’s adaptability.

A. Definitions

In this section, we define event logs, which provide the input
of our approach (and its simulated output), before providing
the definition of agents and a MAS that our approach employs.
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Fig. 2: Overview of the end-to-end AgentSimulator approach.

Input. AgentSimulator takes as input an event log L, which
we define as a finite multi-set of traces. A trace σ ∈ L is a
finite sequence of events, ⟨e1, ..., en⟩, recording the execution
of activities performed for a single case in an organizational
process. Each event ei is a tuple (act, tsstart, tsend, res), with
act as the activity to which it corresponds, tsstart and tsend,
respectively, as the start and end timestamps of the activity’s
execution, and res as the resource that executed the activity.
Note that we follow [8] by representing each event with a start
and end timestamp, which is required in simulation settings to
consider activity durations, and ordering the events in a trace
based on their start timestamp.

In the remainder, we commonly use dot notation to refer
to components of tuples, e.g., using ei.act as a shorthand to
refer to the activity of an event ei, whereas we use ACTL

and RESL to, respectively, refer to the sets of activities and
resources contained in the traces of event log L.
Multi-agent system. The notion of an agent is a fundamental
abstraction in Artificial Intelligence (AI) [9]. Agents perceive
their environment (including other agents) to reason about the
perceptions and decide on an action, which is then executed
against the environment. In a multi-agent system (MAS),
agents can collaborate to achieve joint goals. In our work,
we define a MAS and an agent as follows:
Definition 1 (Multi-agent system). We define a MAS for our
AgentSimulator as a tuple m = (A, p). Here, A corresponds
to the set of agents used to simulate a process, whereas p is
a tuple of general simulation parameters, reflecting aspects of
the process’s environment. Here, p consists of a case inter-
arrival distribution and a set of probability density functions
(PDFs) over extraneous delays (more details in Section III-B).
Definition 2 (Agent). An agent in a business process environ-
ment is an autonomous entity representing a real-world actor
or system. We define an agent a ∈ A that acts in the MAS m
as a tuple, denoted a = (t, s, c, b), where:

1) t refers to the agent’s type. Agent types are used to
indicate agents with similar characteristics, e.g., in terms
of the activities they can perform. We use T to refer to
the set of types in A

2) s refers to a schedule (a set of intervals) during which

the agent is available to perform activities. The simulation
needs to capture the distinct availabilities of agents (e.g.,
full-time vs. part-time) to faithfully reflect the temporal
dimension of the process.

3) c refers to capabilities of an agent, denoted as a tuple
c = (ALLOC, PT ), where:
• ALLOC ⊆ ACTL is the set of activities that a can

execute, i.e., that can be allocated to agent a.
• PT refers to a set of PDFs, where each fpt(act) ∈
PT captures a distribution over processing times pt ∈
[0,∞) for an activity act ∈ ALLOC. Defining PT per
agent allows us to differentiate process performance
across resources.

4) b refers to the behavior of an agent, capturing how agent
a hands a case over to continue its execution after finish-
ing an activity. What b exactly entails depends on the kind
of process being simulated. In a centrally orchestrated
process, determining the next activity is handled centrally,
whereas in a more autonomous process, agents directly
hand over cases to others. Therefore, we provide further
details and exact definitions in the following sections.

B. Phase 1: MAS Discovery
In this section, we describe how AgentSimulator discovers

the agents A and general simulation parameters p from an
event log L to define the MAS m. In the realm of business
processes, our generic definition of an agent offers numerous
implementation possibilities. Thus, besides describing our dis-
covery approach, we also discuss alternatives. The flexibility
of agent systems is a key advantage of our AgentSimulator,
enabling adaptation to diverse collaborative work dynamics.
Agent instantiation. In business process environments, re-
sources are the active entities performing actions. Therefore,
we instantiate one agent a ∈ A for each resource res ∈
RESL. For our motivating example, we thus instantiate six
agents (five human actors and System). If certain events lack
resource information, we additionally generate a dummy agent
for each distinct activity that lacks such information. We
noticed that events without resource information often refer
to either instantaneous activities or system resources. First,
explicitly modeling these as agents ensures that any activity



can be associated with at least one agent, which is required for
the simulation. Second, it allows discovering distinct behaviors
for these agents to simulate their activities appropriately, e.g.,
to consider that performing instantaneous activities does not
require waiting for a corresponding agent.
Agent type. To assign a type to each agent, we use the
algorithm from [10] that clusters agents into types based on
the similarity of their executed activities. This algorithm is
also used in [4] to group simulated resources.
Schedule. We discover a schedule for each agent a ∈ A
by using the same algorithm as proposed in [8]. Note that
discovering the schedule per agent type is also a possible
design choice that our approach allows for. Furthermore, the
more recent approach to discovering probabilistic instead of
crisp calendars [11] could also be integrated.
Capabilities. The capabilities a.c of an agent a consist of a
set of activities and a set of PDFs over processing times.
Set of activities. We discover the set of activities a.c.ALLOC
that agent a can execute by checking which activities from
ACTL (the resource corresponding to) a has performed in L.
Processing times. The set of PDFs over processing times
a.c.PT contains one distribution for each activity that re-
flects how long agent a requires to execute each of these
activities. Following [4], we fit various distributions to the
activity durations. Subsequently, we select the distribution with
the lowest error measured by the Wasserstein distance. The
set of distributions includes the following ones: Exponential,
Gamma, Normal, Uniform, Log-Normal, and a fixed value
to capture activities with fixed durations. However, instead
of discovering one PDF per activity, we discover one PDF
for each combination of agent and activity, denoted as a
mapping ACTL ×A → PTT , where PTT =

⋃
a∈A a.c.PT .

This ensures more realistic activity processing times, as, for
example, a junior employee typically requires more time to
perform the same activity than a senior employee.
The properties type, schedule, and capabilities are aspects
commonly considered in non-agent-based simulation ap-
proaches as well, which is why we largely follow existing
works for their discovery. However, the distinctive agent
behaviors serve as the main ingredient of our AgentSimulator.
Behavior. The behavior of an agent a.b describes its activity
transition and agent handover patterns. Therefore, the behavior
of an agent determines (i) which activity is the next in
an ongoing case and (ii) who performs this activity. The
behavior can be learned in many different ways, leading to
numerous design options for the architecture of the MAS.
Below, we outline two distinct behavior discovery approaches:
one suitable for capturing processes involving orchestrated
handovers and one for processes with autonomous handovers.
Orchestrated handovers. We use this first configuration to
mimic processes that are centrally orchestrated, such as those
supported by a workflow or business process management
system [1]. In such processes, the execution of a case is
centrally guided. Therefore, this kind of architecture only
requires discovering global execution patterns, which are inde-

pendent of specific agents. We achieve this by learning activity
transition probabilities at the log level.

Specifically, we compute the frequentist probability of tran-
sitioning to an activity given the activity prefix of an ongoing
case, where a prefix σprefix = ⟨e1, e2, ..., ek⟩ is the sequence
of events from the beginning of σ up to event ek, with σact

prefix
being the corresponding activity sequence. This transition
probability P (act|σact

prefix) is computed by determining how
often each possible activity prefix σact

prefix in log L is followed
by each activity act ∈ ACTL. This is achieved by dividing
the number of times the specific transition from σact

prefix to act
happens by the number of times the activity prefix occurs in
the log. Note that, in case an activity prefix σact

prefix has not been
observed in the log, we iteratively remove the first activity of
the prefix until we reach a subsequence that has been observed
in L, e.g., if we have not seen ⟨a, b, c, d⟩, we next check for
occurrences of ⟨b, c, d⟩. To transition to the end of a case, we
introduce a placeholder end event following the last activity in
each case. Furthermore, without loss of generality, transition
probabilities may also be computed using other methods, such
as through next-activity prediction techniques [12], [13].
Autonomous handovers. As argued in Section II, many pro-
cesses provide higher flexibility and decision power to the
agents involved. Therefore, our AgentSimulator can also be
used to discover decentralized MASs in which agents them-
selves determine the next activity for a process instance and
which agent should perform it. In this case, activity transition
probabilities need to be learned locally instead of globally.
The locality can either be given by the individual agent or
the agent type, i.e., activity and agent transition probabilities
can either be unique for each agent or generalized across all
agents of the same type t ∈ T . The latter can make sense if
only limited data is available per agent.

To compute transition probabilities from a given activity
prefix σact

prefix to an activity act ∈ ACTL individually for each
agent a ∈ A, we can extend the computation described for
orchestrated handovers and make it agent-depending. Thus,
P (act|σact

prefix, a) is computed by counting for each agent a ∈ A
how often there happened to be a transition from σact

prefix to
act with the last activity of the prefix being performed by a,
divided by the total number of occurrences of σact

prefix with its
last activity being executed by a. Consider Angela in Figure 1
who, given the prefix application received, always first checks
the credit history before the income sources, whereas Steve
and Oliver have no fixed order as they sometimes collaborate.

In addition to activity transitions, the autonomous handover
architecture also accounts for distinct interaction patterns
among agents. Therefore, we compute the frequentist proba-
bility of handing over a case from one agent to another agent.

The conditional probability P (ai|aj) of handing over a task
from agent aj to ai with i, j ∈ {1, ..., |A|} is computed by
counting all occurrences where one activity is performed by
aj and the following activity is executed by ai, divided by
the total number of activities performed by aj . Following
our example, this results in P (Maria|Angela) = 0.0 and
P (Patrick|Angela) = 1.0.



There exist several other approaches to compute the han-
dover probabilities. For instance, including the dependence of
the specific activity in the conditional probability P (ai|aj , act)
could make the interaction patterns even more precise. Com-
paring different approaches for determining the interaction
patterns can be tackled in future work.

The combination of P (act|σact
prefix, a) and P (ai|aj) defines

agent behavior in an autonomous handover architecture and
captures agent-specifics that influence the progress of a case.
General simulation parameters. After having instantiated
the set of agents A, we discover some general simulation
parameters m.p = (fiat, D), where fiat is a PDF of case
inter-arrival times and D a set of PDFs over extraneous delays.
These parameters are not specific to an agent-based simulation
model but are also used in other BPS approaches [4].
Inter-arrival times. Inter-arrival times denote the duration
between the start of two consecutive cases. The PDF over
inter-arrival times is used during simulation to sample new
cases. For discovering the PDF over case inter-arrival times
fiat, we follow [4] who fit different distributions to the inter-
arrival times and take the one with the smallest error.
Extraneous delays. Because different instances of a process
typically compete for limited resources and because resources
do not always start an activity as soon as it can possibly be
performed, processes are affected by waiting times. Extraneous
delays are waiting times that are not caused by resource
contention or unavailability (e.g., a resource waits for the
customer to return a phone call). They need to be modeled
explicitly. Following the algorithm in [14], we discover a PDF
over extraneous delays for each activity, resulting in a set of
extraneous delay distributions D.

C. Phase 2: Simulation

This section details how the AgentSimulator approach uses
the discovered MAS m to simulate an event log L′, illustrated
by the pseudo-code in Algorithm 1. The simulation proceeds
in discrete steps, each representing a time tick. At each step,
we check if new cases arrive and for each running case in the
system, we verify if it is waiting to be processed (e.g., due
to completion of the previous activity) to instantiate the next
activity. The simulation step ends after all cases have been
checked. In more detail, one simulation step looks as follows:
1) Check for new cases. Based on the discovered inter-arrival
distribution p.fiat, we first check if a new case arrives (Line 3).
If there are multiple cases in the system, their processing order
is determined in a first-in-first-out manner. Note that when
evaluating against a test log, we follow the convention of
Simod [4] and only simulate as many case arrivals as there
are cases to be simulated. However, for regular simulations,
we keep on letting cases arrive until we finish the simulation
to avoid a cool-down phase, which is more realistic.
2) Handle all running cases. The cases are processed one-
by-one (Line 4) until all cases have been addressed:
a) Determine next activity. First, we check if the given case
σprefix is waiting to be processed (Line 5). If so, a new event e is
created with its corresponding activity e.act being determined

(Line 7) either globally, modeling orchestrated handovers
based on the current activity prefix (i.e., a global entity
orchestrates the control-flow execution), or locally, modeling
autonomous handovers through the last active agent in the
case. Note that a case’s first activity is always determined
globally as there is no prior agent.
b) Determine the responsible agent. After a new activity was
determined for the given case, it requires an agent for the
execution. Based on the set of activities that an agent can
execute a.c.ALLOC, we identify possibly responsible agents
p a (Line 11). To determine the specific agent (Line 12), we
again differentiate between the two architectures:

• Orchestrated handovers. In a MAS with orchestrated han-
dovers, there are no agent interaction patterns modeled.
Thus, having determined the set of possibly responsible
agents, we order this set based on the agent availabilities
and iteratively ask these agents to perform the next ac-
tivity until one agent is available to execute it (which we
call iterative task allocation). Thus, the first agent to be
asked is the one that offers (based on its schedule a.s and
its current occupation) the earliest availability. An agent
refuses to accept the activity if its estimated duration
(based on fpt(act) ∈ a.c.PT ) collides with occupied or
non-working time slots. If none of the possible agents are
available, the case cannot be processed for now and will
be checked again in the next simulation step. Thus, the
case receives waiting time due to contention (Line 14).

• Autonomous handovers. In a MAS with autonomous han-
dovers, we use the computed agent handover probabilities
P (ai|aj) to determine the next agent. There are two
design choices for their usage: (i) iterative task allocation
and (ii) direct task assignment.
(i) Using iterative task allocation, we simulate (just as in
the orchestrated handovers) that agent aj iteratively asks
other agents to take the activity. However, the difference
is that here the order of to-be-asked agents is determined
by the agent handover probabilities that are transformed
into a ranking, i.e., agent ai is asked first if it has the
highest handover probability from aj .
(ii) Using direct task assignment (not represented in
Algorithm 1), current agent aj does not ask agents until
one is available but assigns the task to an agent who then
starts executing it as soon as it finds the time. This can be
a common agent interaction pattern in real-life processes,
for instance, if an employee forwards a case via e-mail
to a colleague. For this direct assignment, we sample the
agent based on the agent handover probabilities.

Note that a case’s first agent is always determined as described
for orchestrated handovers.
c) Start activity execution. If an agent could be identified, it
begins executing the assigned activity, with the end timestamp
being determined by sampling from the agent-specific activity
duration distribution fpt(act) ∈ a.c.PT and potentially adding
extraneous delays using fd(act) ∈ p.D (Line 16).
After each case is processed, a simulation step is completed.
A case exits the system once its final activity is executed



Algorithm 1 Simulation
Input: A: set of agents; n: number of to-be simulated cases
Input: fiat, D: general simulation parameters

1: Σ← {}, L′ ← {} ▷ init. set of running traces Σ and output log L′

2: while len(L′) ≤ n do
3: Σ← check for new cases(fiat,Σ, evaluation = False)
4: for σprefix in Σ do
5: if is waiting(σprefix) then
6: e← ()
7: e.act← get next activity(σprefix)
8: p a← {}
9: for a in A do

10: if e.act in a.c.ALLOC then
11: p a← add to potential agents(a)

12: e.a← get agent(p a)
13: if e.a = None then
14: is waiting(σprefix)← True
15: else
16: e.tsstart, e.tsend ← execute act(e,D)
17: σprefix ← add to prefix(e)
18: if e.act = end then
19: L′,Σ← exit and add to log(σprefix)

TABLE I: Description of log properties.

Log Type #Traces #Events #Activities #Resources #Agents

Loan Application syn 1000 7492 12 19 19
P2P syn 608 9119 21 27 27
CVS syn 10000 103906 15 6 8

Confidential 1000 syn 1000 38160 42 14 26
Confidential 2000 syn 2000 77418 42 14 26

ACR real 954 6870 18 432 432
Production real 225 4503 24 41 41
BPI12W real 8616 59302 6 52 56
BPI17W real 30276 240854 8 136 136

(Line 19). The entire simulation concludes when the specified
number of cases has been processed and finished. The output
of the simulation is an event log L′, where each event is a
tuple e = (act, tsstart, tsend, a).

IV. EXPERIMENTS AND RESULTS

This section presents the experiments used to evaluate
the performance of AgentSimulator. Table I summarizes the
characteristics of the 9 publicly available event logs used in
our experiments, which are commonly used in BPS evaluations
[5], [6], [15] as they contain both start and end timestamps.
Our implementation, the event logs (with train-test splits), and
additional results are available through our public repository1.

A. Experimental Setup

Implementation. We implemented our approach in Python
using the agent-based modeling framework mesa [16].
Benchmark approaches. We empirically compare our
AgentSimulator (AgentSim) against three common data-driven
BPS approaches. We adopt the state-of-the-art Data-driven
Process Simulation (DDPS) approach from [8], which we refer
to as Simod. It combines the original Simod [4] with the
Prosimos simulator, which considers differentiated resource
availability and performance and was shown to outperform the

1https://github.com/lukaskirchdorfer/AgentSimulator

original Simod. DeepGenerator (DGEN) [12] is a pure Deep
Learning (DL) approach, and DeepSimulator (DSIM) [6] is a
hybrid of DDPS and DL (more details in Section V).
Data split. We follow evaluations of existing BPS approaches
[5], [6], [12] and perform a temporal hold-out split, excluding
all cases that span the separation time between the train set
(first 80% of cases) and the test set (last 20% of cases).
Hyperparameters. AgentSim has two automatically deter-
mined hyperparameters: the architecture (orchestrated or au-
tonomous handovers) and whether to consider extraneous
delays, resulting in 4 possible configurations. We treat the
latter as a hyperparameter because we noticed considerable
differences regarding the benefit of considering extraneous
delays between different event logs. We determine both hyper-
parameters by initially simulating the last 20% of the training
set for each of the 4 possible configurations and checking
which simulation most closely resembles the training subset
in terms of cycle time. To ensure a fair comparison, we use
the same option regarding extraneous delays for Simod.
Metrics. To evaluate and compare the different simulation
approaches, we use recently proposed metrics that are de-
signed to evaluate simulation models across three dimensions:
control-flow, time, and congestion, thus, providing a holistic
perspective [15]. All metrics compute the distance between
the simulated and test log, where a lower value indicates
a better result. To measure the control-flow, we use the N-
Gram Distance (NGD) that computes the difference in the
frequencies of the n-grams observed in the event logs. To
measure the temporal performance of the simulation, we
use the Absolute Event Distribution (AED), the Circadian
Event Distribution (CED), and the Relative Event Distribution
(RED). To measure the capability of a model to represent
congestion, we use the Cycle Time Distribution (CTD). We
do not measure the Case Arrival Rate as we apply the same
case arrival method as Simod, thus, we focus on metrics where
AgentSim differs from other approaches.

B. Results

Overall results. Table II summarizes the results for the 9 event
logs, showing the average metrics from 10 simulation runs for
each log. The best value per log and metric is marked in bold,
the second-best is underlined. Generally, no single approach
consistently outperforms the others across all datasets and
metrics as also observed in previous BPS works [5], [6].
However, AgentSim stands out by most frequently achieving
the best performance within each metric across the 9 logs.
When looking more closely at the 3 dimensions captured by
the metrics, we can obtain the following main insights:
Control-flow. Achieving the best NGD (N-gram distance) in
4 out of 9 logs and considerably outperforming Simod and
DSIM, the results indicate that our resource-first AgentSim
approach, which is independent of an underlying process
model enhances the accuracy of the control-flow dimension
compared to control-flow-first approaches such as Simod. This
is particularly evident when analyzing the two real-life BPI

https://github.com/lukaskirchdorfer/AgentSimulator


TABLE II: Comparison of simulation approaches.

Log Method Metrics
NGD AED CED RED CTD

L
oa

n
A

pp
l. Simod 0.15 13.55 0.40 9.22 20.42

DGEN 0.21 212.27 13.40 5.26 9.38
DSIM n/a n/a n/a n/a n/a

AgentSim 0.07 2.78 0.21 1.34 1.49

P2
P

Simod 0.42 1044.25 2.21 840.19 677.05
DGEN 0.20 1481.46 2.55 828.09 670.05
DSIM 0.22 1310.03 1.15 722.33 566.63

AgentSim 0.25 1161.32 1.02 658.61 525.15

C
V

S

Simod 0.44 52.95 0.44 39.43 54.59
DGEN 0.21 310.39 11.69 176.65 294.21
DSIM 0.20 36.23 8.98 19.74 52.43

AgentSim 0.12 89.31 7.48 81.76 101.49

C
.1

00
0 Simod 0.25 344.48 3.01 468.81 804.07

DGEN 0.58 462.84 18.93 8.11 13.92
DSIM 0.20 246.41 2.28 5.34 7.29

AgentSim 0.25 127.01 1.68 16.84 26.10

C
.2

00
0 Simod 0.24 820.45 2.96 952.37 1614.91

DGEN 0.16 857.68 18.09 4.58 8.12
DSIM 0.18 591.13 2.84 1.7 2.26

AgentSim 0.26 212.54 1.41 9.29 17.87

A
C

R

Simod 0.23 287.27 2.60 32.46 93.51
DGEN 0.31 559.67 17.84 30.87 95.11
DSIM 0.26 273.46 4.64 15.62 48.24

AgentSim 0.36 333.28 7.95 27.12 76.50

Pr
od

uc
tio

n Simod 0.93 146.38 2.82 83.88 89.15
DGEN 0.52 224.45 9.30 70.11 90.82
DSIM 0.86 154.31 2.66 33.30 43.26

AgentSim 0.61 65.29 5.83 14.20 25.79

B
PI

12
W

Simod 0.72 71.97 1.71 95.72 155.46
DGEN 0.43 306.28 4.53 116.18 176.79
DSIM 0.65 78.62 2.88 119.12 173.49

AgentSim 0.15 79.89 1.87 47.83 90.12

B
PI

17
W

Simod 0.59 300.28 3.34 136.63 148.40
DGEN 0.67 4557.19 3.39 118.84 172.94
DSIM 0.53 54.61 3.35 33.10 30.26

AgentSim 0.30 220.98 1.64 26.03 22.75

logs. Thus, putting the resource at the core of the simulation
often allows to represent control-flow behavior more faithfully.
Time. In terms of absolute (AED), circadian (CED), and
relative (RED) event distributions over time, AgentSim is
the leader across all 3 metrics, followed by DSIM. Simod
and DGEN stay on average significantly behind AgentSim.
These results indicate that AgentSim can capture the temporal
patterns in the log comparatively well.
Congestion. Accurately capturing the cycle time of a process
instance serves as a critical indicator of the accuracy of a simu-
lation approach. The CTD metric is influenced by the process-
ing times of individual activities and the corresponding waiting
times, which in turn are dependent on resource availability.
Consequently, the cycle time metric captures a comprehensive
range of factors. AgentSim demonstrates superior accuracy in
capturing cycle times compared to the benchmarks, achieving
the best CTD in 5 out of 9 logs, again followed by DSIM lead-
ing in the remaining 4 logs. The advantage of AgentSim over
Simod is particularly pronounced with the Confidential logs.
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Fig. 3: Resource interactions for the BPI12W log.

Here, Simod’s simulated logs exhibit significantly longer cycle
times compared to reality, primarily due to resource contention
and the consequent waiting times. AgentSim mitigates this
issue by recognizing that some agents do not require waiting
time, such as agents performing instantaneous activities.
Impact of handover configuration. Simulating the same
process using the two different handover configurations (cen-
trally orchestrated versus autonomous) reveals considerable
differences in results for some logs (full results for both
options are in our repository). Overall, our automated method
of selecting the handover configuration in AgentSim leads to
5 of 9 processes being simulated with orchestrated handovers,
e.g., P2P and Production, for which AgentSim, despite being
a resource-first approach, still yields strong results. Some
logs strongly benefit from being simulated in an orchestrated
instead of autonomous manner. For instance, the Production
log shows an improvement in CTD from 45.65 to 25.79 and
in NGD from 0.77 to 0.61, aligning with the standardized
nature of production processes. By contrast, looking at the
logs that are simulated with autonomous handovers, we also
observe clear benefits of considering distinct agent behaviors
for certain processes. For instance, for the real-life BPI17W
log, we halve both the CTD and RED to 22.75 and 26.03,
respectively, compared to the orchestrated configuration. Also,
C. 1000 and Loan Appl. show slightly better results across all
metrics using autonomous handovers. Overall, these insights
demonstrate AgentSim’s adaptability to diverse process types,
leading to considerable improvements in terms of results.
Post-hoc analysis on agent interactions. To exemplarily
demonstrate AgentSim’s ability to represent agent interactions,
we compare its interaction patterns with Simod for the real-
life BPI12W log. Figure 3 shows that AgentSim accurately
reflects the training log’s interaction dynamics, capturing the
given activity chaining of resources (see diagonal). In con-
trast, Simod exhibits random interactions and fails to capture
these patterns, thus showing the crucial nature of considering
individual interaction patterns for certain processes.
Runtime. Given the stochasticity of simulation, it is essential
to simulate numerous logs to achieve reliable predictions.
Therefore, runtime is a critical factor in the practical appli-
cation of BPS. In this regard, it is important to note that
AgentSim consistently operates much faster than the bench-
marks. For instance, while AgentSim only requires around 30
seconds to discover and simulate the Production log (on a
machine with 32GB of RAM and an Intel Core i7 2.3 GHz
CPU), Simod runs 20 times and DSIM even 80 times longer.



For the BPI12W log, AgentSim requires around 9 minutes,
whereas DSIM takes more than 10 hours.

V. RELATED WORK

This section briefly discusses related work on automated
BPS and agent-based modeling and simulation.
Automated BPS. We can divide existing literature on au-
tomated BPS approaches into three categories: Data-Driven
Process Simulation (DDPS), Deep Learning (DL), and hybrid
approaches. DDPS approaches automate simulation model
discovery from event logs by initially identifying a process
model and then enhancing it with simulation parameters. A
semi-automated approach using colored Petri nets is proposed
in [3], while [7] introduces a data-driven approach without
considering resources. A more recent approach is Simod [4],
which incorporates hyperparameter tuning. DL approaches
for BPS typically rely on recurrent neural networks. LSTM
models are employed in [13] to predict events and timestamps,
later improved upon by DGEN [12] incorporating n-grams and
embeddings. Due to their black-box nature, DL models are not
applicable for what-if analysis. Hybrid models combine DDPS
and DL approaches. DSIM [6] combines a stochastic process
model with DL for event timestamping, extended by RIMS
that integrates predictions at runtime [5].
Agent-based modeling and simulation. Over the past
decades, the application of MAS to various domains has been
studied extensively (cf. [17] for a review). Applying agents to
Business Process Management (BPM) was initially proposed
in the 1990’s [18], where a business process is modeled as
a system of negotiating agents. More recently, the concept
of agent system mining has been introduced, recognizing
that processes often emerge from interactions of autonomous
agents [19], as demonstrated by an agent-based discovery
algorithm in [20], and also shown for simulation in [21]. A
general introduction to agent-based BPS can be found in [22].
However, such agent-based simulation approaches in BPM
rely on manual configurations to simulate a specific process,
e.g., in a factory production domain [23]. To the best of our
knowledge, our approach is the first to use event logs to
automatically infer MAS models for process simulation.

VI. CONCLUSION

This paper introduced AgentSimulator—an agent-based ap-
proach for data-driven business process simulation. Given
an event log, our approach discovers a multi-agent system
that represents real-world actors and systems, each modeled
with unique behaviors and interaction patterns. The discovered
multi-agent system is then used to simulate the execution
of the process. Our resource-first approach provides more
means to capture distinct resource behaviors and interactions
than traditional control-flow-first approaches and achieves
state-of-the-art results with significantly reduced computation
times. The evaluation shows that centrally orchestrated and
decentralized processes often need to be captured differently,
with AgentSimulator being automatically adaptable to both.
Modeling human behavior is a complex task. Although our

approach successfully captures some agent-specific behaviors,
it currently does not account for multitasking, batching, or
fatigue effects, which we want to incorporate in future work.
Furthermore, we will explore the use of additional architec-
tures for our multi-agent system itself.
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