
Evaluating the Ability of LLMs to Solve
Semantics-Aware Process Mining Tasks

Adrian Rebmann∗, Fabian David Schmidt†, Goran Glavaš†, and Han van der Aa‡
∗Data and Web Science Group, University of Mannheim, Germany

rebmann@uni-mannheim.de
†Center for Artificial Intelligence and Data Science, University of Würzburg, Germany

{fabian.schmidt, goran.glavas}@uni-wuerzburg.de
‡Faculty of Computer Science, University of Vienna, Austria

han.van.der.aa@univie.ac.at

Abstract—The process mining community has recently recog-
nized the potential of large language models (LLMs) for tackling
various process mining tasks. Initial studies report the capability
of LLMs to support process analysis and even, to some extent,
that they are able to reason about how processes work. This
latter property suggests that LLMs could also be used to tackle
process mining tasks that benefit from an understanding of
process behavior. Examples of such tasks include (semantic)
anomaly detection and next activity prediction, which both
involve considerations of the meaning of activities and their inter-
relations. In this paper, we investigate the capabilities of LLMs to
tackle such semantics-aware process mining tasks. Furthermore,
whereas most works on the intersection of LLMs and process
mining only focus on testing these models out of the box, we
provide a more principled investigation of the utility of LLMs
for process mining, including their ability to obtain process
mining knowledge post-hoc by means of in-context learning and
supervised fine-tuning. Concretely, we define three process mining
tasks that benefit from an understanding of process semantics
and provide extensive benchmarking datasets for each of them.
Our evaluation experiments reveal that (1) LLMs fail to solve
challenging process mining tasks out of the box and when
provided only a handful of in-context examples, (2) but they yield
strong performance when fine-tuned for these tasks, consistently
surpassing smaller, encoder-based language models.

Index Terms—process mining, large language models, anomaly
detection, next activity prediction

I. INTRODUCTION

Process mining involves analyzing event data from orga-
nizational processes to gain actionable insights into the true
manner in which they are executed. Recently, the process
mining community has taken notice of the potential of large
language models (LLMs) in tackling process mining tasks.
Exploratory studies have looked into the effectiveness of
these generative models for this purpose, yielding promising
initial results. Among others, LLMs demonstrate the ability to
describe processes textually using event data, answer questions
about the event data, and assist in formulating queries to
address specific analysis questions [1], [2], [3]. This capability
shows their potential to offer valuable assistance to process
analysts in manual data exploration and analysis.

The greatest potential from an automated process analy-
sis point-of-view lies in LLMs’ impressive natural language
understanding capabilities. These capabilities could provide

a strong foundation for supporting process mining tasks,
particularly those that benefit from a consideration of the
meaning of process steps and their relations. Examples in-
clude anomaly detection [4] and next activity prediction [5].
Anomaly detection can improve performance by identifying
undesired process behavior based on the meaning of activities.
For instance, it can detect when a delivery is created despite
the corresponding purchase order being canceled. Next activity
prediction can enhance performance by narrowing down the
set of potential next activities to those that make semantic
sense. For example, it can discard a check request activity if
the request has already been approved.

The capabilities of (smaller) language models for tackling
process mining tasks such as semantic anomaly detection have
been shown [6]. However, an investigation of the utility of
LLMs for solving such semantic-aware process mining tasks
is still missing. This particularly relates to in-depth evaluations
of the capabilities of such models, e.g., with respect to their
ability to obtain process mining knowledge post-hoc by means
of in-context learning and supervised fine-tuning. A reason for
this is the lack of properly defined natural language processing
(NLP) tasks that effectively conceptualize the capability to
perform semantics-aware process mining tasks. Consequently,
there is also a lack of benchmarking datasets similar to those
available for established NLP tasks such as Question An-
swering [7] and Text Summarization [8], hindering structured
evaluation experiments.

In this paper, we address these problems through the fol-
lowing contributions:

• We define three tasks (Section III) that allow for assessing
the capabilities of (large) language models for semantics-
aware process mining: (1) determining whether an activ-
ity sequence represents a valid execution of a process, (2)
deciding whether the execution order of two activities is
valid, and (3) selecting the next process activity to be
performed given an incomplete activity sequence.

• We provide a corpus of process behavior (Section IV)
based on the largest publicly available process model
collection that can be used to establish benchmarking
datasets for semantic process analysis tasks. Based on
this corpus, we establish and provide benchmarking data

sets that allow for conducting quantitative evaluations of
the language models’ performance on the proposed tasks.

• We assess the performance of open-source LLMs to
solve the proposed tasks based on the established bench-
marking datasets in an experimental evaluation (Sec-
tion VI–Section VII). Therein, we compare LLMs in in-
context learning and fine-tuning settings and discrimina-
tive encoder-based language models.

Our results indicate that the proposed tasks are too challenging
for LLMs to solve them out of the box and using in-context
learning. However, if an LLM is fine-tuned on a specific task
it can achieve accurate results and consistently outperforms
discriminative encoder-based language models.

II. PRELIMINARIES

In this section, we define preliminaries on process models,
event data, and eventually-follows relations, which we require
for the remainder of the paper.
Process Models. Let A be the universe of possible activities
that can be performed in organizational processes. We define
a process model M as the set of executions that are allowed
in a process. Each execution π is represented as an activity
sequence π = ⟨a1, ..., an⟩, with ai ∈ A. We use AM ⊆ A, to
denote the set of activities that appear in the sequences of M .
Event Data. We adopt a simple event model, focusing on
the control-flow of a process. A trace σ is a sequence that
represents the events that have been recorded for the execution
of a single instance of an organizational process. Such a trace
consists of a finite sequence of activities σ = ⟨a1, ..., an⟩, with
a ∈ A. An event log L is a finite multi-set of traces. AL ⊆ A
denotes the set of activities that appear in the traces of L.
Eventually-Follows Relations. We use the eventually-follows
relation ≺ to capture ordering relations between pairs of
activities (stemming either from the traces of an event log
or from activity sequences of a process model). Given a
trace σ = ⟨a1, ..., an⟩, we use ai ≺σ aj to denote that ai
occurs (directly or indirectly) before aj in the trace, with
1 ≤ i < j ≤ n. Accordingly, ai ≺M aj holds if a model M
allows for an activity sequence π in which activity ai occurs
before aj . EFM denotes all eventually-follows relations of the
activity sequences allowed by M .

III. TASKS

This section describes and defines three process mining
tasks that benefit from an understanding of process behavior.
We design these tasks such that there is no access to historical
event data and to consider solely the control-flow perspective.
This allows us to assess whether a language model can solve
the tasks based purely on its encoded knowledge of how
processes generally work with respect to the meaning of
activities and their inter-relations. Our tasks include two forms
of semantic anomaly detection, as well as semantic next activ-
ity prediction, which represent semantics-aware counterparts
to the well-established anomaly detection and next activity
prediction tasks in process mining and vary considerably in
terms of their complexity.

A. Semantic Anomaly Detection

Anomaly detection in process mining aims to identify
outlying process behavior in the traces of an event log [9].
Many approaches do this by identifying statistical outliers [10],
arguing that behavior is anomalous if it is infrequent.

By contrast, semantic anomaly detection [4] focuses on the
identification of process behavior that does not make sense.
Arguing that, just because behavior is infrequent, does not
make it anomalous, whereas just because something happens
regularly, does not mean that it is proper process behavior.
For instance, from a semantic point of view, an invoice
should not be created if the corresponding purchase order has
been rejected and should therefore be detected as anomalous
behavior, independent of how frequently this happens.

Detecting anomalies based on process semantics requires a
different approach compared to frequency-based anomaly de-
tection. Whereas frequency-based detection can be performed
by just using data in an event log (revealing statistical outliers),
semantic anomaly detection requires information about how a
process should (or should not) work in general. By definition,
such information needs to be obtained from outside of the
event log, e.g., from large knowledge bases or—as we do in
this paper—from the knowledge encoded in LLMs.

We define two specific tasks in this context, focusing on the
trace and activity-relation levels:
Trace-Level Semantic Anomaly Detection. Trace-level se-
mantic anomaly detection (T-SAD) is a binary classification
problem in which a trace σ ∈ L needs to be classified as
anomalous or not, according to its semantics. For instance,
given a trace σ = ⟨register application, approve application,
review application⟩, the task is to classify that σ is anomalous.
This is the case because an application should first be reviewed
and only then approved (or rejected). The challenge here is that
there is no specification available of the process at hand that
can be used for this. Rather that anomality needs to be inferred,
requiring an understanding of how processes generally work.
Activity-Level Semantic Anomaly Detection. Activity-level
semantic anomaly detection (A-SAD) is a more fine-granular
task than T-SAD, focusing on pairs of activities in a trace
rather than on an entire trace at once. Specifically, A-SAD
focuses on classifying any eventually-follows relation ai ≺σ

aj of two activities ai and aj that appear in a respective order
in a trace σ as being anomalous or not. For instance, given the
trace σ = ⟨create purchase order, reject purchase order, create
invoice⟩, the eventually-follows relation reject purchase order
≺σ create invoice should be classified as anomalous, whereas
the other pairwise relations, i.e., create purchase order ≺σ

reject purchase order and create purchase order ≺σ create
invoice should be classified as valid.

B. Semantic Next Activity Prediction

Next activity prediction, also known as next event or next
step prediction, is a key predictive process monitoring task. Its
objective is to determine the subsequent activity in an ongo-
ing process execution [5]. Various approaches, predominantly

based on supervised deep learning (e.g., [11], [12]), have been
developed to tackle this task.

As a semantics-aware counterpart for next activity predic-
tion, we introduce the semantic next activity prediction (S-
NAP) task. For an incomplete trace σ, which represents an
ongoing process execution in which k activities have been
performed (k ≥ 1), the task is to predict the next activity
ak+1 in σ based on a set of possible activities A. For instance,
given σ = ⟨create purchase order, approve purchase order⟩
and A = {create purchase order, approve purchase order,
create invoice, make payment}, the task is to predict ak+1 as
create invoice. This is because, generally, an invoice should
be created before a payment is made.

Whereas approaches for (traditional) next activity prediction
train a model on historical traces from an event log L to
predict the next activity in ongoing (i.e., unseen) executions
of the process, S-NAP focuses on situations where no such
historical traces are available. As a result, the next activity
must be inferred by considering the semantics of the activities
involved in a process.

IV. DATASETS

This section details the creation and characteristics of the
text corpus and benchmarking datasets that we use to evaluate
the ability of language models to solve the proposed tasks. We
make all datasets publicly available [13].

A. A Corpus of Process Behaviors

Language models require textual input. In order to assess
their ability to solve semantics-aware process mining tasks
we, therefore, need a collection of textual representations of
process behavior, a so-called corpus. This corpus then serves
as a basis to create task-specific data that can be used for
training and evaluating language models on the proposed tasks.

Since no such corpus is readily available, we create one
based on graphical process models (i.e., process diagrams). To
this end, we use SAP-SAM [14], which is the largest publicly
available collection of process diagrams to date. In order to
create a high-quality corpus, we select only English BPMN
diagrams from SAP-SAM that meet specific requirements.
These ensure that the corpus includes only unique and valid
process behavior. In particular, we require that a diagram can
be transformed into a sound workflow net and that no two
diagrams have the same activity set. The former requirement
mitigates data quality issues in the SAP-SAM collection [14]
and ensures that we can properly generate activity sequences
from the diagram. The latter makes sure that we do not include
duplicate behavior. Furthermore, we require a diagram to
contain at least two different activities to ensure that it actually
captures ordering relations between different activities.

We use the workflow net of each selected diagram to
generate activity sequences, capturing all executions allowed
by the net. For loops, we ensure that each loop is executed
at most once, so that we capture relations involving rework,
yet, obtain a finite set of activity sequences. For each net,
this yields a process model M according to the definition in

Section II, i.e., a set of activity sequences capturing its allowed
behavior. We add each such M to the corpus.

We show the characteristics of the resulting corpus in
Table I. As depicted there, the complexity of the process
models varies considerably. For instance, the median number
of unique activities is 4, whereas the maximum is 21 and the
process models allow for 10.34 activity sequences on average,
whereas the maximum amount is 10,080.

TABLE I
CHARACTERISTICS OF THE PROCESS BEHAVIOR CORPUS.

Characteristic Total Per process model
Avg. Med. Min. Max.

Process models 15,857 – – – –
Unique activities 49,108 4.70 4 2 21
Unique sequences 163,484 10.34 1 1 10,080

Based on this corpus, we can generate task-specific datasets
for the individual tasks.

B. Task-Specific Benchmarking Datasets

With a text corpus of process behaviors available, we can
generate task-specific benchmarking datasets that include task
samples and a gold standard. This gold standard enables
objective, quantitative evaluation of the language models on
the tasks based on established evaluation measures. The char-
acteristics of the dataset are shown in Table II, whereas they
are established in the manner described in the following.

TABLE II
CHARACTERISTICS OF THE TASK-SPECIFIC BENCHMARKING DATASETS.

Task Dataset Total Valid Anomalous

T-SAD 291,251 150,301 140,950
A-SAD 316,308 158,154 158,154
S-NAP 1,289,081 1,289,081 -

T-SAD. To establish the T-SAD dataset, we first create an
event log L for each process model M in the corpus such
that each π ∈ M becomes a trace σ ∈ L. To make sure that
there is a minimum number of traces per log, we randomly
duplicate traces in L until a size of 100 is reached if L does not
already contain at least 100 traces. Subsequently, for each trace
σ ∈ L, we make a decision regarding the insertion of noise,
with a 50 percent probability. This noise insertion involves
swapping two randomly selected activities within the trace.
After swapping, we check whether the resulting sequence σ′

is indeed anomalous, i.e., σ′ /∈ M . If the sequence is found
to still be valid, i.e., σ′ ∈ M , we continue iterating through
potential swaps until we obtain an anomalous sequence1. This
ensures that the dataset contains (roughly) the same amount of
valid and anomalous traces, which is crucial for robust model
training and evaluation.

Each of the 291,251 records of the T-SAD dataset then
consists of a trace σ, the correct label of σ, i.e., Anomalous if

1We limit the number of retries to 10 per trace to guarantee termination.

σ /∈ M and Valid otherwise, and the set of possible activities
in the process from which σ originates as context information.
A-SAD. We create the A-SAD dataset based on the set of
eventually-follows relations EFM for each process model
M in the corpus. The relations in EFM represent all valid
execution orders of activities of M . Next to these, we create
a set of anomalous relations EF ̸M , i.e., ones that are not in
EFM . To provide a balanced dataset, we establish EF̸M by
randomly selecting relations that are not in EFM , until we
have an equal number of valid and anomalous relations.

Each of the 316,308 records of the A-SAD dataset consists
of an eventually-follows relation r, the correct label of r, i.e.,
Anomalous if r /∈ EFM and Valid otherwise, and the set
of all activities AM in the process model from which the
activities in r originate as context information.
S-NAP. For the S-NAP dataset, we first create an event log
L for each process model M in the corpus such that each
π ∈ M becomes a trace σ ∈ L. Then, we generate all possible
prefixes for each trace σ ∈ L and add them to L. This involves
iteratively considering sub-traces of increasing length k from
the first activity of a trace σ, up to its full length, which ensures
that every potential prefix is captured.

Each of the 1,289,081 records of the S-NAP dataset then
consists of a length-k prefix (σk) of σ, the correct label of
σk, i.e., the activity at position k + 1 in σ, and the set of
possible activities AL of the event log from which σ originates
as context information.

V. LLM-BASED PROCESS MINING

Neural language models, based on the Transformer ar-
chitecture [15], [16] come in two main flavors: (1) bidi-
rectional language models, also commonly called encoders,
which are typically (pre-)trained via masked language mod-
eling objectives in which masked tokens are predicted from
both left and right context [16], [17] and (2) unidirectional
language models, also known as decoders, which are trained
via autoregressive language modeling objectives where the
next token is predicted from the preceding context [18],
[19]. LLMs are very large instances of the latter category
(with at least a billion parameters) that are, following large-
scale autoregressive language modeling, typically additionally
trained for instruction following, i.e., to provide solutions to
tasks given the natural language description of these tasks [20],
[21]. Such instruction-tuning allows LLMs to generalize to
new tasks through textual task descriptions (since capturing
meaning of language is what LLMs excel at) and solve them
successfully even when not provided with any task-specific
(training) examples.
Fine-Tuning LMs on Classification Tasks. Fine-tuning is
the process of further training a pretrained language model, in
order to specialize it for a specific (classification or regression)
task. The advantage compared to training a model from scratch
is that the training data size for fine-tuning is considerably
smaller, thus reducing resources required to train a task-
specific model. We fine-tune language models for each of
our semantics-aware process mining tasks, all of which are

Classifier (Θcl)

Pooling

Encoder (Θenc)

0 (Valid) or 1 (Anomalous)

…

[CLS] create invoice … [SEP], make payment…

Fig. 1. Illustration of discriminative classification with an encoder LM.

classification tasks. We next briefly describe the fine-tuning
procedures for (a) discriminative classification with an encoder
LM and (b) generative classification with a decoder LM.
Discriminative Fine-Tuning of Encoder LMs. To fine-tune an
encoder LM for classification tasks, we extend the model’s
base architecture (i.e., the pretrained Transformer network)
with an additional classification layer: the parameters of the
classifier are trained from scratch (i.e., randomly initialized),
whereas the encoder’s parameters are updated (i.e., fine-tuned).
Fine-tuning of an encoder LM for the T-SAD task is illustrated
in Figure 1 using a record with a trace ⟨create invoice,
make payment, . . . ⟩ as input. The input is first split into a
sequence of subword tokens.2 The actual input for encoder
LMs is commonly surrounded with synthetic sequence start
([CLS]) and sequence end ([SEP]) tokens. The encoder
(i.e., the Transformer network) outputs one vector—a trans-
formed/contextualized representation—for each token in the
input sequence, including the sequence start/end tokens. Let
xCLS ∈ Rd be the representation of the sequence start token
CLS (output of the encoder) with d as the hidden size of
the encoder’s Transformer network; this vector xCLS can
be seen as a latent semantic representation of the whole
input text and is forwarded as input to the classifier. The
classifier, in turn, is a single-layer feed-forward network:
ŷ = softmax (Wcl · xCLS + bcl); Wcl ∈ Rc×d and bcl ∈ Rc

are the trainable parameters of the classifier (c is the number of
classes in the classification task) and softmax is the function
commonly used to convert real-valued vectors into probability
distributions—the final output ŷ is thus a probability distribu-
tion over the task’s classes. We train the model (jointly update
the parameters of both classifier and encoder in end-to-end
fashion) by minimizing the widely used cross-entropy loss,
i.e., the negative logarithm of the probability that the model
predicted for the true class of the input instance.

T-SAD and A-SAD are binary classification tasks (i.e., c =
2) in which the model predicts whether the traces and ordered

2For more frequent words in the language, a token will commonly corre-
spond to the whole word; less frequent words, on the other hand, will often
be broken down into more frequent subtokens (e.g., “tokenization” may be
segmented into “token” and “ization”). The exact subword vocabulary is
model dependent, i.e., each LM comes with its own tokenizer.

LM Head (ΘLM)
 (classifier)

Decoder (Θdec)

…Activities : { create Sequence Anomalous :…

“true”
“false”

[0.7, 0.3]
P(“false”)

P(“true”)

Fig. 2. Illustration of constrained generative fine-tuning of a decoder LM.

activity pairs, respectively, are Valid or Anomalous. S-NAP is
a multi-class classification task in which the set of classes is
defined with the activities in AM of the process model M
from which the input record was created.
Generative Fine-Tuning of Decoder (L)LMs. Autoregressively
trained decoder LLMs cast classification tasks as language
generation tasks. Concretely, each class into which the pre-
ceding text is to be classified is assigned one token from
the vocabulary and the LLM’s language modeling head (a
classifier over the LLM’s vocabulary) is supposed to generate
the token of the correct class. For example, for the T-SAD
task, we convert individual training instances into prompts that
couple (1) the set of process activities with (2) the concrete
trace (or activity sequence) that is to be judged as Valid or
Anomalous. Then we append the prompt that asks whether
the sequence is anomalous, with the token true assigned to the
Anomalous sequences and token false to the Valid sequences.
The whole input for the decoder LLM for a single sequence
is shown below (the label token is underlined and in blue):

Activities: {create order, approve order, reject order, create
invoice, make payment}
Activity sequence: [create order, reject order, create invoice,
make payment]
Anomalous: true

We fine-tune a decoder LLM via constrained text gener-
ation: given the entire preceding context (everything except
the last token that indicates the class), we predict the next
token, but allow the language modeling head to only predict
the probabilities for the allowed class tokens (in the above
example, only true, false), as opposed to LLM pretraining in
which the next token is predicted over the entire vocabulary
of the LLM. We illustrate constrained generative fine-tuning
of a decoder LM in Figure 2. The Transformer network of the
decoder produces the output representation by contextualizing
all preceding tokens; the resulting vector is next compared
against the representations of the allowed class tokens (in the
example, true, false) to produce scores that are then converted
into probabilities using softmax. We minimize the negative
log likelihood of the probability assigned to the correct class
token: as updating all LLM parameters is computationally

You are given a list of activities that can be
performed in an organizational process and a
sequence of activities that have been performed in
the given order. Which activity from the list should
be performed next in the sequence? Provide one
activity from the list and nothing else.

List of activities:
1. create purchase order 2. approve purchase order
3. create invoice 4. make payment

Activity sequence:
[create purchase order, approve purchase order]

Next activity: create invoice

List of activities:
1. receive application 2. assess documents
3. accept application 4. notify applicant

Activity sequence:
[receive application]

Next activity:

Ta
sk

 d
es

cr
ip

tio
n

Ex
am

pl
e

(s
ho

t)
Ta

sk
 in

st
an

ce

Fig. 3. One-shot in-context-learning prompt for the S-NAP task.

infeasible, we resort to parameter-efficient fine-tuning via low-
rank adaptation (LoRA) [22].3

Few-Shot In-Context Learning. In-context learning (ICL)
aims to induce a model to perform a task by providing a small
set of input-label examples (so-called “shots”) along with the
task description; the query sample—the example (input) for
which the label is to be generated—is provided at the end
of the prompt [23]. In-context learning allows the LLM to
understand the task (via the description and a few labeled
examples), without supervised fine-tuning (i.e., without any
updates to LLM’s parameters).

Figure 3 displays the one-shot prompt for the S-NAP task:
the description of the task is followed by one labeled task
instance—list of possible activities and the prefix trace in
question, along with the correct label—and then the query
instance for which the LLM is to generate the label.

VI. EXPERIMENTAL SETUP

We first describe how we split the datasets for training,
validation, and testing, and then introduce the concrete LMs
we use. We then provide details on our ICL and fine-tuning
setups. For reproducibility, we make all training and evaluation
scripts publicly available.4

Dataset Portions. We split all datasets based on the process
models from which the samples originate using 70% of
instances for training, 20% for validation, and 10% for final
performance evaluation. For these splits, we ensure that no
activity sequence of a model in the training sets appears in
any of the process models in validation and test portions.
This ensures that no knowledge of the process behavior is
leaked from training to the validation and test sets, allowing
us to correctly assess the generalization abilities of the LMs.

3For brevity, we refer the reader to the original work for details on LoRA.
4https://github.com/a-rebmann/llms4pm

https://github.com/a-rebmann/llms4pm

Furthermore, we ensure a comparable complexity distribution
of process models across splits via stratified sampling based
on the number of unique activities in the models. Table III
displays the sizes of all splits for all three of our tasks.

TABLE III
TRAINING, VALIDATION, AND TEST SPLIT CHARACTERISTICS PER TASK.

Task Total Train Validation Test

T-SAD 291,251 227,892 43,609 19,750
A-SAD 316,308 229,402 56,154 30,752
S-NAP 1,289,081 1,071,529 166,811 50,741

Large Language Models. We resort to two widely used
open decoder-LLMs that have demonstrated impressive per-
formance on NLP benchmarks, namely: (1) Llama-3 (Llama)
LLM in its 8 billion parameter version5 and (2) Mistral-2
(Mistral) in its 7 billion parameter version6. We evaluate both
in few-shot ICL and fine-tuning setups.
Baselines. We use two baselines in our experiments: (1) We
compare LLMs with ICL (i.e., without task-specific fine-
tuning) against a random classifier, which assigns task’s
classes to test instances with equal probability; (2) We com-
pare generatively fine-tuned LLMs against a discriminatively
fine-tuned encoder LM: specifically, we use RobERTa [17]
in its large version,7 a strong and widely used English-only
bidirectional encoder LM.
Performance Metric. We measure performance using the
macro F1-score, so that classes equally contribute to the
performance regardless of their size. Macro F1 is the simple
average of per-class F1 scores, with F1 of class c being the
harmonic mean between c’s precision and recall.
In-Context Learning and Prompt Optimization. We exper-
imented with several task formulation prompts for each task
and selected the optimal one based on validation performance.
We evaluated 6-shot, 10-shot, and 20-shot ICL for all three
tasks: for binary T-SAD and A-SAD tasks, we evenly balance
positive and negative instances; for S-NAP we sample one
instance from randomly chosen 6, 10, or 20 process models,
respectively. Different task description prompts led to marginal
performance differences. Somewhat surprisingly, prompts with
fewer shots produced better validation performance: we thus
finally evaluate 6-shot ICL on our test data.8

Fine-Tuning. We fine-tune Llama and Mistral in batches of
two instances with gradient accumulation over 16 batches, re-
sulting in an effective batch size of 32. We fine-tune RoBERTa
also in batches of 32 instances. All models are trained using
the AdamW algorithm [24], with an initial learning rate of 1e-
5. We fine-tune the LLMs for three epochs and RoBERTa for
ten epochs. We run each combination of task and model three
times using different random seeds, corresponding to different
random initialization of model parameters and shuffling of
training data in each run.

5https://huggingface.co/meta-llama/Meta-Llama-3-8B
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/FacebookAI/roberta-large
8See https://github.com/a-rebmann/llms4pm for the task prompts we used.

VII. RESULTS AND DISCUSSION

We report the performance of LLMs on the three tasks,
followed by an in-depth analysis of the models’ predictions
and a discussion on training effort.

A. Main Results

Table IV shows the main results of our experiments per task
for the random baseline, the two LLMs (Llama and Mistral)
using the ICL approach, as well as RoBERTa and the LLMs
using the fine-tuning approach (FT). We report mean and (±)
standard deviation variance over three runs for ICL and three
different random seeds for FT. We first discuss the much
weaker ICL results and then focus on fine-tuning performance.

TABLE IV
MAIN RESULTS (MACRO F1 SCORES).

Approach Task
T-SAD A-SAD S-NAP

Random 0.50 ± 0.000 0.50 ± 0.000 0.13 ± 0.000
ICL Mistral 0.49 ± 0.022 0.44 ± 0.011 0.18 ± 0.018
ICL Llama 0.51 ± 0.015 0.53 ± 0.021 0.32 ± 0.054

FT RoBERTa 0.77 ± 0.006 0.85 ± 0.003 0.63 ± 0.048
FT Mistral 0.79 ± 0.010 0.88 ± 0.002 0.68 ± 0.039
FT Llama 0.79 ± 0.011 0.88 ± 0.000 0.69 ± 0.049

In-Context Learning Results. For ICL, we find that the
performance of the LLMs is at best marginally better (Llama)
at worst (Mistral) slightly worse than random performance
for the two semantic anomaly detection tasks, T-SAD and
A-SAD. Specifically, Llama achieves a macro F1-score of
0.51 for T-SAD and 0.53 for A-SAD, while Mistral scores
0.44 resp. 0.49. These results indicate that the LLMs have
not effectively learned these tasks from the few examples
provided in the context. For the S-NAP task, ICL with LLMs
does outperform the random baseline, with Llama exhibiting
much stronger performance (19-point gain over the random
baseline) than Mistral (only 5-point gain). The performance
is nonetheless fairly poor in absolute terms (mere 0.32 with
Llama). These results suggest that these process mining tasks
drastically differ from the language processing tasks on which
the LLM instruction-tuning was carried out.
Fine-Tuning Results. Poor ICL performance shows that
LLMs a priori know very little about process semantics and
thus need to be explicitly trained for our tasks. The fine-tuned
encoder-LM baseline, i.e., RoBERTa, already achieves drasti-
cally better performance than ICL with LLMs: for example,
it obtains the F1-score of 0.77 on the T-SAD task, which is
an improvement of massive 26 points over the best ICL per-
formance (0.51 by Llama). Fine-tuning the LLMs yields even
better performance, with Llama and Mistral achieving an F1-
score of 0.79, a further 2-point improvement over RoBERTa’s
performance. The same trend holds for the other two tasks: on
A-SAD, both Mistral and Llama yield very strong performance
F1-scores of 0.88, outperforming RoBERTa by 3 points; on S-
NAP, Llama and Mistral achieve F1-scores of 0.69 and 0.68,
respectively (6- and 5-point respective gains over RoBERTa).

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/FacebookAI/roberta-large
https://github.com/a-rebmann/llms4pm

These results show that decoder-based LLMs can effectively
acquire the missing process knowledge through explicit task-
specific fine-tuning, yielding better results than their (smaller)
encoder-based counterparts such as RoBERTa. The fine-tuned
LLMs consistently outperform RoBERTa on all three tasks,
which points to the benefits of much larger-scale pretraining
to which they have been comparatively exposed.
Task Comparison. The results also demonstrate considerable
differences in difficulty between the tasks. For A-SAD, the
LLMs achieve an impressive F1-score of 0.88, while the
maximum score for T-SAD is 0.79, and the best model scores
only 0.69 for S-NAP. This aligns with expectations. Solving T-
SAD requires the model to identify whether process behavior
is valid within the context of an entire trace, whereas A-SAD
only necessitates assessing a single behavioral relation. The
S-NAP task is by far the most challenging of the three and is
simply unsolvable for many instances. For example, consider
a process that allows for the concurrent execution of activities.
In such cases, it is indeterminable—for both humans and
automated approaches—which activity occurs next in a trace
based solely on a prefix, as there are multiple valid options.

B. In-Depth Analysis

To determine if the models can handle certain types of
processes better than others, we conducted an in-depth analysis
of the classification results obtained from the fine-tuned lan-
guage models. For brevity, we focus on T-SAD, as its medium
complexity best represents the three tasks.

We find that both the encoder and LLMs accurately detect
anomalous traces across a wide range of process domains.
However, they appear to be particularly effective at identifying
anomalies for standard process types. For example, in a claim-
handling process, they correctly identify anomalies such as
⟨Enter and verify claim, Handle payment, Assess claim⟩, where
the claim should be assessed before sending a payment. They
also correctly detect that the trace ⟨Confirm order, Ship prod-
uct, Get shipment address, Emit Invoice, Receive Payment⟩ is
anomalous given that the product is shipped before the address
is determined in this order-handling process.

For more specialized processes, we observe that LLMs often
outperform RoBERTa. For instance, Llama correctly identifies
the trace ⟨Arrival, Treatment, Triage, Discharge, Invoicing⟩ of
a hospital process as anomalous, since Triage should occur
before Treatment. In contrast, RoBERTa fails to detect this
anomaly. Conversely, RoBERTa incorrectly flags the trace
⟨Disassemble system, Refurbish materials, Clean and paint
covers, Mount materials, Move to bay, Calibrate, Handover⟩
of a refurbishing process as anomalous, even though it is valid,
whereas Llama correctly classifies this trace as valid.

Finally, there are instances where both the LLMs and
RoBERTa incorrectly identify valid traces as anomalous. For
example, both Llama and RoBERTa flag the trace ⟨Receive
invoices of partners, Handle payment of customer, Receive
review, Send payment to partners⟩ as anomalous, even though
it is valid. According to the corresponding process model in
the corpus, a review can be received at any point during an

execution of the process, making this trace valid. However, this
specificity might also be challenging for a human to determine
without further contextual information.

C. Training Effort

Finally, we consider the effort required to train the language
models on the tasks. Since in-context learning does not require
any training effort, as the task-specific knowledge is provided
at inference time, we focus on the training effort of fine-tuning
an LLM (Llama) versus an encoder (RoBERTa).

Table V shows the run times for fine-tuning the language
models (all trained on the same type of GPU) for the different
tasks per epoch, i.e., pass over all training samples. As shown,
the LLM requires considerably more time for training than
the encoder baseline. In particular, training Llama on the
tasks takes up to 25 times longer than training RoBERTa
per epoch on the same data. For instance, while fine-tuning
Llama for A-SAD takes 15 hours, RoBERTa requires only
around 40 minutes per epoch. This difference can be attributed
to the huge number of parameters that need to be updated
for the LLM during fine-tuning, even when using parameter-
efficient fine-tuning. However, it is worth stressing that the
LLM requires considerably fewer epochs to converge in terms
of validation loss across tasks. This indicates that it not only
learns the tasks better (as shown in the previous subsections),
but also with fewer passes over the training data.

TABLE V
AVERAGE RUN TIMES FOR FINE-TUNING (PER EPOCH).

Approach Task
T-SAD A-SAD S-NAP

FT RoBERTa 0.5h 0.6h 1.3h
FT Llama 11.1h 15.0h 23.0h

VIII. RELATED WORK

Neural language models have been used for various process
analysis tasks, e.g., for annotating event logs with semantic
information [25], detecting anomalies [6], and constructing
event logs based on textual records of process steps [26].

With the success of LLMs, several studies have explored
their efficacy in handling process analysis tasks [3]. These
tasks include transforming textual process descriptions into
formal process models [27], [28], generating textual descrip-
tions from process data such as models and event logs [1],
and identifying potential bottlenecks and undesired process
behavior [1]. However, much of the existing research relies
on closed-source GPT models or proprietary software like
ChatGPT, limiting structured and reproducible evaluations [3].

The lack of proper evaluations of LLMs for process mining
tasks has recently been discussed in the process mining
community [3], [29]. As a response, Berti et al. proposed
a benchmark for process mining analysis questions [30]. It
consists of 52 prompts that are used to query various LLMs,
whose answers are then rated by GPT-4o. Although the
benchmark provides interesting insights, using an LLM to rate

the results can yield biased outcomes. Such bias arises, e.g.,
from the tendency of LLMs to favor their own output [31].

In contrast, we define process mining tasks that benefit
from an understanding of process behavior and evaluate LLMs
using extensive task-specific benchmarking datasets in both,
in-context learning and fine-tuning settings. Furthermore, our
datasets provide gold standards, which allows for using estab-
lished evaluation measures for classification tasks, eliminating
the need for a proxy LLM to assess output quality.

IX. CONCLUSION

In this paper, we investigated the capabilities of LLMs to
solve semantics-aware process mining tasks, i.e., tasks that
benefit from an understanding of process semantics. We de-
fined three such tasks and provide an extensive benchmarking
dataset for each of them. Our evaluation experiments that
use them show that LLMs fail to solve these challenging
process mining tasks out of the box and in a few-shot in-
context setting. However, our results demonstrate that LLMs
achieve accurate performance when fine-tuned for these tasks,
surpassing smaller, encoder-based language models.

In the future, we aim to expand the task set to include addi-
tional semantics-aware process mining tasks. Furthermore, we
want to investigate the integration of state-of-the-art process
mining approaches with LLMs. Since we have shown that
LLMs can solve semantics-aware process mining tasks through
encoded knowledge of process semantics, integrating existing
process mining approaches with LLMs may yield performance
improvements for classical process mining tasks they address.
For example, an existing next-activity prediction approach
could be extended by an LLM-based semantic check that
rejects predictions that do not make sense, thereby improving
the overall prediction performance.

ACKNOWLEDGMENT

We received support by the state of Baden-Württemberg
through bwHPC.

Reproducibility. Our training and evaluation scripts are avail-
able through the project repository linked in Section VI.
Our process behavior corpus and benchmarking datasets are
published separately [13].

REFERENCES

[1] A. Berti, D. Schuster, and W. M. van der Aalst, “Abstractions, scenarios,
and prompt definitions for process mining with llms: A case study,” in
BPM. Springer, 2023, pp. 427–439.

[2] U. Jessen, M. Sroka, and D. Fahland, “Chit-chat or deep talk: Prompt
engineering for process mining,” preprint arXiv:2307.09909, 2023.

[3] B. Estrada-Torres, A. del Rı́o-Ortega, and M. Resinas, “Mapping
the landscape: Exploring large language model applications in business
process management,” in BPMDS. Springer, 2024, pp. 22–31.

[4] H. van der Aa, A. Rebmann, and H. Leopold, “Natural language-based
detection of semantic execution anomalies in event logs,” Information
Systems, vol. 102, p. 101824, 2021.

[5] D. A. Neu, J. Lahann, and P. Fettke, “A systematic literature review on
state-of-the-art deep learning methods for process prediction,” Artificial
Intelligence Review, vol. 55, no. 2, pp. 801–827, 2022.

[6] J. Caspary, A. Rebmann, and H. van der Aa, “Does this make sense?
machine learning-based detection of semantic anomalies in business
processes,” in BPM. Springer, 2023, pp. 163–179.

[7] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv:1606.05250, 2016.

[8] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme
summarization,” arXiv:1808.08745, 2018.

[9] W. M. P. van der Aalst and A. K. A. de Medeiros, “Process mining and
security: Detecting anomalous process executions and checking process
conformance,” Electronic Notes in Theoretical Computer Science, vol.
121, pp. 3–21, 2005.

[10] F. Bezerra and J. Wainer, “Algorithms for anomaly detection of traces
in logs of process aware information systems,” Information Systems,
vol. 38, no. 1, pp. 33–44, 2013.

[11] J. Evermann, J.-R. Rehse, and P. Fettke, “Predicting process behaviour
using deep learning,” Dec. Support Systems, vol. 100, pp. 129–140, 2017.

[12] P. Pfeiffer, J. Lahann, and P. Fettke, “Multivariate business process rep-
resentation learning utilizing gramian angular fields and convolutional
neural networks,” in BPM. Springer, 2021, pp. 327–344.

[13] A. Rebmann, F. D. Schmidt, G. Glavaš, and H. van der Aa, “Process
behavior corpus and benchmarking datasets,” May 2024. [Online].
Available: https://doi.org/10.5281/zenodo.11276246

[14] D. Sola, C. Warmuth, B. Schäfer, P. Badakhshan, J.-R. Rehse, and
T. Kampik, “SAP Signavio academic models: A large process model
dataset,” in ICPM Workshops. Springer, 2023, pp. 453–465.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
NAACL. ACL, 2019, pp. 4171–4186.

[17] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv:1907.11692, 2019.

[18] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[19] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama:
Open and efficient foundation language models,” arXiv:2302.13971,
2023.

[20] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei,
A. Arunkumar, A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap et al.,
“Super-naturalinstructions: Generalization via declarative instructions on
1600+ nlp tasks,” in EMNLP, 2022.

[21] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu et al., “Instruction tuning for large language models:
A survey,” arXiv:2308.10792, 2023.

[22] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen
et al., “Lora: Low-rank adaptation of large language models,” in Inter-
national Conference on Learning Representations, 2021.

[23] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and
Z. Sui, “A survey on in-context learning,” arXiv:2301.00234, 2022.

[24] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2018.

[25] A. Rebmann and H. van der Aa, “Enabling semantics-aware process
mining through the automatic annotation of event logs,” Inf. Syst., vol.
110, p. 102111, 2022.

[26] C. Kecht, A. Egger, W. Kratsch, and M. Röglinger, “Event log con-
struction from customer service conversations using natural language
inference,” in ICPM. IEEE, 2021, pp. 144–151.

[27] M. Grohs, L. Abb, N. Elsayed, and J.-R. Rehse, “Large language models
can accomplish business process management tasks,” in BPM. Springer,
2023, pp. 453–465.

[28] H. Kourani, A. Berti, D. Schuster, and W. M. van der Aalst, “Process
modeling with large language models,” arXiv:2403.07541, 2024.

[29] A. Berti, H. Kourani, H. Häfke, C.-Y. Li, and D. Schuster, “Evaluating
large language models in process mining: Capabilities, benchmarks,
and evaluation strategies,” in BPMDS. Springer, 2024, pp. 13–21.

[30] A. Berti, H. Kourani, and W. M. van der Aalst, “PM-LLM-
Benchmark: Evaluating large language models on process mining tasks,”
arXiv:2407.13244, 2024.

[31] A. Panickssery, S. R. Bowman, and S. Feng, “LLM evaluators recognize
and favor their own generations,” preprint arXiv:2404.13076, 2024.

https://doi.org/10.5281/zenodo.11276246

	Introduction
	Preliminaries
	Tasks
	Semantic Anomaly Detection
	Semantic Next Activity Prediction

	Datasets
	A Corpus of Process Behaviors
	Task-Specific Benchmarking Datasets

	LLM-Based Process Mining
	Experimental Setup
	Results and Discussion
	Main Results
	In-Depth Analysis
	Training Effort

	Related Work
	Conclusion
	References

