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Abstract. Over the past decade, extensive research efforts have been
dedicated to the extraction of information from textual process descrip-
tions. Despite the remarkable progress witnessed in natural language
processing (NLP), information extraction within the Business Process
Management domain remains predominantly reliant on rule-based sys-
tems and machine learning methodologies. Data scarcity has so far pre-
vented the successful application of deep learning techniques. However,
the rapid progress in generative large language models (LLMs) makes it
possible to solve many NLP tasks with very high quality without the need
for extensive data. Therefore, we systematically investigate the potential
of LLMs for extracting information from textual process descriptions,
targeting the detection of process elements such as activities and actors,
and relations between them. Using a heuristic algorithm, we demonstrate
the suitability of the extracted information for process model generation.
Based on a novel prompting strategy, we show that LLMs are able to
outperform state-of-the-art machine learning approaches with absolute
performance improvements of up to 8% F1 score across three different
datasets. We evaluate our prompting strategy on eight different LLMs,
showing it is universally applicable, while also analyzing the impact of
certain prompt parts on extraction quality. The number of example texts,
the specificity of definitions, and the rigour of format instructions are
identified as key for improving the accuracy of extracted information.
Our code, prompts, and data are publicly available3.

Keywords: Process Information Extraction · Large Language Models ·
AI-assisted Conceptual Modeling · Business Process Modeling

1 Introduction

In the field of Business Process Management (BPM), process models are estab-
lished tools for designing, implementing, enacting, and analyzing enterprise pro-
cesses [12]. However, the manual creation of these models is very time-consuming

3 See https://github.com/JulianNeuberger/llm-process-generation/tree/er2024.
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and accounts for around 60% of the total time spent on process management [16].
In order to reduce this effort, the automatic creation of these models based on a
variety of information sources is a research focus in the field of BPM [5, 16]. In
this respect, the paper at hand contributes to the extraction of process-relevant
information from natural language information sources.

Information on organizational processes is frequently contained in a range
of textual documents, such as process descriptions, rules and regulations, and
work instructions [1,4]. Recognizing this, a variety of techniques has been devel-
oped that aim to automatically extract process information from texts in order
to subsequently turn it into process models [2, 8, 16]. This two-step procedure,
in which information is extracted first and turned into a process model second,
comes with several advantages in comparison to a direct text-to-model trans-
formation approach: (1) The result quality can be evaluated with established
means from the information-extraction domain, (2) extracted information can
be transformed in more than one target process modeling language4, and (3) it
is possible to use extracted process information for other purposes such as, for
instance, compliance checking, formal reasoning [3,26], and process querying [19].

The goal, scope, and challenges of information extraction depend on the input
document type and content, as well as the desired output, i.e., the information
to be extracted. Still, the extraction of process information from text generally
involves: (1) the identification of textual mentions of process entities, such as
activities, process participants, and business objects, and (2) relations between
these entities, such as sequential dependencies, exclusivity, and assignments (e.g.,
who performs which step). As an illustration, Figure 1 shows a fragment of a
textual description and two instantiations of the extraction task, focused on
the information necessary for a model in Business Process Model and Notation
(BPMN)5 model [9] (upper part) and for declarative process modeling [2] (lower
part). As shown, they involve different entities and relations, which each need
to be inferred from the unstructured textual input.

A key problem is that the extraction of process information is still largely
rule-based [23]. However, crafting useful rules is complicated, requires an exten-
sive understanding of the process itself, and the rules are hard to transfer across
organizations or text sources. To overcome this, recent work proposed the use of
machine learning techniques [23], though these are hampered by data scarcity.
Work that strives towards using pre-trained generative LLMs, e.g., GPT-3 [8]
aims to circumvent this concern. However, the work in [8] only presents a prelim-
inary study, with limitations in terms of analyzed datasets, extracted informa-
tion, and result discussion. Therefore, this paper aims to provide deeper insights
into the usability of LLMs for process information extraction and specifically
includes the following core contributions: (I) It presents challenges that make
the extraction of process-relevant information in particular a difficult task (Sec-
tion 2). (II) As our main contribution, it proposes a novel, task-specific, and

4 This is inspired by the paradigm of interlingua-based machine translation [27], which
reduces the number of translation systems for n languages from n2 to 2n.

5 https://www.omg.org/bpmn/, accessed June 2, 2024.
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Fig. 1: Fragment of a larger text describing a business process of an insurance
company. Different methodologies may extract different process relevant infor-
mation, depending on the target modelling notation or use case.

rigorously empirically validated prompting strategy for solving the aforemen-
tioned information extraction tasks (Section 4). (III) It provides the currently
most comprehensive study of using LLMs for extracting business process rele-
vant information from natural language text (Sections 5 and 6). To this end we
rigorously compare our prompting strategy on multiple datasets with state-of-
the-art approaches and achieve up to 7% higher absolute F1 scores compared to
machine learning methods and up to 8% compared to rule-based methods. (IV)
By testing our prompting strategy with eight state-of-the-art LLMs, we empiri-
cally demonstrate the generality of both our results and the applicability of our
prompting strategy. (V) An ablation study (Section 6.2) shows that common
best practices in prompt engineering are only of limited use for process infor-
mation extraction. Thus, we also define guidelines for using LLMs for process
information extraction (Section 6.4).

The rest of this paper is structured as follows. Section 2 describes the information
extraction tasks and its challenges in detail. Section 3 summarizes the current
state of the art in dealing with these tasks. After that we, describe our prompt-
ing strategy, a model generation algorithm, the experiments, and corresponding
results (Section 4–6). Section 7 describes limitations and future work.

2 Task Descriptions and Challenges

In this section, we describe the three main (sub)tasks of process information
extraction (Section 2.1), before highlighting a range of challenges associated
with such extraction and with the use of LLMs for it (Sections 2.2–2.3).
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2.1 Task descriptions

Our work focuses on three established subtasks of (process) information extrac-
tion from text: Mention Detection (MD), Entity Resolution (ER), and Relation
Extraction (RE) [2, 7, 23,26].
Mention Detection (MD) is concerned with finding and extracting text frag-
ments that contain process relevant information, such as activities (or actions),
process-relevant objects or data (i.e., business objects), or involved persons and
departments (i.e., actors). For instance, in Figure 1, the upper example shows
mentions of data, actions, and actor, whereas the lower one focuses on activities.
This definition is similar to Named Entity Recognition (NER), though we also
extract spans not covered by the traditional definition of NER, e.g., activities.
Entity Resolution (ER) aims to recognize when different mentions refer to
the same process entity. For example, in Figure 1, successful ER would identify
that the word it in “it is examined” corresponds to the claim mentioned in
the previous phrase. Another common example is using ER to recognize that
the same actor (across mentions) performs different steps. ER is a super-set of
co-reference resolution and anaphora resolution [29] and is a crucial step when
dealing with process-related texts, which frequently involve repeated mentions
across sentences or even paragraphs [23].
Relation Extraction (RE) is the task of detecting and classifying relations
between mentions. Relations are usually directed and have one (unary relation),
or two (binary relations) arguments. For instance, the upper example in Figure 1
shows three kinds of relations: uses signals which data objects are used by an ac-
tivity, performer captures which actor performed an activity, and flow captures
a sequential relation between two activities. RE is crucial when it comes to infor-
mation extraction in our context, given that processes inherently involve process
steps (i.e., activities) that are connected to each other through relations. Note
that we regard constraint extraction [2, 26] (CE), which relates to declarative
process modeling, as an RE problem: constraints have one or two arguments,
are directed, and carry type information (e.g., Succession, Init).

2.2 Challenges of Process Information Extraction from Text

Information extraction, a common task in natural language processing (NLP),
faces general challenges, which are also well-known in BPM literature [1,15], and
often central elements of interest in the design of rule-based and learning-based
systems alike [2,23]. Simply using LLMs for process information extraction solves
some of these challenges and justifies the investigation of their applicability.

In the context of process-related texts Linguistic Variance means that the
same behavior or process characteristics can be described in a variety of ways
such as, for instance, active and passive voice. Context Cues are a challenge in
that single words can fundamentally alter the meaning of a process description
(e.g., “first, a claim is created” and inverted semantics in “finally, a claim is cre-
ated”. Processes are typically described in sequential form, although they usually
contain branches (e.g. XOR decision branches). This results in Long-distance
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Relations that existing approaches struggle with [23] or cannot handle [2].
Implicit and Ambiguous Information such as the “examination target” in
“after registering the file in the database, it needs to be examined” needs to be
interpreted [3,15]. Research indicates a negative correlation between correctness
of extracted process information and Text Length [7]. Finally, the application of
deep learning is hindered by the fact that the largest available data set contains
only 45 human-annotated process descriptions [9] (Small Datasets).

LLMs are able to overcome the above challenges [32], which is why this
paper analyzes their suitability for process information extraction, as proposed
in previous work [6, 8]. However, LLMs require great care in the formulation of
the input (prompts) [8,22,31–33]. In [22] authors argue: “a good prompt can be
worth hundreds of labeled data points”. For this reason, the core of the present
work lies in the development (Section 4) and evaluation (Sections 5 and 6.2) of
suitable prompts for process information extraction.

2.3 Challenges of Process Information Extraction Using LLMs

Using LLMs for process information extraction from texts helps with linguistic
challenges, but adds itself several additional challenges. We discuss these here
and reference them later in Section 6.4 to show how we can deal with them.

(C1) Limited output control. Input and output consist of plain text.
Given that the input for inference is raw text, it inherently suits LLMs for our
tasks (cf. Section 2.1). However, as the expected output should adhere to a
specific schema, it becomes necessary to instruct the LLM to conform to this
schema. Moreover, this principle necessitates a robust output parser, as LLMs
tend to exhibit variability in their output, which presently cannot be entirely
eradicated. Having only limited control over generated output is especially prob-
lematic for the BPM domain, where definitions for relevant information often
overlap, e.g., actions (just predicate) versus activities (predicate and object).

(C2) Input presentation dependencies. Although LLMs provide an in-
terface for natural language input, the quantity, form and level of detail must be
carefully matched to the task at hand. The LLM faces the challenge of determin-
ing the importance of the input components. Furthermore, while LLMs emulate
human reasoning, the interpretation of inputs may diverge significantly from
that of human beings, thereby rendering prompt optimization a trial-and-error
process. This challenge is further aggravated by some elements of process models,
that are complex to explain concisely, e.g., parallel and exclusive workflows.

(C3) Black-box. Deep learning methods generally suffer from challenges
concerning explainability of predictions [34], which is also true for LLMs. Con-
trary to classical learning methods, such as decision trees, LLMs offer no fail safe
mechanism to validate extraction rules. This is problematic for business process
information extraction in particular, since recent work focuses on “human-in-the-
loop” systems [30], where the human must be able to follow system decisions.

(C4) Data unawareness. In contrast to generative AI models trained on
task-specific data, an LLM is usually not aware of the particular dataset it is
tasked to process. Thus, using LLMs to process a particular dataset requires to
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form instructions that precisely describe all relevant details of a dataset. The
generalizing capabilities of LLMs can be an additional hurdle in this context,
especially, when declarative process models are concerned, where a multitude
of constraint types exist. The LLM is likely to know of these through the pre-
training process, and therefore may extract irrelevant ones for a given dataset.

(C5) Costly experiments. Applying LLMs usually requires usage of com-
mercial APIs (e.g., OpenAI), which come with downsides: (i) a token limit re-
stricting the maximum input and output size and (ii) fees based on the number
of tokens processed. In view of the many possible variations in the influencing
parameters, conducting experiments can be cost-intensive. This is especially true
for the BPM domain, where the density of information in process descriptions
is very high, needing many output tokens to extract and encode it.

3 Related Work

Related approaches are divided into rule-based, machine learning (ML)-based,
deep learning-based, and LLM-based process information extraction. An ap-
proach is considered related if it solves at least one of the tasks in Section 2.1.

Rule-based approaches. Rule-based approaches leverage linguistic fea-
tures to extract information from natural language process descriptions through
explicitly coded mapping rules. For instance, Friedrich et al.’s seminal work [16]
employs syntax features and word information from a lexical database to iden-
tify patterns at both sentence and document levels for BPMN model creation.
Other approaches like those in [26, 28] adopt similar techniques for automatic
text annotation, employing regular expressions for syntactic dependency trees,
and part-of-speech tags, showcasing superior performance on novel datasets. Ad-
ditionally, [2] presents a rule-based technique, currently leading in extracting
declarative process models from raw text using syntax parsing and word-level
features. Similar advancements are seen in [14] and [9], the latter integrating
ML-based entity MD with subsequent rule-based RE. Furthermore, [21] focuses
on extracting Dynamic Condition Response (DCR) graphs. Recent studies sug-
gest that while rule-based approaches can be tailored to specific tasks and data
sets, they can hardly deal with ambiguity and linguistic variance. [8, 23].

ML-based approaches. [23] presents a ML extraction pipeline based on [9]
and is used as a baseline for our comparative evaluation (Section 6). The deep-
learning approach presented in [25] classifies text fragments analyzing the input
text on several levels of granularity. However, extracting these fragments is not
part of the approach, which simplifies the task of MD to mention classification,
i.e., locating the information to extract is omitted. Though the work presented in
[6] overcomes this limitation and outperforms the approach, it does not support
RE. In general, techniques of this paradigm either struggle to deal with linguistic
variability and ambiguity, or they require vast amounts of training data, making
them particularly unfeasible for small datasets (see Section 2.2).

LLM-based approaches. Bellan et al. [8] utilize pre-trained LLMs to cope
with data scarcity, yet their approach exhibits three primary weaknesses: (i) It is
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restricted to a subset of entity types, namely activities, participants, a performs
relation, and a direct-consequences relation, (ii) it lacks strict output formatting,
hindering automated result processing, unlike our prompting strategy, and (iii)
its evaluation is limited to 7 of the 45 process descriptions from the PET dataset,
whereas we evaluate our modular prompt on the entire dataset, plus two valida-
tion datasets. Thus, direct comparison between [8] and our work is not feasible.
Nonetheless, as in [8], our modular prompt also descriptive instructions with in-
put examples accompanied by their expected outputs. Although process models
are generated using LLMs in [18], the work is not comparable to ours, as [18]
requires human involvement and only supports the extraction of activities and
their arrangement in a directed graph (e.g., actors and data are missing).

4 LLM-based Process Model Extraction from Text

Extracting process information with LLMs requires a prompt design that ad-
dresses the challenges mentioned in Section 2.3. Thus, a prompt structure con-
sisting of the three modules Context, Task Description and Restrictions is de-
scribed below at the example of the Mention Detection task. However, the
prompting strategies for the remaining tasks (Section 2.1) are analogous.

High-Level Prompt Structure. LLMs take freely formulated text as input,
which is called the prompt. To this end we base our prompts on an ablation
study (Section 6.2), which is used to identify beneficial and detrimental prompt
components. To do this, we first need a modular prompt design so that we
can specifically remove individual components in the study to examine their
benefits and ultimately to only keep the advantageous components. Adhering
to the best practices outlined in [31], our initial prompt design is structured
into three modules (see Figure 2): (A) a context description framing the process
information extraction task on a high level, (B) a detailed task description, and
(C) constraints that further restrict the context and the output format, and
contains disambiguation hints. To design potentially relevant components for all
three modules we rely on general design patterns [11, 22, 31, 33]. Therefore, in
the next subsection, the three modules are specified and discussed in terms of
how they address the LLM-specific challenges outlined in Section 2.3.

Context and Task Description. In module (A) we use the persona design
pattern [33] to control the language style of generation results. We assign it the
role of a process modeling expert. This is followed by the context manager design
pattern [33], which includes a general description of the information extraction
task (i.e., objectives and a description of the input specifics). This limits the
information basis the LLM may use, mitigating the risk of hallucination.

Module (B) is mainly concerned with defining the specifics of the process
information extraction task. Its backbone is the creation of a meta language [33],
which defines the types of elements to extract from the input text. Figure 2
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# TASK DESCRIPTION
## Mention types
- **Activity**: a task or action executed by an actor during the business process
- **Actor**: a person or organizational unit actively participating in the process 

## Relation types
- **actor performer**: holds if it is indicated that a specific activity (source 
mention) is carried out by a particular actor (target mention). 

## Extraction procedure
Let’s carry out the extraction in three steps.
1. Extract all mentions of activities and actors.
2. Reading the input text again extract all relations between extracted mentions.
3. Briefly justify your results. Also provide a list of 10 facts about the process.

# RESTRICTIONS
## Additional considerations
- If there is no action, there cannot be any actor in the sentence.
- Use the sentences’ context, but relations must not cross sentence boundaries.

## Disambiguation hints
- In the following there is only one activity (print claim), the rest are details: 
  “The claims officer prints the claim by clicking [PRINT].”

## Format instructions
Please create the output exclusively in the following format:
<relation type> | <source mention> | <target mention>

## Example 1:
### Input:
1: After the customer submitted the claim, it is examined by a claims officer.

### Output: 
1: actor performer | submit claim | customer
   actor performer | examine claim | claims officer

B

C

# CONTEXT
You are a business process modelling expert, tasked with extracting mentions of 
activities and actors from textual business process descriptions. Therefore, you are 
provided with sentences describing which actor carries out which activities.
Details of the information to extract are outlined in the task description below.
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Fig. 2: Modular prompt structure (underlined = task-specific content, boxes =

design pattern, = useful, = non-useful, = use in prompt engineering).

provides an example that defines activities and actors as mention types and a
relation called actor performer that associates actions with their performers,
following our running example from Figure 1. Another widespread best practice
is known as chain of thought (CoT) [31, 32], whereby the actual task is broken
down into individual steps. Thus, our prompt divides the relation extraction
task into two steps that separate the extraction of mentions from the prediction
of their relations and a third step, which combines two more best practices, i.e.,
generating a list of facts about the process and reflection about the results [33].
These cause the LLM to elaborate both on the input and on its own output,
which allows experts to validate the extracted information and has also been
shown to have a positive impact on extraction performance [31,32].

Restrictions. The last prompt module (C) defines expectations towards the
LLM’s output. Additional considerations include rules for the extraction task,
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such as that an actor can only be described as such if the action it performs
is also named (compare Figure 2). Disambiguation hints are particularly useful
for information types that are hard to distinguish from other information types
or irrelevant information. In Figure 2 it is intended to guide the LLM what
makes up an Activity, if the input gives additional, irrelevant specifics. Prompts
further include a schematic definition of a formal output format [33], which for
the exemplary prompt is a tuple of a relation type, a source mention and a target
mention, each separated by a pipe symbol. The definition is complemented by an
(out-of-domain) example. Finally, few-shot prompting [22, 31] dynamically adds
examples for input and corresponding output. For the current paper few-shot
samples are pairs of raw textual process descriptions and a task-dependent set of
process-relevant information (e.g., actor mentions). This design pattern and best
practice is known to alleviate the issue of data unawareness of LLMs [17,20].

5 Experiment Setup

In this section we define the experiments we run to evaluate the usefulness of
LLMs for process information extraction 6. It covers an overview of the datasets
we use, including the respective baselines, and a definition of metrics we apply.

We use three well-known datasets for evaluating our prompts. One of these
(PET) represents the current state of the art, both in terms of size, as well as
the process information techniques developed for it. The other datasets feature
different characteristics, making them relevant for validation experiments. This
lets us gain insights into the robustness of an LLM as a process information
extractor, as well as how it behaves when applied to other process modeling
languages. We call the best approaches for extracting the information from these
datasets baselines, and use them in Section 6 as comparisons with various LLMs.

PET [9]: This is the largest dataset currently available. It contains 45 docu-
ments with annotations for information especially useful for creating process
models in BPMN. These include 7 types of mentions such as activities, actors,
data objects, but also 6 relation types. These cover the behavioural process per-
spective (Flow), data perspective (uses, and organizational perspective (actor,
performer). Additionally, this dataset features relations that span multiple sen-
tences. It therefore tests the ability of approaches to reason across wider spans
of text. We use an extended version of this dataset, which includes data for
the ER task, as presented in [23]. The currently best approach for extracting
information is using conditional random fields for MD, a pre-trained neural co-
reference resolver for ER, and a decision tree ensemble for RE [23]. We use scores
as reported in [23], which have corresponding publicly available code and can be
reproduced with it.

DECON [2]: This collection of 17 textual process descriptions is annotated with
a set of 5 Declare [24] Constraint types between business process relevant activi-
ties. Additionally, constraints may be negated, as well as unary, i.e., constraining

6 Code at https://github.com/JulianNeuberger/llm-process-generation/tree/er2024 .

https://github.com/JulianNeuberger/llm-process-generation/tree/er2024
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a single action. Annotations are given on a sentence level, and only sentences
that describe at least one constraint are contained in the dataset. The expected
(ground-truth) activities are already transformed into Declare-conform phrases,
i.e., the activity description “The claim is registered” should be extracted as
“register claim”. It does not contain an approach for MD in isolation, and only
contains mentions of type action. The authors of [2] propose a rule-based ap-
proach combining multiple NLP techniques, e.g., typed dependency relations.
ATDP [26]: This dataset uses 18 textual descriptions, that largely overlap with
the ones from [2], but also contains sentences, that describe no constraint. As
such, this dataset tests approaches for their ability to judge whether or not sen-
tences contain relevant information, before extracting constraints. Furthermore,
the set of constraints was expanded to eight types. Additionally, this dataset also
provides annotations of actions, conditions, entities, and events, which we used
in an MD setting. Quishpi et al. proposed a rule-based ensemble of patterns for
MD and CE on typed dependency structures [26].

We use the well established metrics Precision P and Recall R for our ex-
periments. P is a measure of how well an extraction approach is able to avoid
false positives, i.e., assigning the wrong type to mentions and relations, or ex-
tracting them, where they are not expected. R on the other hand measures how
much of the expected information (true positives) is found. The two metrics are
typically aggregated via their harmonic mean F1 = 2 P ·R

P+R . Following [26], we

use P = #correct
#pred and R = #correct

#gold , with #correct as the number of correct
predictions, #pred the number of total predictions, and #gold as the number
of expected mentions or relations. For a fair assessment, we count predictions as
correct in exactly the way described by the work we compare the LLM to.

6 Results

Table 1 shows the results we observed when running the experiments as described
in Section 5 with an optimized prompt, that follows the recommendations we
found in our study of best practices (Section 6.2). All results use GPT-4o, the
latest version of OpenAI’s GPT with temperature = 0. top p is unchanged, as
per OpenAI’s recommendation, when using temperature based sampling. 7

For the reference dataset PET, our experiments show that GPT-4o is capable
of an absolute F1 score improvement of 5% for MD, 22% for ER, and 17% for
RE. Remarkably, for RE, GPT-4o is able to match and outperform the machine
learnt baseline, which was trained on 36 manually annotated documents [23],
without any labeled data (zero-shot). For MD it reaches similar scores, even when
not given any examples, compared to the machine learnt baseline, which was
trained using 36 manually annotated documents [9]. For real-world application
this means that LLMs can be used in business process information extraction
scenarios, even if the organization has not a single manually annotated training
example. This is an exciting find, as it promises significant speed-up of model
creating tasks of practitioners across business domains.

7 see OpenAI’s source code, accessed June 3, 2024

https://github.com/openai/openai-python/blob/main/src/openai/resources/chat/completions.py#L196
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Dataset DECON ATDP PET
Metric P R F1 P R F1 P R F1

M
en
ti
o
n

D
et
ec
ti
o
n Baseline no baseline 0.62 0.82 0.71 0.73 0.64 0.69

Zero-shot 0.72 0.75 0.73 0.58 0.77 0.66 0.65 0.71 0.68
1-shot 0.87 0.80 0.83 0.63 0.77 0.69 0.72 0.75 0.73
3-shot 0.88 0.79 0.83 0.68 0.79 0.73 0.72 0.77 0.74

E
n
ti
ty

R
es
o
lu
ti
o
n Baseline 0.55 0.51 0.52

Zero-shot 0.67 0.55 0.60
1-shot 0.76 0.70 0.73
3-shot

no data no data

0.79 0.70 0.74

R
el
a
ti
o
n

E
x
tr
a
ct
io
n Baseline 0.77 0.72 0.74 0.58 0.64 0.61 0.79 0.66 0.72

Zero-shot 0.66 0.75 0.70 0.49 0.66 0.57 0.88 0.85 0.86
1-shot 0.76 0.82 0.79 0.58 0.73 0.64 0.90 0.89 0.89
3-shot 0.79 0.85 0.82 0.58 0.72 0.64 0.90 0.89 0.89

Table 1: Results for each dataset and the different extraction stages, compared
to baseline results using GPT-4o.

When evaluating on the validation datasets (cf. Section 5), we found that
GPT-4o is able to match and out-perform the rule-based systems in all cases,
most notably improving F1 scores for RE on dataset DECON by an absolute 8%.
Our result for MD on dataset DECON has no corresponding baseline, as the au-
thors of [2] did not report values for MD in isolation. Errors and ambiguities are
common in dataset ATDP hindering machine learning methods in learning valid
extraction rules. This also adversely affects the extraction accuracy of GPT-4,
when extracting the same types of constraints in the ATDP dataset compared
to the DECON dataset. We discuss this further in Section 6.4. Since the impor-
tance of ER only recently gained attention [23,26], the reference dataset PET is
currently the only dataset providing data for evaluation of this task.

6.1 Model Comparison

We originally developed our prompts for GPT-4 version GPT-4-0125-preview, to
assess how well our prompting strategy generalizes to other models we prompted
a total of eight models for the MD and RE tasks on PET. We selected models
following AlpacaEval 8, which is designed for testing the instruction following
capabilities of LMMs [13]. At the time of writing model YI Large Preview was
not publicly accessible and could not be considered in our comparison, even
though it ranked third on AlpacaEval.

Results for the comparison can be found in Table 2. We set the temperature
for all models to 0. All GPT models perform on similar levels, with the exception
of GPT3.5, which is significantly smaller compared to GPT-4 models. For the
zero-shot RE task GPT3.5 even failed to produce responses for most documents,
leading to very low recall. Claude3 Opus seems to be as capable as GPT-4, its

8 See https://tatsu-lab.github.io/alpaca eval/, last accessed May 30, 2024.

https://tatsu-lab.github.io/alpaca_eval/
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Task
PET MD
(Zero-shot)

PET MD
(3-shot)

PET RE
(Zero-shot)

PET RE
(3-shot)

Model P R F1 P R F1 P R F1 P R F1

GPT-4o 0.58 0.69 0.63 0.68 0.77 0.72 0.88 0.85 0.86 0.90 0.89 0.89
GPT-4-2024-04-09 0.63 0.67 0.65 0.73 0.76 0.74 0.87 0.79 0.83 0.89 0.88 0.88

GPT-4-0125-preview 0.65 0.71 0.68 0.72 0.77 0.74 0.87 0.85 0.86 0.89 0.87 0.88
GPT-3.5-0125 0.35 0.50 0.42 0.51 0.70 0.59 0.51 0.06 0.11 0.74 0.64 0.69

Claude 3 Opus 0.55 0.72 0.63 0.66 0.80 0.73 0.86 0.85 0.86 0.92 0.91 0.91
Claude 3 Sonnet 0.46 0.65 0.54 0.63 0.78 0.70 0.78 0.67 0.72 0.91 0.87 0.89

Llama 3 70B Instruct 0.56 0.64 0.59 0.62 0.71 0.67 0.76 0.66 0.70 0.88 0.81 0.84
Qwen1.5 72B Chat 0.32 0.33 0.33 0.53 0.65 0.59 0.61 0.65 0.63 0.74 0.77 0.75

Table 2: Comparison of our prompts across different models. Best results per
task and metric are set bold.

smaller variant Sonnet performs significantly worse on zero-shot tasks, but is
able to produce comparable results given three examples. Llama 3 70B Instruct
is an open-weight model and could be run locally, i.e., it is useful for using our
prompting strategy in scenarios where sending data to an API is not possible.
Llama 3 70B Instruct seems to be nearly as capable as the closed-weights Claude
3 Sonnet and is therefore viable in a few-shot setting.

6.2 Ablation Study

We conduct an ablation study to assess the usefulness of the best practices pre-
sented in Section 4 and to measure the impact of the prompt’s main components.
This study is run on the reference dataset (PET), as it is the largest one and
used by recent publications [8, 9, 23]. To obtain a baseline for the tasks of MD
and RE, we use a prompt that implements the best practices as shown in Figure
2 and run it on the GPT-4-0125-preview model. We then purposefully remove
specific components from this prompt, namely the format examples, the con-
text manager, the persona, the definition of mention and relation types (meta
language), the instruction to think in several steps (chain of thought), any dis-
ambiguation hints, and the instruction to generate explanations (reflection) and
a fact check list about the process. Additionally, we also use a prompt with very
short descriptions of relations and types (balancing brevity and specificity). We
run each prompt in the zero-shot setting and record the observed F1 score, as
well as the parsing errors that occurred.

Table 3 provides detailed results. Removing examples has a significant neg-
ative effect (−0.22 for MD and −0.07 for RE), mainly rooted in the number of
parsing errors that are made (919 for MD), as well as directionality of relations
for the RE task (confusing source and target mentions). Removing the context
manager and persona only has minor effects (±0.01 per task), suggesting lower
relevance for process information extraction compared to other NLP settings.

In addition to removing prompt components, we also tested using GPT in an
older, less capable, but much cheaper version, GPT-3.5. Running the baseline
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Mention Detection (MD) Relation Extraction (RE)

Experiment
Relative

F1

Absolute
F1

Parsing
Errors

Relative
F1

Absolute
F1

Parsing
Errors

Useful

Baseline – 0.59 0 – 0.77 0
No Format Examples −0.22 0.37 919 −0.07 0.70 1 ✓
No Context Manager +0.01 0.60 0 −0.01 0.76 0
No Persona +0.01 0.59 1 +0.01 0.78 0
No Meta Language −0.09 0.49 2 −0.05 0.72 0 ✓
No Chain of Thought −0.01 0.57 1 −0.02 0.75 0 ✓
No Disambiguation −0.03 0.55 0 −0.01 0.76 1 ✓
No Reflection +0.04 0.63 0 +0.02 0.79 0 ⋆
No Fact Check List +0.03 0.62 1 −0.02 0.75 0 ⋆
Very Short Prompt −0.04 0.54 1 −0.03 0.74 0 ✓

Table 3: Changes in F1 score of GPT-4, without specific prompt components
given in Figure 2. Column relative F1 shows difference to the baseline prompt,
Useful shows a ✓, if we recommend this component in prompts for process
information extraction and ⋆ for prompt engineering and data curating only.

prompt, results in a significant drop in extraction quality, with F1 = 0.27 for
MD and F1 = 0.56 for RE. Splitting the baseline prompt into multiple prompts,
each focusing on only one mention type, lets us prompt GPT-4 repeatedly for
the same document. These highly specialized prompts are called “agents”, which
pass information between each other. For example, we instruct the first agent to
extract Actions, which are passed to other agents extracting Actors and Business
Objects respectively. This lets us exploit the inherent dependency between these
elements. If no Action is detected in a sentence, then there is likely no relevant
Actor or Business Object, even if there are nouns that would qualify from a
linguistic standpoint. This way of prompting leads to an absolute improvement
of +0.08 in F1 score for both the MD and RE tasks.

6.3 Stability of Results

LLMs are notorious for their non-deterministic output [10], which often puts
the validity and stability of results into question. To assess the severity of these
problems with our prompting strategy, we repeated the extraction of mentions
(MD) and relations (RE) on all documents of PET five times. In each iteration
we used gpt-4o-2024-05-13 as a model in a 1-shot setting and recorded the micro
F1 score. We then calculated mean (0.70 for MD, 0.89 for RE), standard devi-
ation (0.003 for MD, 0.002 for RE), minimum (0.69 for MD, 0.89 for RE), and
maximum (0.70 for MD, 0.89 for RE). While there are fluctuations in results,
they are so minor that they do not call the validity of our results into question.
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6.4 Lessons Learned

Using LLMs for extracting process relevant information brings with it a cate-
gory of challenges, which we already discussed in Section 2.3. Solving these is
paramount for successful application of LLMs. In this section we discuss how we
approached these challenges and what lessons we learned.

(C1) Limited output control. The expected output format, as well as the
form of extracted information, can mainly be influenced by the prompt compo-
nentsMeta Language and Format Examples. Adding these results in significantly
improved F1 scores, (+0.22 and +0.05 respectively for MD on PET). These im-
provements are explained by less parsing errors (919 less for MD on PET), and
better recall and precision in detecting mentions. LLMs also run the risk of being
“stochastic parrots”, simply synthesizing linguistically correct phrases, based on
their training data [10]. In our experiments we observed changes in F1 of max-
imally −0.02 for rephrased prompts. This indicates robustness of our prompts
and suitability of LLMs as an tool for business process information extraction.

(C2) Black-box. A valuable advantage of utilizing LLMs is their ability to re-
flect, thereby providing justification for their generated results. Figure 3 shows
three examples of justifications for extraction results in the ATDP dataset (see
Section 2.1). Case I shows the ideal outcome where prediction and expected con-
straint are identical. Note, that the justification even refers to the meta-language
provided in the prompt (compare Section 4). In case II, the prediction and the
gold standard constraint do not match, because of an error in the gold standard
data, following [2], which defines completing a process as a meta action that can
not be part of any constraint. The dataset creators are alerted of this issue by
the LLM, since it plausibly justifies why send out report marks the end of a pro-
cess instance. Finally, in case III the extraction result is controversial, since the
sentence is ambiguous. If we consider the term immediately to encompass both
actions, they are constrained by an existence constraint. Alternatively, viewing
check quantity as a subtask of process part list suggests only one action needs
modeling. Using such reflective explanations make LLMs useful for “human-in-
the-loop” systems, which are already applied in fields like process mining [30].

(C3) Input presentation dependencies. Adding more text to prompts some-
times has an adverse effect, reducing extraction quality (Section 2.3). This makes
optimizing prompts difficult, since it is not clear, if adding additional disambigua-
tion hints or longer definitions would improve the result. Using partial extraction
prompts helps with this issue, as the sections regarding Meta Language Creation
can be focused on a few types. Depending on the task, there may even be inter-
dependency between information, that can be efficiently exploited in this way.

(C4) Data unawareness. This issue arises, when LLMs are used in a zero-shot
setting. There, the components Meta Language, and Format Examples are the
only ways to “teach” the model how to perform the task. Applying the pattern of
few-shot prompting, i.e., using labeled data in a few-shot setting was beneficial.
This makes the use of an LLM more akin to training a machine learning model,
but with significantly lower data requirements. In our experiments, three exam-
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PRECEDENCE(pay the invoice, confirm payment)

Finally, we have to pay the invoice before we can confirm payment.

This report is sent out to Service Management, then the process ends.

END(send out report)

RESPONSE(send out report, end process)

PRECEDENCE(pay the invoice, confirm payment)

The storehouse immediately processes the part list of the order and checks the required quantity of each part.?

P
G

P
G

PRECEDENCE(process part list, check quantity)

EXISTENCE(check quantity)

P
G

II

I

III

“It is explicitly stated that the process ends after sending out the 
report.”

“The sentence suggests that checking the required quantity of each 
part can only occur after processing the part list of the order.”

“The tail action ‘confirm payment’ can only be executed if the head 
action ‘pay the invoice’ was already executed before.”

R

R

R

Fig. 3: Reflection example with Predicted and Gold standard constraints: (I)
perfect match, (II) gold standard error, (III) ambiguous case

ples were sufficient to achieve better extraction results than those of machine
learning models trained with more than ten times of the data.
(C5) Costly experiments. This is a major drawback of LLM based process
information extraction. The most capable LLMs are hosted as cloud-based solu-
tions and are priced per token. We found that limiting the number of examples
to 1 resulted in the best cost-value ratio. Additionally, our experiments showed
that leaving out the prompt components Context Manager, Persona, and Dis-
ambiguation is a valid way to limit the number of tokens sent per request, albeit
with potential minor decreases in extraction accuracy. Prompting LLMs without
the request for a Fact List, nor Explanations for extracted information greatly
reduces the amount of tokens as well, especially useful after prompt engineering
or data curating (during “inference”). Alternatively one can switch to cheaper
models, i.e., LLama 3 72B, if the drop in performance is acceptable.

7 Conclusion

Summary. This paper presents an extensive study on the usefulness of LLMs
for the extraction of process information from natural language text. We col-
lected linguistic challenges and discuss how LLMs are uniquely fit for solving
them. We also discussed challenges that arise through the use of LLMs and
show how other communities propose to deal with these (or similar) concerns
through prompt engineering. We present experimental results on three process
information extraction datasets, which at least match the current state of the
art on these datasets and in most cases improve it by as much as 8% in the F1

metric. This shows the suitability of LLMs as a method for extracting business
process relevant information from natural language process descriptions. To flesh
out this notion, we analyze how well our prompting strategy can be applied to
different LLMs without changing them, showing their universal nature. We ex-
pect LLMs to be a benchmark in the process information extraction domain for
the foreseeable future, as limitations in dataset quality and quantity, combined
with the need for complex reasoning make it very hard to train large extraction
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approaches from scratch. We make all our code, prompts, and LLM answers
available, to support further research.
Limitations. A limitation of our work is that the list of prompt components
we present may not be exhaustive, and they may have interactions that our
ablation study does not capture. Additionally, some models suffer from halluci-
nations, especially Qwen1.5 and Llama 3, which hallucinate non-existent entity
and relation types – 20 and 37 instances in the worst cases respectively. However,
the severity of this problem diminishes in the few-shot setting (0 and 4 instances
respectively in the worst case). We plan on analyzing how our prompts could
be enhanced to improve instruction following for these models. Lastly, the cur-
rent pricing models prohibit large-scale application of the most capable model
to process information extraction. Alternatives (e.g., Llama) avoid this issue,
but require more labeled examples to reach comparable levels of performance.
This limitation may change in the near future, as more cost-efficient models
and specialized hardware reduce costs to acceptable levels. Alternatively, very
capable — and therefore expensive — LLMs could be used to create and curate
training data for smaller local models, leveraging the reasoning capabilities of
LLMs indirectly.
Future Work. In future work we aim to use LLMs as tools to support labeling
of new data. Current datasets are limited in origin, i.e., they usually describe
processes from municipalities or small service providers. We plan to analyze the
ability of LLMs to generalize beyond the domains with available labeled data
and highlight the promising flexibility observed in our current experiments. Ad-
ditionally, using GPT-4o’s image processing and generation capabilities could be
a promising line of research for direct text to model transformation. Finally, our
results show very limited improvement in extraction quality, when the prompt
includes a role the LLM is restricted to (persona). A slight variation of this idea
is to describe the target audience of extraction results in the prompt, to further
improve the quality of extracted process information.
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