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Abstract. Predictive Process Monitoring (PPM) leverages historical
data to forecast information about ongoing business processes. Recent
methods have utilized advanced deep learning and classical machine
learning models. However, the role of semantic information that can be
extracted from event logs has been underexplored, although such infor-
mation has been demonstrated to have significant advantages for other
process mining tasks, such as anomaly detection. Therefore, this paper
proposes a novel mechanism that aims to exploit semantic information
for PPM, particularly by extracting information regarding the status
of business objects associated with process instances from event data.
We evaluate this mechanism in outcome-oriented and next activity pre-
diction tasks, using state-of-the-art large language models (LLMs) for
semantic extraction. Our results show that integrating semantic infor-
mation improves prediction performance across these tasks. This work
demonstrates that utilizing semantic information in PPM has consider-
able potential, especially in combination with advanced language models.

Keywords: Process mining · Predictive process monitoring · Semantic
information · Large language models.

1 Introduction

Predictive process monitoring (PPM) leverages historical data to forecast in-
formation about ongoing business process instances, thereby providing orga-
nizations with significant competitive advantages [13,18]. To address various
tasks within this domain, numerous methods utilizing machine learning and
deep learning models have been developed [8]. These methods employ a range
of data preprocessing techniques and diverse prediction algorithms to tackle the
challenges inherent in PPM [14].

Although few studies have explicitly explored the semantic information em-
bedded within historical data, the potential benefits of incorporating such seman-
tic information into predictive models are evident. For instance, in predicting the



2 J. Yuan et al.

outcome of a case, an application that is complete is more likely to succeed than
an incomplete one. Similarly, in scenarios where the goal is to predict the next
likely activity, if an application has been rejected, it is unlikely that it will pro-
ceed to validation again, thereby narrowing the potential search space. Relevant
tasks in process mining such as anomaly detection have demonstrated significant
advantages by leveraging semantic information [1,4]. These methods employ nat-
ural language processing (NLP) techniques to analyze the semantics of activity
labels associated with events, enabling the identification of illogical behaviors.
Furthermore, the increasing capabilities of large language models (LLMs) sug-
gest that their integration into process mining is highly promising [2,9].

Therefore, this paper investigates integration of semantic information in
PPM. Specifically, we propose a mechanism for PPM that utilizes semantic in-
formation by extracting and annotating the statuses of key business objects
from event logs, through the use of LLMs. We tested this mechanism on both
Outcome-Oriented Prediction (OOP) [13] and Next Activity Prediction (NAP)
tasks [22], using real-life logs provided by a benchmark paper [23]. For NAP,
we further validate our mechanism on additional logs. Our evaluation demon-
strates that adopting our mechanism enhances prediction performance across
both tasks. This underscores the potential effectiveness of discovering and lever-
aging semantic information in prediction tasks, indicating a promising future
direction for this field.

The remainder is structured as follows. Section 2 reviews the related works in
the field. Section 3 defines essential preliminaries. Section 4 describes the mech-
anism we introduced, which is further evaluated in Section 5. Finally, Section 6
concludes the paper by summarizing the findings, discussing their implications,
and outlining potential directions for future research in this area.

2 Related Work

Research relevant to our work can be categorized into three areas: traditional
methods and textual-aware solutions for PPM, semantic process mining, and the
application of LLMs in the process domain.

Our work focuses on OOP and NAP, for which seminal benchmark arti-
cles have been published [19,23]. These articles suggest optimal configurations,
including encoding, prefix generation, bucketing, and algorithm selection [23].
While extensive research in this area focuses on the discovery of more effective
algorithms, ranging from Deep Learning (DL) approaches like transformers and
LSTM to Machine Learning (ML) techniques such as SVM and RF [15,7,22,12],
textual features remain largely underexplored. However, unstructured text from
different process-related sources such as comment fields, emails, or documents is
leveraged using traditional vectorization methods like bag of words (BoW) and
Latent Dirichlet Allocation (LDA) [17]. More advanced encoding approaches,
such as BERT [5], have been employed for textual features, aligning closely
with recent studies on next activity prediction using LLMs, particularly from a
control-flow perspective [21].
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In other process mining tasks like anomaly detection, research has demon-
strated significant success in utilizing semantic information, suggesting that inte-
grating such information could enhance PPM tasks. Anomalous process behavior
is identified by detecting semantically inconsistent execution patterns, with the
benefits clearly demonstrated in real-world scenarios [1]. Combining machine
learning methods with NLP techniques has led to significant improvements in
precision and recall for semantic anomaly detection [6]. Tasks like the automatic
semantic annotation of event data, which identifies specific semantic compo-
nents from textual attributes, have inspired our approach to extracting business
objects and their statuses [20].

Although our focus differs, our work also relates to recent research exploring
the integration of LLMs into various aspects of process mining, such as process
discovery and conformance checking [10,11]. Some research also delves into causal
reasoning and explaining decision points [9]. Emerging benchmarks combining
LLMs with process mining, such as those found in [2,3], mainly assess the quality
of textual or coding answers provided by LLMs. However, these studies primarily
explore how LLMs comprehend process mining artifacts or tasks rather than
directly evaluating their performance on downstream tasks. More closely related
to our task is a template extraction method performed using LLMs, followed by
fine-tuning with a pre-trained language model, though their focus was solely on
the next activity prediction task [16].

In our work, we combine these three streams by using LLMs to extract se-
mantic information to be leveraged for different PPM tasks.

3 Preliminaries

In this section, we define preliminaries required for the remainder of the paper.
Event Data. To extract semantic information, our work takes an event log L as
input, which is composed of traces. A trace t = ⟨e1, e2, . . . , en⟩ ∈ L is a sequence
of events associated with the same case. Each event in a trace can be represented
as a tuple (a, c, t, (d1, v1), . . . , (dm, vm)), where a denotes activity label, c is case
id, t is the timestamp, and (d1, v1), . . . , (dm, vm) represents a number of data
attributes and their corresponding values. PPM tasks are conducted over a set
of prefixes of an event log. Therefore we define an event prefix of length k,
noted as hdk(σ) is hdk(σ) = ⟨e1, . . . , ek⟩, where k is between 1 to n− 1. Beyond
these elements, from a broader perspective, the analysis that considers only the
sequence of activities is referred to as control-flow analysis.
Classifier. In machine learning, a classifier is an algorithm that categorizes data
into predefined classes. It learns from training data to map input features X to
target labels y and predicts the class of new data. To be fed into a machine
learning model, input features X are typically encoded as vectors, commonly
referred to as feature vectors.
Outcome-Oriented Prediction. For OOP, the input X is an event prefix
hdk(σ), while y is a finite set of categorical outcomes.
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Next Activity Prediction. For NAP, the input X is the same as outcome-
oriented tasks. We use a multi-class classifier f : X → {a1, a2, . . . , ak}, where
the label space is the set of unique activity labels {a1, a2, . . . , ak}.

4 Mechanism

This section presents our proposed semantic-aware status annotation mechanism
for general PPM tasks. As shown in Fig. 1, our mechanism includes two steps
specific to our pipeline (in red). Semantic extraction creates a static mapping
from activity labels to their corresponding business objects and statuses. Status
annotation, in turn, uses this mapping to annotate a prefix (for training) or an
ongoing case (for inference) with information that captures the current status of
each of its business objects. The rest of the PPM pipeline is in line with common
practice, making our mechanism independent of the choice of a specific machine
learning model or other configuration choices.

Training Testing

semantic extraction

Event log

status annotation

Prefix generation

Event prefixes with 
semantics

Mapping

Feature vectors

encoding

Predictive models

Ongoing case

Ongoing case with 
semantics

Feature vectors

encoding

inference

Event prefixes

status annotation

training

Fig. 1. Overview of our semantic-aware status annotation mechanism.

4.1 Semantic Extraction

The first step in our mechanism is semantic extraction, which creates a static
mapping from each activity label in the label space of an event log to a collection
of key-value pairs that identify business objects and their corresponding statuses.
This mapping serves as a reference for generating semantic information for each
event in the subsequent step. For example, from Create fine, we obtain fine as
the business object and created as its status.

Semantic extraction can be conducted using LLMs. By providing a prompt
with task-specific instructions, LLMs are able to comprehend the task and re-
turn the key-value pairs that identify business objects and their corresponding
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statuses. Figure 2 illustrates an example of how we extract semantic information
using Llama-33. When a verb-substantive combination is present in the activ-
ity label, semantic extraction is straightforward. Otherwise, LLMs must rely on
learned knowledge to infer meaning. For example, the activity label Payment
provides no indication of status, but based on its pre-trained knowledge, the
LLM assigns status conducted to the business object payment.

You are an expert in process mining. Your task is to extract key business objects and 
their states from complex activity labels by mapping activity labels to a dictionary in the 

form of {activity label: {business object: status}}.  
A single activity label can contain multiple essential business objects and states. 

Business objects must be general and process-related. 
Respond strictly in JSON format, providing fields for each activity. Ensure you 
understand the meaning and don't just extract directly. Output only the dictionary as the 
answer. Don't forget any of given activity labels.

<|eot_id|><|start_header_id|>user<|end_header_id|> 
{'Create Fine', 'Send Fine', 'Insert Fine Notification', 'Send Appeal to Prefecture', 
'Receive Result Appeal from Prefecture', 'Appeal to Judge', 'Add penalty', 'Payment', 

'Notify Result Appeal to Offender', 'Insert Date Appeal to Prefecture'} 
<|eot_id|><|start_header_id|>expert<|end_header_id|>

Example activity labels:  
{"Create Fine"} 
Example answer:  
{"Create Fine": {"fine": "created"}}

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Fig. 2. The prompt begins with role system, followed by a description of the task
and constraints. It then presents examples of extractions, which may include multiple
instances. The interaction continues in role user, listing activity labels for processing.
Finally, the prompt concludes with role expert, where introduces the expected results.

4.2 Status Annotation

In this step, we annotate a prefix or ongoing case with information that captures
the current status of all business objects, using the mapping derived in the first
step. This is done by iteratively processing events that occurred, with each status
being updated if a new event occurs that relates to that business object.

For example, consider an entire trace with a control flow ⟨Create Fine,
Send Fine, Insert Fine Notification,Add Penalty⟩, with Case id A100.
The control flow of event prefix of length 2, denoted as hd2(σA100), is
⟨Create Fine,Send Fine⟩. During status annotation, all business objects ex-
tracted from previous step are initialized as unprocessed, including fine and
3 https://huggingface.co/meta-llama/Meta-Llama-3-8B

https://huggingface.co/meta-llama/Meta-Llama-3-8B
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penalty, as well as payment from other traces. Then business object fine is
updated to created and subsequently to sent, while business objects penalty
and payment remain unaffected and retain its initial status. For the event
prefix hd2(σA100), the final statuses of business objects that appear in the trace
are recorded as {fine : sent, penalty : unprocessed, payment : unprocessed},
as illustrated in Figure 3. The status annotation process for ongoing cases is
similar to that for event prefixes, as both capture the sequence of events that
have occurred up to that point.

Case id
Event 
number

Activity Resource Amount

Business objects Label

fine penalty payment NAP OOP

A100 1 Create Fine R561 35 created unprocessed unprocessed Send fine 1

A100 2 Send Fine R561 35 sent unprocessed unprocessed Insert fine 
notification

1

A100 3 Insert Fine 
Notification

R561 35 notified unprocessed unprocessed Add penalty 1

A100 4 Add penalty R1 71 notified added unprocessed End 1

A1 1 Create Fine R537 36 created unprocessed unprocessed Send fine 0

A1 2 Send Fine R537 36 sent unprocessed unprocessed Insert Fine 
Notification

0

A1 3 Insert Fine 
Notification

R537 36 notified unprocessed unprocessed Add penalty 0

A1 4 Add penalty R537 74 notified added unprocessed Payment 0

A1 5 Payment R537 74 notified added conducted End 0

Fig. 3. Snapshot of a collection of an event log with semantics. All unique activities
are listed in the column activity. The example discussed in the text is highlighted, with
the event prefix with semantics of hd2(σA100) in red, and the associated labels for NAP
and OOP in green.

4.3 PPM pipeline

After obtaining the enriched inputs with semantics, we proceed with a standard
process within the PPM pipeline. During the training phase, we utilize the col-
lection of event prefixes and their associated semantics to train predictive models
for various PPM tasks. In the testing phase, we use the trained models to make
predictions for ongoing cases. Semantic information can be seamlessly integrated
into downstream tasks, similar to other categorical features within the inputs,
with business objects representing the feature names and their final statuses as
the corresponding values.

We particularly apply our mechanism to outcome prediction and next activ-
ity prediction tasks from PPM, as these are well-explored in the research and
represent distinct concerns—one focusing on immediate prediction ability and
the other on cumulative prediction ability. Furthermore, more so than remain-
ing time prediction, these tasks can benefit from the integration of semantic
information, as their targets may be closely related to the underlying semantics.
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5 Evaluation Experiments

This section reports on the experiments conducted in our study. The objective
was to compare prediction results with and without semantic information. The
selection of event logs is detailed in Section 5.1, and the experimental settings
are described in Section 5.2. The results of both OOP and NAP task are pre-
sented in Section 5.3. We discuss the results and limitations of our experiment
in Section 5.4. The implementation can be found in our repository.4

5.1 Log Selection

As OOP requires labeled datasets, we initially limited our selection to the OOP
benchmark and generated NAP labels from these datasets [23]. We selected five
datasets based on the rule that they must be in English with activity labels
having clear linguistic meaning, not cryptic notations. Following this rule, we
retained three logs from BPIC2017, as well as production and traffic fines logs.
Since generating labels for next activity prediction is straightforward, we further
expanded our selection to include additional real-world logs commonly used in
research, applying the same rule. This resulted in the inclusion of five logs from
BPIC2020, BPIC2019, and helpdesk. All logs are available in our repository.
Data Preprocessing. We filter out traces containing fewer than three events, as
they generally provide insufficient information at early stages. On the other hand,
training with long prefixes is time-consuming, and the OOP becomes trivial at
late stages [23]. Thus, we vary the prefix length from 3 to 20 during both training
and testing.
Train-test split. Within each log, we use 80% of the traces for training and
the remaining 20% for testing. To prevent overfitting, we ensure that the testing
traces are completely excluded from the training set.
Characteristics. Table 1 gives a summary of the characteristic of the 12
datasets. Among all the datasets for OOP tasks, the labels are either positive
or negative, denoting whether the outcomes deviate from or not to the defined
rules [23]. In the table, Pos rate indicates the proportion of positive labels.

5.2 Experimental Setting

Implementation and Environment. Our implementation comprises two com-
ponents: semantic extraction with LLMs on 2 Nvidia RTX 2080 Ti GPUs and
32GB RAM, and prediction using XGBoost in Python 3.8 on an Apple M2 CPU
with 16GB RAM. The prediction phase was executed using a CPU, as XGBoost
shows minimal GPU benefit from acceleration.
Configurations and baseline. We compare results obtained for three settings:
– w/o semantics: This represents a baseline that only captures control-flow in-

formation. We specifically use aggregation encoding on the Activity attribute.
4 https://github.com/jiaxin-yuan/semantic_status_annotation

https://github.com/jiaxin-yuan/semantic_status_annotation
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Table 1. Characteristics of the chosen logs.

Dataset Traces Trace length Variants Events Activity OOP:
Avg. Max Classes Pos rate

bpic17_a 31,413 45.45 180 15,846 1,198,366 26 0.41
bpic17_c 31,413 45.45 180 15,846 1,198,366 26 0.47
bpic17_r 31,413 45.45 180 15,846 1,198,366 26 0.12
production 220 20.34 78 203 2,489 26 0.53
traffic 129,615 4.07 20 200 460,556 10 0.46
bpic19 251,734 33.23 990 11,973 1,595,923 42 –
bpic20i 6,449 11.19 27 753 72,151 34 –
bpic20d 10,500 5.37 24 99 56,437 17 –
bpic20permit 7,065 14.80 90 1,478 86,581 51 –
bpic20prepaid 2,099 9.27 21 202 18,246 29 –
bpic20request 6,886 5.74 20 89 36,796 19 –
helpdesk 4,580 4.66 15 226 21,348 14 –

For example, an event prefix of length 2 in the trace ⟨a, b, c, d⟩ is encoded
as {a : 1, b : 1, c : 0, d : 0}. The aggregation method was chosen for
encoding due to its relatively superior performance, as reported in the OOP
benchmark [23].

– w sem(LLM): This configuration adds semantic information as obtained
through our mechanism to the feature vector. All other configuration op-
tions are the same as for the baseline.

– w sem(hard): This configuration is the same as the previous one, with the
exception that we use a manually defined (i.e., hardcoded) mapping as the
output for Step 1. This configuration allows us to test if extraction mistakes
by the LLM impact the prediction accuracy.

In our LLM-based configuration, we employed in-context learning with LLaMa-3
for extraction. Experimentation with various prompting settings revealed that
few-shot prompting with more examples typically yielded more stable and accu-
rate results. Consequently, we used six examples per log in our experiments.
Performance Metrics. For OOP, we adopted the Area Under the Curve
(AUC), indicating the likelihood of ranking a positive instance higher than a
negative one. For NAP, we employed overall accuracy and Macro-Averaged F1
Score as metrics [19]. Accuracy measures correct classifications, while the F1
Score balances precision and recall. The Macro-Averaged F1 Score averages F1
Scores across classes equally, making it suitable for imbalanced distributions.

5.3 Results

Result of OOP. Table 2 presents the results for the outcome-oriented prediction
task, measured by AUC among all testing set. Across almost all datasets, settings
that incorporate semantics extracted either through hard coding or LLMs con-
sistently outperform those that do not utilize semantics. Though, an exception
is observed in the production dataset, where the performance of LLM-extracted
semantics is lower compared to non-semantics, whereas semantics extracted man-
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ually still perform better than non-semantics. In most cases, manually extracted
features perform similarly to those extracted by LLMs.

Table 2. Overall AUC for OOP tasks obtained on the test set, using XGBoost. Bold
numbers indicate the best score for that dataset.

method dataset
bpic17_a bpic17_c bpic17_r production traffic

w/o semantics 0.6624 0.6377 0.5743 0.6440 0.6225
w sem(hard) 0.6636 0.6385 0.5751 0.6449 0.6228
w sem(LLMs) 0.6636 0.6380 0.5758 0.6396 0.6228

Result of NAP. Table 3 presents the results for the next activity prediction
task, evaluated using overall accuracy and Macro-Averaged F1 Score across the
test set. The BPIC2017 subsets accepted, cancelled, and refused originate from
the same process, resulting in identical values. In most datasets (7/10), both
metrics consistently show performance improvements with the incorporation of
semantics. Inconsistencies between the metrics are observed in datasets with lim-
ited samples, such as Production, and in those with over 40 activity labels. Only
the traffic dataset consistently underperforms when semantics are incorporated.
In most cases, extraction by LLMs outperforms human extraction for this task.

Table 3. Overall accuracy (first row) and Macro-Averaged F1 Score (second row) for
the NAP tasks on the test set, using XGBoost. Bold values represent the highest score
for each dataset within the same evaluation metric.

method dataset
bpic17 production traffic bpic20d bpic20i

w/o semantics 0.8680 0.0518 0.8182 0.3042 0.7041
0.7204 0.0289 0.5506 0.1191 0.3530

w sem(hard) 0.8959 0.0621 0.8181 0.3045 0.7042
0.7251 0.0407 0.5505 0.1193 0.3540

w sem(LLMs) 0.8960 0.0647 0.8181 0.3271 0.7098
0.7252 0.0397 0.5505 0.1324 0.3759
bpic20permit bpic20prepaid bpic20request helpdesk bpic19

w/o semantics 0.2025 0.6541 0.4937 0.2406 0.0093
0.2370 0.3913 0.1533 0.1132 0.0097

w sem(hard) 0.2040 0.6546 0.4941 0.2427 0.0097
0.2358 0.3938 0.1556 0.1146 0.0093

w sem(LLMs) 0.2034 0.6610 0.5043 0.2411 0.0097
0.2388 0.4446 0.1702 0.1143 0.0093

Earliness. For the OOP task, we assess earliness by calculating AUC at each
prefix length, as illustrated in Figure 4. As the three logs from BPIC2017 ex-
hibit similar trends, only one is presented here. The performance gains from
using semantics are more pronounced in the earlier stages, as demonstrated in
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three datasets from the BPIC2017 log. The AUC score without semantics is
notably poorer compared to two settings with semantics, particularly for prefix
lengths between 3 and 5. Despite the performance gains from using semantics in
the traffic fines figure being less visually apparent, the numerical results show
that semantics outperform non-semantics for prefix lengths 5, 6, and 7, with im-
provements of 0.2%, 0.03%, and 0.009%, respectively, while remaining consistent
across other prefix lengths. The Production dataset shows no clear pattern, but
the inclusion of semantics leads to superior performance for prefix lengths 5 to
10.

Fig. 4. Earliness of the OOP task across different datasets, limited to prefix lengths
below 10.

5.4 Discussion

Overall, we demonstrate that semantics can enhance PPM performance, as indi-
cated by the general performance improvements achieved with our mechanism.
However, these improvements vary a lot across datasets and settings. By sum-
marizing the prediction performances from both the OOP and NAP tasks, as
well as the earliness of the OOP task, we derive the following key insights.
Task comparison. Performance gains are generally more evident in NAP than
in OOP, indicating that semantics are more beneficial for immediate predictions
than for cumulative prediction. On the other hand, performance varies consid-
erably across different datasets, both in terms of overall performance and the
magnitude of performance and of performance improvements. This variability
suggests that the benefits of our mechanism differ among datasets, which can be
attributed to the extent of semantic information contained in the activity labels.
Extraction method comparison. Overall, semantic extraction using LLMs
outperforms manual extraction in both tasks. Excluding datasets with inconsis-
tent results across both metrics, exceptions are observed in Helpdesk. Despite
having a limited number of activity labels, similar to traffic fines and BPIC20d,
Helpdesk lacks business objects within its activity labels, making it difficult for
the LLM to accurately conduct semantic extraction from the context.
Earliness. The consistent performance gains observed in most datasets highlight
promising potential in prediction earliness, which is crucial for the OOP task.
The oscillations observed in Production likely stem from the limited sample size
at each prefix length, with the highest number of examples per group being
below 40, making the results sensitive to individual samples.
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Limitations. Due to the probabilistic nature of LLMs, limitations such as the
randomness in optimal extractions are inherent. Additionally, time constraints
restricted us from comparing different prefix encoding methods, employing more
robust techniques like cross-validation, or exploring the selection of optimal pre-
dictive algorithms.

6 Conclusion

This paper addresses the underexplored role of semantic information in PPM.
By introducing a novel mechanism for extracting and annotating the statuses
of business objects from event logs, we demonstrated that incorporating seman-
tic information can enhance predictive accuracy for outcome-oriented and next
activity prediction.

However, our work has some limitations. Currently, our mechanism focuses
sorely on statuses associated with individual business objects and does not ac-
count for semantic interactions between business objects using linguistic knowl-
edge, such as synonyms, near-synonyms, and antonyms. For example, the status
cancelled of the business object booking may trigger status updates in other
related objects, such as changing the status of bills from unpaid to cancelled.

In future work, we plan to explore the role of semantic information in pre-
scriptive process monitoring, incorporating the additional linguistic knowledge
mentioned earlier. Building on the foundations of predictive process monitoring,
we hope this will help identifying effective intervention actions for different sce-
narios in advance, thereby offering actionable recommendations for improvement
in process monitoring.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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