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Abstract. Clinical pathways are structured, multidisciplinary care plans
utilized by healthcare providers to standardize the management of spe-
cific clinical problems. Designed to bridge the gap between evidence and
practice, clinical pathways aim to enhance clinical outcomes and improve
efficiency, often reducing hospital stays and lowering healthcare costs.
However, maintaining pathways with up-to-date, evidence-based recom-
mendations is complex and time-consuming. It requires the integration
of clinical guidelines, algorithmic procedures, and tacit knowledge from
various institutions. A critical aspect of updating clinical pathways in-
volves extracting procedural information from clinical guidelines, which
are textual documents that detail medical procedures. This paper ex-
plores how Large Language Models (LLMs) can facilitate this extraction
to support clinical pathway development and maintenance. Concretely,
we present a conceptual model for using LLMs in this extraction task,
provide a dataset comprising thousands of clinical guidelines for academic
research, and share the results of initial experiments demonstrating the
efficacy of LLMs in extracting relevant pathway information from these
guidelines.

Keywords: Clinical pathways · clinical guidelines · large language mod-
els · process extraction · conceptual model.

1 Introduction

Clinical Pathways (CPWs) are structured multidisciplinary care plans used by
healthcare providers to describe the care processes with a specific clinical prob-
lem [30]. They aim to link evidence to practice, optimize clinical outcomes, and
maximize clinical efficiency. Their application can result in reported reductions
in length of stay and decreasing hospital costs, among its benefits [30].

Despite their potential to improve the quality and effectiveness of care, it
must be recognized that various challenges affect the definition of clinical path-
ways. Clinical Pathways are established through an interdisciplinary process,
including clinical guidelines (CGs) [33], algorithmic processes [35], and tacit
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knowledge of clinical personnel at each institution [5]. Keeping up-to-date with
evidence-based recommendations is a challenge: In just 2023, over 26.000 cancer-
related papers were published on PubMed3. When new recommendations affect
the pathways used in practice, a change-management plan needs to be estab-
lished. However, it is documented that revisions and change management plans
are not implemented for all institutions [5]. Second, its translation is complex:
either the process of interpretation and pathway generation is manual, or sup-
ported by algorithms that may bias their understanding of the guidelines based
on their expected output (e.g. the semantics of a particular process modeling
notation). Third, the process lacks transparency as it is unclear which semantic
structures get translated from clinical guidelines to clinical pathways. Finally,
the representation of the pathways may not be adequate: traditional notations
such as workflows or BPMN are imperative notations that do not capture the
discretion and observation-based decision exerted by healthcare practitioners,
and, in general, by actors in so-called Knowledge-Intensive Processes [9].

This paper explores how Large Language Models (LLMs) can be helpful in
the semantic analysis and extraction of clinical pathways from clinical guidelines.
LLMs are generally well-suited for information extraction tasks from unstruc-
tured text, representing a considerable part of the long-term goal of transforming
CG-to-CPWs. We consider this a long-term goal, yet unrealistic to achieve with
the current state of the technology due to several factors. First, the domain-
specificity of clinical data makes it more challenging for general-purpose LLMs
to produce accurate results (even if this is something that can be improved
using fine-tuned or specialized LLMs). Second, the lack of clear semantic struc-
tures may lead to false positives in information-extraction tasks, which, given
the high-risk impact of healthcare applications, need extra attention according
to the AI-Act [10]. Third, there is no consensus on what is the best seman-
tic representation of clinical pathways. While flowcharts and imperative pro-
cess models are regarded as easier to interpret, they are less apt for capturing
context-dependency and discretionary decision-making than declarative process
models [11]. Declarative Notations, such as Declare [28] or DCR graphs [17],
may capture the flexible nature of clinical work, but they may be harder to com-
prehend than their imperative counterparts [12]. Even this separation may not
be sufficient, as general-purpose notations in process modeling might not cover
domain-specific aspects in the transformation pipeline. Finally, clinical guidelines
are described in natural language, thus prone to multiple sources of ambiguity
that will affect the translation processes [1, 14].

Contributions. This paper reports on the initial steps toward the computational
support for clinical pathways. First, we present a dataset of clinical guidelines
collected from all the regions in Denmark, which can serve for further seman-
tic annotation and information extraction studies. The dataset comprises more

3 https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%222023%2F01%2F01%22%
5BDate+-+Publication%5D+%3A+%222023%2F12%2F31%22%5BDate+-+Publication%
5D%29%29+AND+%28cancer%29&sort=

https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%222023%2F01%2F01%22%5BDate+-+Publication%5D+%3A+%222023%2F12%2F31%22%5BDate+-+Publication%5D%29%29+AND+%28cancer%29&sort=
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%222023%2F01%2F01%22%5BDate+-+Publication%5D+%3A+%222023%2F12%2F31%22%5BDate+-+Publication%5D%29%29+AND+%28cancer%29&sort=
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%222023%2F01%2F01%22%5BDate+-+Publication%5D+%3A+%222023%2F12%2F31%22%5BDate+-+Publication%5D%29%29+AND+%28cancer%29&sort=
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than 90.000 clinical guidelines in 5 regions in Denmark. Second, we develop a
conceptual model based on the document analysis of the dataset, to be used for
information (e.g. process model) extraction. Third, we document how the con-
ceptual model can be instantiated as a set of guidelines to build an annotated
dataset, the challenges in its construction and validation, and the initial results
in the application of LLMs for the extraction of pathway extraction components.

Document Structure: In Section 2 we document the process for data collection
of the Danish clinical guidelines dataset, and we illustrate the results in Section 3.
Section 4 introduces the conceptual model for the identification of process-related
information in clinical guidelines. In Section 5 we validate the conceptual model
via the construction of different annotation tasks and illustrate its challenges.
Section 6 shows the results of process extraction tasks using SOTA LLMs. In
Section 7 we present related work and we conclude in Section 8.

2 The MedicalInstruks Dataset

In Section 2.1 we document the selection criteria used to generate a baseline
dataset for clinical guidelines. Section 2.2 documents the filtering process used
in the baseline in place, starting from 92.695 unstructured and unmarked docu-
ments, to 15 fully annotated clinical descriptions.

2.1 Dataset Construction Criteria

We require a baseline dataset of guidelines to quantify the capabilities of LLMs
in extracting clinical pathways. Our main criterion is that our dataset should
contain realistic information used in clinical processes. Moreover, we considered
the following requirements:

R1 The guidelines must be freely accessible.
R2 The documents in the dataset should all refer to service operating procedures

(SOPs) in the medical sector.
R3 The documents should have a consistent format to facilitate automated pro-

cessing.
R4 The corpus should cover various medical specialties to ensure its relevance

to a wide audience, including physicians, nurses, and pharmacists.
R5 If possible, the dataset should include documents in English.

The Danish healthcare sector presents a unique opportunity to create such a
dataset. Each of the five regions in Denmark (Syddanmark, Midtjylland, Nord-
jylland, Sjælland, and Hovedstaden) maintains a centralized guideline document
system. These systems aggregate SOPs (locally referred to as Instruks) across
all regional hospitals and are publicly available. This approach matches selec-
tion criteria R1–R4. Concerning criterion R5, the guidelines are only available in
Danish. Thus, we needed to add a translation step to benefit from LLMs trained
in English. While we considered English alternatives (e.g. [6]), their collection
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Fig. 1. Process view of the MedicalInstruks dataset construction

included documents not used in practice, such as PubMed abstracts and pa-
pers, thus violating R2. In comparison, constructing a dataset directly from the
regional sources in Denmark adds ecological validity to our dataset.

Following individual permissions from each region for research use, we com-
piled a dataset that based on the crawled documents, forms the cornerstone of
our study.

2.2 Data Collection and Refinement Process

This section describes the process followed to build the MedicalInstruks dataset
departing from the documentation received from the regions. Our process is
summarized in a BPMN diagram in Figure 1.

The dataset construction process starts with the crawled documents from the
regions (v0.1). This version included several non-medical categories that were
removed. The remaining medical guidelines were preprocessed (e.g. converted
from HTML to Markdown, identifying titles and contents from the crawled doc-
uments, removing table of contents, removing empty, incorrect, or duplicated
entries, etc). This constitutes the second version of the dataset and contains
70,750 documents.

Further analysis of the contents in v0.1 of the dataset showed that 12.816
(18, 12%) documents contained references, images, links to internal or external
documents, and tables. While process extraction from multimodal artifacts will
be exciting research, we proceeded to filter these documents as it will complicate
the information extraction task. Multimodal documents were modified to remove
references and images. Documents with tables were kept unaltered, as the pilot
selection showed them as an important artifact to encode process information.
This constituted the v0.2 of the dataset.

The following step included clustering and selection. The 70.750 documents
were not evenly distributed among the different areas. For instance, Pediatric
Dosage Instructions and Child Healthcare Guidelines included roughly 7.500 doc-
uments, while Clinical Practice Standards and Specialist Treatment Guidelines
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included 90. Moreover, the guidelines included non-medical procedures, such as
processes in logistics, human resources, economy, and cleaning. To minimize the
risk of undersampling, we used clustering and further refinement based on topic
appropriateness for healthcare. Two rounds of clustering (topic/sub-topic) were
performed by applying term frequency-inverse document frequency (TF-IDF)
transformation, removing terms occurring globally in the dataset. A KMeans
clustering algorithm was then applied to the transformation, resulting in a map-
ping from each document to one cluster in twenty. Clusters obeying inclusion
criteria (i.e.: containing clinical process information) were further analyzed via
random sampling and analysis of the text contained in the clinical guideline. In
addition, we defined minimum and maximum token limits to filter entries that
only included links or documents where manual annotation would be unsuit-
able. Documents below 250 and over 8.000 tokens were removed. As a result, the
clustered dataset in v0.3 included 17.858 documents and 21′814.800 tokens.

Once the documents were clustered and selected, we translated the guidelines
into English. We used DeepL4 as it is considered the top-performing translation
model [34]. To keep the validation effort feasible for the research team, we ran-
domly selected 1, 514 documents from the included entries in v0.4 and translated
them into English. The output of the translation was checked for consistency by
two native speakers who revised random selections of the translated documents,
confirming the validity of the translations5. Thus, v0.4 of the dataset constitutes
a baseline dataset ideal as a seed for annotation tasks in guideline extraction from
text.

The last version of the dataset included the manual annotation phase accord-
ing to the conceptual model defined in Section 4. For this step, 31 documents
were randomly assigned for annotation. The annotation step included the refine-
ment of the conceptual model and annotation guidelines and involved the three
authors of this paper. This sample also removed 16 documents because they con-
tained information not considered part of the conceptual model and thus could
only be partially annotated. The final version of the MedicalInstruks dataset in-
cluded 15 fully annotated documents, with an average of 1, 000 annotated tokens
per document.

3 Dataset results

Table 1 renders public the different versions of the dataset to make the research
replicable. In particular, we consider that each version of the dataset has in-
dividual merit. v0.1 is the raw material, ensuring traceability to the original
guidelines [16]. Moreover, it considers multi-modal process descriptions, a topic
seldom explored in NLP4BPM tasks. v0.2 enables the exploration of multimodal

4 https://www.deepl.com/translator
5 Few, negligible cases of mistranslations occurred, for instance, the Danish word

“sutten” translates to “Pacifier”, but it could be translated to “hickeys”, “suckle”
or “booze”. However, the number of mistranslations was negligible.

https://www.deepl.com/translator
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Version Description Docs. Lang. Filters Annotated Availability
v0.1 Original Dataset 92.695 Danish Raw No Zenodo [16]

v0.2 Pre-processed Docu-
ments

70.750 Danish Multi-modalities
removed No hugginface.co/...v0.2

v0.3 Selection based on
topical similarity

17.858 Danish

[250, 8.000] to-
kens/document
Selected according
to R2 & R4

No hugginface.co/...v0.3

v0.4 Danish - English
translation

1.514 English No hugginface.co/...v0.4

v0.5 Annotated Dataset 15 English Yes hugginface.co/...v0.5
Table 1. Dataset versions and availability

extraction of processes including decision and process models. Moreover, it con-
tains process descriptions in classical areas of interest in the BPM community,
such as logistics and human resources. v0.4 contains English descriptions and
is independent of any annotation scheme, thus facilitating its use for other an-
notation purposes, thus it can be used as a benchmark for existing annotation
schemes such as [2,23]. Finally, v0.5 focuses only on clinical guidelines in English
and showcases the application of our annotation guidelines. The MedicalPro-
cessInstruks contains 4.4k tokens, 15 documents, and 270 annotated sentences,
with an average token count of 16 per sentence.

4 Conceptual Model

In this section, we propose CGPET, our conceptual model for the annotation of
process elements in clinical guidelines. To establish CGPET, we considered three
kinds of artifacts: (1) various notations for Computer-Interpretable Guidelines,
which define the information that is necessary to represent a CPW, (2) an exist-
ing annotation schema for the annotation of process model elements in textual
process descriptions, PET [2], and (3) a metamodel for declarative process mod-
els [23]. These are complimentary, given that the first provides insights into the
need for a target representation (i.e., the CPW), and the latter two provide a
starting point to annotate process information using declarative and imperative
process semantics. Our proposed CGPET model combines these three artifacts,
particularly by extending the PET schema with several (missing) components
critical for the representation of computer-interpretable guidelines.

4.1 Key Components in Clinical and Computer-Interpretable
Guidelines

Although there is no standardized notation or structure for the description of
clinical guidelines, they generally share certain key components. CGPET cap-
tures the following elements commonly seen in analyses of pathways and guide-
lines [8, 13,19]:

– Goals: also referred to as outcomes, are essential for guiding the direction
of clinical care and evaluating their effectiveness.

https://huggingface.co/datasets/dagrat/DanishClinicalGuidelines/blob/main/final_dataset_all_regions_cleaned_w_clusters_70750.csv.zip
https://huggingface.co/datasets/dagrat/DanishClinicalGuidelines/blob/main/final_dataset_cleaned_clustered_17858.csv
https://huggingface.co/datasets/dagrat/DanishClinicalGuidelines/blob/main/translated_and_processed.csv
https://huggingface.co/datasets/dagrat/MedicalProcessInstruks/tree/main
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The customer office sends the questionnaire to the claimant by email.
If the questionnaire is received, the office records the questionnaire and the
process end. Otherwise, a reminder is sent to the customer.

Fig. 2. Text fragment annotated using the entities of the PET schema (adopted
from [2], relations omitted for clarity). Legend: Activity, Activity Data, Actor,
Further Specification, Gateway, Condition Specification.

– Indications and contra-indications: Information defining the cases where
a particular guideline applies (or not) for a patient.

– Plan: a description of tasks, decisions, and time conditions. Tasks and de-
cisions may be sequential or concurrent.

– Classification rules: convert a patient value into a classification further
used in the guideline, for example, a SpO2 of 88% is considered critical in a
Covid-19 guideline.

– Decision rules: logical statements, flowcharts, or tables, defining a set of
rules based on input variables coming from the patient’s state (e.g., systolic
pressure).

4.2 PET Annotation Schema

The PET (Process Extraction from Text) annotation schema was recently pro-
posed [2] as part of an effort to provide a corpus of annotated textual process
descriptions that can be used for training and evaluating approaches that extract
process information from texts. In this sense, its goal is similar to what we want
to achieve in our work, although the input and output formats that it focuses
on differ from ours.

The core of the PET schema is the Activity entity, which corresponds to
(the action of) a task performed in a process, e.g., sends, records, and sent in
Figure 2. Each activity can be linked to other kinds of entities, such as Activity
data to capture objects related to the activity, e.g., the the questionnaire be-
ing sent, Actors that either perform (The customer office) or are the recipient
(the claimant) of the activity, and any Further specification that provides details
on the execution of the activity, e.g., that the questionnaire is sent by email.

Next to activities, the PET schema defines Gateway and Condition Specifica-
tion behavioral entities, which are used, together with the Flow relation, to define
the control flow of a process, including choices and parallelism. For instance, the
words If and Otherwise jointly define a choice (XOR) construct in the process,
which PET captures through the Same Gateway relation. A Condition Specifi-
cation can be used to annotate a condition that must be satisfied to perform a
specific branch of a gateway, for instance, that a the questionnaire is received)
before it can be recorded.
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Fig. 3. CGPET Conceptual Model

4.3 Our proposal: CGPET

The PET schema provides a valuable starting point for our work. However,
it is important to consider that textual process descriptions used as input for
PET are simpler than clinical guidelines and lack corresponding elements for
our conceptual model. Due to these differences, we identified the need for sev-
eral adaptations to the PET schema while annotating several clinical guidelines
from the MedicalProcessInstruks dataset. This resulted in CGPET, a proposed
conceptual model for annotating process information in clinical guidelines, visu-
alized in Figure 3. The CGPET annotation schema is tailored to how process
elements are contained in clinical guidelines. The annotated elements can then
be extracted and transformed into a more formalized representation of the pro-
cedural information using a language of choice, independent of whether it is an
imperative or declarative language, a general-purpose process modeling notation,
or a notation specific to CPWs.

– Activities: Naturally, the Activity entity still plays a central role in CGPET,
given that activities form the core of any process. Examples of activities in
the dataset are “Check if the patient has a cavity” and “Preparing the CRRT
device for treatment”.

– Activity purpose: Next to associating activities with Activity Data, Spec-
ification, and Actor entities like in PET, we also define an additional entity:
Purpose Outcome. This entity captures the underlying reason, goal, objec-
tive, or anticipated result of a clinical action, procedure, or recommendation.
Figure 4 presents an example of the application of the Purpose Outcome
(PO) entity. It describes how the Activity i.e. “Postoperative epidural anal-
gesia” is performed for “pain management”.
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– Observations: An Observation can refer to any information or data that is
noted or recorded about a patient’s health status, including symptoms, di-
agnoses, test results, risk factors such as smoking, or contextual information
such as the patient’s age or condition. Multiple observations can be evidenced
in one sentence, for instance, the sentence “The condition should be suspected
in seizures with increased heart rate, respiration rate, BP and tem-
perature, as well as sweating and dystonic movements postures in a
patient with severe acquired brain injury” contains 7 different observa-
tions ranging from specific symptoms to patient’s conditions. Observations
do not have a corresponding entity in the PET annotation guidelines.

– Inputs and outputs: An Input refers to any word or phrase that denotes a
specific type of clinical measurement, score, or value relevant to performing
an activity. These include, but are not limited to, physiological measure-
ments, lab test scores, and specific clinical indices. An Output entity is its
converse. Note that an Input differs from a Guard (see below), since an In-
put does not represent specific numerical values or thresholds but rather the
type of the measurement or value, e.g., blood pressure or heart rate. Exam-
ples of inputs and outputs are “eGFR” and “study is performed without IV
contrast” in “If eGFR < 45 : The study is performed without IV contrast”

– Subprocesses: Clinical guidelines frequently mention higher-level activities,
later described in more detail. For example, the sentence “It may be indi-
cated to administer morphine to a woman in labor during the dilation
phase of labor” describes the existence of the activity administer mor-
phine, which is later detailed: “Regardless of age and weight: Naloxone 0.2
mg svt 0.5 ml. i.m. It can be repeated if needed.”. To capture this behavior
we define a Subprocess as an entity to annotate higher-level steps, which can
subsequently be linked to more specific activities using the Belongs to the
Subprocess relation.

– Control-flow relations: Contrary to PET, clinical guidelines are discre-
tionary, meaning that flows can be implicit rather than explicit. We anno-
tate the control flow among activities directly using inter-activity relations,
in the form of declarative process constraints [21]. CGPET supports Con-
dition, Response, No-response, Inclusion, and Exclusion relations between
activities. A condition relation describes precedents (e.g. prescribe medicine
cannot be done unless confirm diagnose is done). Responses denote the impo-
sition of obligations (e.g. if a newborn is assessed to be in pain, a systematic
pain assessment must be performed). Its converse relation is No-response.
Inclusions/Exclusions denote contextual information (e.g. if a diagnosis is
observed, then a specific type of treatment is pertinent, or, conversely, should
not be offered). The annotation example in Figure 4 uses the Exclusion re-
lation to indicate that one activity excludes the other.

– Guards: Finally, a key control-flow addition to CGPET is the notion of a
Guard. A guard refers to a specific type of information that defines condi-
tions, limits, or thresholds in the clinical context. These entities often rep-
resent critical values or timeframes that impact clinical decisions, such as
dosage limits, duration of treatment, or thresholds for test results. This can
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Postoperative epidural analgesia for pain management is not routinely recommended

to

for

PO ExclRelA A

Fig. 4. Annotations of Purpose Outcome (PO) indicating the rationale behind the
execution of an activity

include measurements (like volume or concentration), timeframes (like dura-
tions or frequencies), or any other quantifiable condition that affects clinical
decisions. Note that guards play a similar role as the Condition Specification
in PET, though with a broader purpose and in line with the terminology
used in clinical guidelines (see Section 4.1).

5 Validation via Annotated Dataset Construction

The following section discusses the validation of the metamodel using exist-
ing clinical guidelines. The conceptual model was instantiated as an annotation
guideline for process extraction as it is commonly done in NLP tasks. The guide-
lines were applied to a randomized selection of clinical guidelines (c.f. dataset
construction v0.5 in Section 2.2). When uncertainties about the application of
the guidelines arose, a lead annotator discussed each of the uncertainties with
two senior annotators with experience in NLP and BPM. This process resulted
in multiple iterations of the annotation guidelines. When ambiguities arose re-
garding specific terms that could not be inferred via the context, ChatGPT4
was used for clarification. The annotation process can be broken down into four
main phases. First, the annotator must classify each document section accord-
ing to whether it contains process-related information. Guideline documents are
organized into definitions, main chapters, subchapters, and paragraphs, but the
hierarchical layout does not necessarily correspond to process-centric informa-
tion. For example, one of the documents describes an “ordering guide for 18F-
FDG PET Examination”. Its main paragraphs include target groups, definitions,
procedure, indications, contraindications, patient preparation, execution, inter-
pretations, doses and requisitions. After a closer look at each of the sections it is
possible to observe that the procedure section is empty, and the process informa-
tion resides in indications, contraindications, patient preparation, and execution
paragraphs. Thus, the role of the annotator is to parse the document struc-
ture and identify the paragraphs containing process-related sentences. Second,
once all sentences containing procedural knowledge have been recognized, the
annotator labels individual activities. Third, the remaining elements from the
metamodel are then annotated according to their relation to labeled activities.
Finally, the control-flow relations between activities are labeled.
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Tablet paracetamol (Pamol) can be given preoperatively > 1/2 hour before anesthesia with a small mouthful of water in elective surgery.

uses

with
from

when toduration

AD CondRelS SGA A

Fig. 5. Ambiguities in Clinical Guidelines: underspecification of timed constraints.

� Gabapentin 100-300 mg every 8 hours.

how often
how much

A SS

Fig. 6. Example 2 of Guideline Ambiguity.

5.1 Challenges: Textual Ambiguity in Clinical Guidelines

An important finding of the annotation process was how recurrent process-
related ambiguities appear inside clinical guidelines. We provide a couple of
examples. First, consider the annotations in Figure 5. They show an ambiguous
course of drug administration. On the one hand, several time points are specified
(preoperative and 0.5 hours before anesthesia). Likewise, the formulations are
not exact. Although paracetamol can be administered during this period, it is
not obligatory.

The example in Figure 6 shows an excerpt from a list of activities within
the guideline. In this case, a connecting verb (e.g. administer) is missing, which
does not create an issue for a human annotator given the reading context, but
it may lead to problems when applying automated process extraction, as many
approaches [2, 15] use verbs as the main identifier for activities.

Very different process models can emerge from parsing one ambiguous sen-
tence in a clinical guideline. For instance, different ways of parsing relations
occurring in “If the procedure is to be performed in LA, blood tests are not re-
quired unless the operator has prescribed otherwise.” resulted in three different
process graphs as presented in Figure 7 (here illustrated as DCR graphs [17]).
This example is especially ambiguous as it contains a double condition with the
action of performing a blood test. The process at the bottom left describes that
a blood test is no longer possible if the procedure is carried out in room LA
(exclude relation). On the other hand, a prescription can reactivate the activity.
If both conditions are met, a decision problem will occur. In the process on the
right side, the condition relation causes a blood test to be executed only if the
procedure takes place in room LA, but at the same time, the exclude relation
prevents this.

These examples demonstrate the implications of the ambiguities in the an-
notation process. As posed forward in [14], an ambiguity will take multiple in-
terpretations as valid. In our annotation process, we discussed each ambiguity
encountered and left them unchanged as long as one interpretation was correct.
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Fig. 7. Ambiguity effects: Three different DCR graphs based on the same description.

The amount of ambiguity and the lack of possibilities for automation made the
annotation process extremely difficult and time-consuming. During the begin-
ning of the annotation, one guideline annotation with 70-80 sentences took up
to 8 hours (on average 6 min. per sentence). This time included noting ambi-
guities and looking up medical specialties. The refinement of the guidelines and
the learning curve improved the efficiency of the annotation process to about 4
hours/document. Another factor that makes the process very time-intensive is
the amount of layers needed to describe the model. For some of the documents,
the time could be reduced to about 2 1/2 hours per document, combining man-
ual annotations with a prompting approach where we used Mixtral [18] to semi-
automate the annotation process, where a main annotator revised and accepted
the outcome. The result of the annotation process became the MedicalInstruks
dataset (c.f. v0.5 in Section 2.2) and is the first in-depth process-centered an-
notated corpus of medical clinical guidelines containing information about the
current state of medical practice.

6 Initial Experiments on Process Extraction using LLMs

In this Section, we report on initial experiments using the MedicalProcessIn-
struks dataset. The process extraction pipeline can benefit from multiple NLP
tasks: sentence classification (i.e. does this sentence contain process-related in-
formation?), Name-Entity Recognition (i.e. what are the activities in this sen-
tence?) and Relation Extraction (i.e. are these two concepts related?). We fo-
cused on Named-Entity-Recognition and relation extraction. In particular, we
want to explore whether a pre-trained language model renders process extraction
feasible in an automated way. Moreover, we would like to compare its perfor-
mance against few-shot guideline-based architectures. For the evaluation metrics,
we use standard definitions of precision (i.e.: True Positives/(True Positives +
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False Positives)), recall (i.e.: True Positives/(True Positives+False Negatives)),
and F1 (i.e.: 2 × (Precision × Recall)/(Precision + Recall)) scores. For LLM
predictions we include hallucination, defined as Number of wrong predictions/
total number of predictions.

The models selected for this evaluation were sourced from a public reposi-
tory of pre-trained models6. Our initial selection included BioLink-BERT [38]
and XLM-Roberta in the large model configuration [7], with 355 million param-
eters. For few-shot learning, we used three models: first, OpenAI NER Model
GPT4-0125 Preview with Topp : 0.9, and Temperature : 0.7. Second, Mix-
tral 8x7b instruct-v0.1 NER. Setup: Topp : 0.9, temperature: 0.7. Finally, we
compared with Guideline Prompting using GoLLIE-34B, an entity and relation
extraction finetuned model based on CodeLlama using few-shot prompting com-
bined with a guideline approach [31]. The same parameters were used for the
Relation Extraction task. The experiments were carried out on an HPC clus-
ter on two Tesla A100-PCIE graphics cards with 40GB memory each and the
smaller models (BERT & Roberta) on a Tesla V100-SXM2 with 32GB mem-
ory. Initially, our approach involved document segmentation without contextual
information (that is, one sentence at a time), using a 5-fold cross-validation
strategy and iterating over 3 epochs. Unfortunately, this strategy did not yield
significant accuracy improvements for either BioLinkBERT or XLMRoberta.
Subsequently, the models were subjected to an extended training regime of 6 ad-
ditional epochs with the same 5-fold cross-validation. This phase demonstrated
a marginal improvement, particularly with XLM-Roberta, which began to show
the first signs of measurable performance. In our final and best approach, we
used 10-fold cross-validation.

6.1 Results

We report the best results for both the pre-trained and the guideline approach in
Tables 2, 3, and 4. Our initial expectation was that fine-tuned domain-specific
models would better extract process elements from clinical guidelines against
general-purpose models. Still, the poor performance of BioLinkBert challenged
this. In contrast, XLM-Roberta, a model with a significantly larger general cor-
pus, provided the best results for pre-trained models. Independently of the model
and the class, the results of our experiments show an accuracy below random
guesses, highlighting process extraction from clinical data as a complex task for
pre-trained large language models. They also contrast against the high F1 scores
for activity, actor, and specification classes in the PET dataset (0.81, 0.76, 0.19,
respectively). The results for the few-shot approaches in Tables 3 and 4 show
a difference on the performance against different tasks. While the relation ex-
traction evidenced satisfactory results (particularly in the case of OpenAI), the
NER task evidence that most of the entity extraction is below the level of ran-
dom classifiers, and thus not ready to be used in production for full process
extraction pipeline.
6 Huggingface Transformers Library

https://huggingface.co/docs/transformers/en/index
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Precision Recall F1

Activity 0.5556 0.2170 0.3125
Activity Parent 0.2500 0.5000 0.3300
Actor 0.2600 0.6250 0.3700
Specification 0.4000 0.1100 0.1700
Input 1.0000 0.2500 0.4000
Observation 0.2720 0.3300 0.3000

Overall 0.3220 0.1700 0.2260

Table 2. NER results using XLMRobertaLarge

OpenAI Mixtral Gollie

Class Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Activity 0.4000 0.4819 0.4372 0.3125 0.2703 0.2899 0.2266 0.1576 0.1859
Activity Data 0.3592 0.4568 0.4022 0.2899 0.2740 0.2817 0.2273 0.0314 0.0552
Actor 0.3077 0.4000 0.3478 0.4500 0.4737 0.4615 0.0909 0.0286 0.0435
And 0.3571 0.4545 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Condition Entity 0.3889 0.3889 0.3889 0.0556 0.0667 0.0606 0.0000 0.0000 0.0000
Exclusion Entity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0909 0.1538
Guard 0.3182 0.5385 0.4000 0.3333 0.0909 0.1429 0.2500 0.1429 0.1818
Inclusion Entity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Input 0.1667 0.0909 0.1176 0.0000 0.0000 0.0000 0.2333 0.2800 0.2545
Observation 0.3780 0.3827 0.3804 0.2907 0.3247 0.3067 0.3158 0.2264 0.2637
Or 0.1250 0.2000 0.1538 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Output 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Parent Activity 0.1154 0.1875 0.1429 0.0323 0.0714 0.0444 0.0000 0.0000 0.0000
Purpose Outcome 0.2308 0.2500 0.2400 0.1667 0.0833 0.1111 0.0000 0.0000 0.0000
Response Entity 0.3333 0.1818 0.2353 0.1667 0.0909 0.1176 0.0000 0.0000 0.0000
Specification 0,4444 0.2295 0.3027 0.3500 0.0648 0.1094 0.1765 0.0147 0.0271

Overall 0.3426 0.3516 0.3470 0.2299 0.1937 0.2103 0.2409 0.0839 0.1245

Table 3. Results on NER tasks against different LLMs. Hallucination: 0.0% (OpenAI),
3, 61% (Mixtral). Bold means best results.

6.2 Threats to Validity

We are aware of the following limitations of our research. Regarding the anno-
tation process: the annotations were carried out by the annotators with com-
puter science backgrounds. The absence of prior knowledge posed a risk and
increased the annotation time. Our mitigation strategy included consultations
with medical material, as well as disambiguation using LLMs. Concerning trans-
lation errors. The original guidelines were received in Danish, and an additional
translation step was required to perform process extraction activities. While mit-
igation strategies such as random sampling with native speakers were in place,
there is the risk that some of the texts may have been unnecessarily altered in
the translation phase. Regarding the size of the annotated dataset: the anno-
tated data set may be small to train an encoder-only model, thus having an
influence in the low f1 scores reported. As a mitigation strategy, an annota-
tion guideline was developed and every case of ambiguity was discussed among
the authors. Further strategies may include inter-annotator agreement and data
augmentation strategies for some of the underrepresented classes.
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OpenAI Mixtral Gollie

Class Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Activity Actor-Performer rel. 0.8571 0.8000 0.8276 0.2273 0.8333 0.3571 0.0000 0.0000 0.0000
Activity Actor-Receiver rel. 0.6000 0.5000 0.5455 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Activity Data rel. 0.9063 0.8788 0.8923 0.6667 0.7200 0.6923 0.8913 0.1646 0.4481
Activity Guard rel. 0.9231 1.0000 0.9600 0.7778 0.6364 0.7000 0.2857 0.1429 0.1905
Activity Parent rel. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Activity Purpose Outcome rel. 0.7273 1.0000 0.8421 0.6667 0.6667 0.6667 0.5000 0.1333 0.2105
Activity Specification rel. 0.8144 0.8587 0.8360 0.6727 0.5211 0.5873 0.0000 0.0000 0.0000
Actor rel. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7500 0.3243 0.4528
Condition rel. 0.6842 0.8667 0.7647 0.4167 0.6250 0.5000 0.0000 0.0000 0.0000
Condition Response rel. 0.1429 0.3333 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Exclusion rel. 0.8571 0.8571 0.8571 0.8333 0.8333 0.8333 0.0000 0.0000 0.0000
Response rel. 1.0000 0,5000 0.6667 1.0000 0.4000 0.5714 0.0000 0.0000 0.0000
Inclusion rel. 0,0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Overall 0.7817 0.8383 0.8090 0.5320 0.5902 0.5596 0.6087 0.2090 0.3111

Table 4. Benchmarking LLMs on RE tasks. Hallucination: 4.1825% (OpenAI), 16.11%
(Mixtral). Bold means best results.

7 Related Work

We can divide the related work into three streams: works in datasets for clin-
ical guidelines, works in annotation schemes, and overarching works in process
extraction in BPM.

Regarding datasets for clinical guidelines, Pedersen et al. [26] published a set
of word embeddings using Standard Operating Procedure (SOP) documents from
five Danish regions. Their dataset, MeDa-Bert, includes non-guideline-specific
information such as books and Wikipedia entries. To focus on guideline-specific
information, we replicated the crawling process and compiled a new dataset
using permissions from each region. Compared to [26], we increase the ecological
validity of this work by only considering guideline-specific information.

Concerning annotation schemes for clinical guidelines, a broad range of nota-
tions for knowledge extraction from Computer-interpretable guidelines has been
proposed, for instance, Asbru [24], EON [25], GLIF [27], and PROforma [37].
Each notation uses specific labels and categories for each aspect, with high vari-
ability in the covered details. For example, Asbru offers the most developed
syntax to formally express a wide range of intentions that can be used to de-
fine goals and purposes, whereas the same aspects are left optional in GLIF. By
proposing a language-agnostic model, we want to generate as much structured
text as possible while being neutral to one specific modeling language.

Concerning general works at the intersection of NLP and BPM, we can re-
port some works on process discovery from unstructured texts. While process
discovery from text artifacts has been explored earlier, the inputs have consid-
ered business process descriptions [2, 15, 21, 22, 32], e-mail communications [36],
cooking recipes [29], or legal documents [20]. To the best of our knowledge, this
is the first work exploring the extraction of process elements from the complexity
of clinical guidelines. From these works, only [2] provides both a set of annota-
tion guidelines and a dataset for verification, being the closest to our aims (even
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though the domains are different). For the experimental setup, [3] evaluated
few-shot extraction using GPT-3.5, being a good point of comparison. In the
medical domain, the recent work by Bombieri et al. [4] studied the sentence clas-
sification task to identify procedural knowledge in robotic-assisted surgical text
using LLMs. Their approach may be complementary to our work, being sentence
classification a pre-condition to the process extraction phase in our extraction
workflow.

8 Concluding Remarks

This work is the first of its nature aiming at exploring process extraction from un-
structured documents in a highly complex environment, the medical domain. The
dataset collected is a legitimate representation of the complex decisions and doc-
uments that a knowledge-worker need to deal with. In itself, the dataset (and the
different versions from v0.1 to v0.5) evidence multiple challenges when extract-
ing process information, including multiple modalities, long documents, non-
standardized layouts, and semantic ambiguities. Moreover, our paper presents
a conceptual model of the process-related information found in the documents.
Such a conceptual model can be instantiated as a set of clinical guidelines, and
it is independent of a specific modeling language, thus allowing hybrid combina-
tions of declarative and imperative approaches. Our validation via annotation of
a smaller dataset evidenced the complexity of the tasks for manual annotators,
and our experiments using LLMs show ample room for improvement for this
complex task. In future work, we would like to enrich the semantic annotations
and explore the impact of multi-modal information in process extraction.
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