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Abstract Activity recommendation is an approach to

assist process modelers by recommending suitable ac-

tivities to be inserted at a user-defined position. In this

paper, we suggest approaching activity recommenda-

tion as a knowledge graph completion task. We convert

business process models into knowledge graphs through

various translation methods and apply embedding- and

rule-based knowledge graph completion techniques to

the translated models. Our experimental evaluation re-

veals that generic knowledge graph completion meth-

ods do not perform well on the given task. They lack

the flexibility to capture complex regularities that can

be learned using a rule-based approach specifically de-

signed for activity recommendation.

Keywords activity recommendation · knowledge
graph completion · rule learning · embeddings

1 Introduction

Business processes are an integral part of every orga-

nization. They refer to sequences of activities that are

performed to achieve an outcome that is of interest to

the organization itself or to its customers. Capturing in-

formation on such processes, process models are present

in all phases of the business process management life-

cycle [9]. Despite the relevance of process models for

the documentation, analysis and improvement of busi-

ness processes, creating them is a time-consuming and

error-prone task that requires substantial expertise [12,

13]. Modeling business processes is even more challeng-

ing in the case of domain-specific processes, which often
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require the consistent use of specialized and technical

vocabulary.

It is possible to support process modelers in their

modeling task by providing recommendations on how

the process model that they are developing can be ex-

panded [11]. One way to provide such support is through

activity recommendation. An activity recommendation

system suggests suitable activities to extend a given

business process model under development at a user-

defined position. Such systems can use a repository of

already available process models as a basis for their

recommendations. Naturally, activity recommendation

systems should be context-aware, i.e., they should take

the current content and state of a process model into

account when recommending a suitable label for the

next activity.

Figure 1 shows context-aware recommendations for

a process model under development. The user has just

inserted an unlabeled activity at the model’s bottom.

The activity recommendation task is to suggest suitable

activities for this position, i.e., to find an appropriate

label for the so far unlabeled activity node. Since the

process that has been modeled up to this point contains

activities that are commonly associated with order-to-

cash processes, a context-aware recommender system

provides recommendations that correspond to activities

that occur at a comparable position in similar processes

(found in a given model repository), such as Create sales

order, Analyze purchase order, and Update sales order.

Several specialized methods for solving the activ-

ity recommendation problem have been proposed [4,

6,21,34,32,33]. These methods range from ones based

on symbolic representations, using rule learning to cap-

ture regularities across the process models in a large

repository, to methods that use deep learning or large

language models. What these methods have in com-
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Fig. 1 A business process model under development

mon is that they have been specifically developed for

the activity recommendation problem; generally stem-

ming from researchers from the business process man-

agement community. Still, these methods struggle with

the challenging nature of the problem, leaving consid-

erable room for improvement in their recommendation

accuracy.

Given that activity recommendation is thus far from

solved, we propose to tackle it from a different angle.

Specifically, we recognize that the activity recommen-

dation problem can be rephrased as a knowledge graph

completion problem.1 Knowledge graph completion is a

more general task than activity recommendation and

has garnered a considerable amount of attention over

the last years. A survey and an experimental evaluation

that covers the most prominent methods is available

in [27]. As an imperfect illustration of the attention for

this task, we note that common knowledge graph com-

pletion methods such as TransE [2] and DistMult [44]

have each attracted thousands of citations, several or-

ders of magnitude more than methods for activity rec-

ommendation. Therefore, by rephrasing the problem of

activity recommendation into this more general task,

we are able to apply well-established methods stem-

ming from a field with a long and extensive cumulative

transition.

In this light, this paper makes three contributions:

1. We show how to rephrase the activity recommen-

dation problem as a knowledge graph completion

problem. To do this, we convert a given process

model repository and process model under develop-

ment into a large knowledge graph, which describes

the relations and labels of the activities that ap-

pear in the models. The activity recommendation

problem is then equal to a completion task for that

graph.

2. We perform an experimental comparison of several

knowledge graph completion methods on the ac-

tivity recommendation problem. Our experiments

1 This problem is also referred to as link prediction.

cover both rule-based and embedding-based meth-

ods, which we also compare against methods specif-

ically designed for activity recommendation.

3. By analyzing our experimental results we identify

problems when applying general knowledge graph

completion methods to our activity recommenda-

tion scenario. We propose a strategy to fix some of

these problems and measure its impact on the rec-

ommendation quality.

Although our work focuses on the specific problem of

activity recommendation for business process modeling,

our results are also interesting from a general point of

view. Most papers that propose knowledge graph com-

pletion methods evaluate these methods on the same

evaluation datasets that have been used in the commu-

nity for many years. Within this paper, we instead ap-

ply existing methods to a different dataset and an eval-

uation scenario that reflects a real-world downstream

task and investigate if the methods are flexible enough

to adapt to our task. The results indicate that the re-

sults do not fulfill expectations raised by the good re-

sults on the standard evaluation datasets.

The remainder of this paper is organized as follows.

Section 2 presents an overview of related work in activ-

ity recommendation and knowledge graph completion.

Section 3 provides a formal definition of the activity

recommendation problem and different approaches for

rephrasing it for knowledge graph completion. In Sec-

tion 4, the results of our experimental study are dis-

cussed. Finally, the paper concludes with an outlook

on future work in Section 6.

This journal paper is an improved and extended ver-

sion of an AI4BPMworkshop paper [35]. As we detected

some minor inconsistencies in the experimental results,

we repeated all experiments to verify and update the

results. Moreover, we added three additional models

(TuckER, HittER, and RotatE), which are known as

top-performing knowledge graph embedding (KGE) mod-

els, while in our previous publication we used only two

classic models. We also proposed and analyzed a new

training method to enforce the models to focus on the

label prediction task. Furthermore, we extended exam-

ples and explanations and discussed the results and the

limitations of the approach in more detail (Section 5).

2 Related Work

Within this section we first give an overview on methods

that have specifically been developed for activity rec-

ommendation. In the second part we are concerned with

knowledge graph completion approaches and discuss, in
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particular, the models that we use in our experimental

evaluation.

2.1 Activity Recommendation Methods

The first methods designed for activity recommenda-

tion were mostly based on graph mining techniques [4,

6,21]. Later Wang et al. developed an embedding-based

approach called RLRecommender [42], which embeds

activities and relations between them into a continu-

ous low-dimensional space. As shown in [34], the per-

formance of RLRecommender is comparably low, since

the recommendations for an unlabeled activity are only

based on one related activity in the process model.

Therefore, the method generates different recommen-

dations depending on the chosen related activity that

is used to determine the recommendations for the unla-

beled activity. In other words, RLRecommender lacks

an aggregation method which combines all possible rec-

ommendations given the process model under develop-

ment in one recommendation list.

In [34], the authors presented a rule-based activ-

ity recommendation approach. The proposed method

learns rules that describe regularities in the use of labels

in the given process model repository. For this purpose,

the authors defined various rule types that capture dif-

ferent co-occurrence and structural patterns. Then the

method applies the learned rules to the model under

development making use of the full given context. In

an extensive experimental study the rule-based method

outperformed a variety of other approaches [19,20,42].

All approaches mentioned so far are limited to rec-

ommend only those labels that have previously been

used in the models stored in the process model repos-

itory. In an extension of the rule-based approach pro-

posed in [34], the authors developed in [32] a method

that can recommend labels that have never been seen

before. This approach combines components of the la-

bels that are already known to create new labels. This

results in some cases in the recommendation of labels

that do not appear as a whole within the given reposi-

tory. A similar method is presented in [15], where pro-

cess element sequences are converted into text para-

graphs. These textual data are then represented us-

ing sentence embeddings, which are learned text repre-

sentations capturing semantic information as numerical

vectors. In [33], the authors went a step further and pre-

sented an approach that is build on a language model.

This approach is capable to recommend completely new

labels where not even parts of these labels have been

used in the process model repository previously.

Within respect to our research question we have to

limit ourselves to approaches that predict only labels

that have previously been used in the repository. We

have to stick to this constraint as knowledge base com-

pletion methods are also limited to predict only those

entities as candidates that are used in the given knowl-

edge graph, i.e., that are elements from E. Thus we use

only RLRecommender [42] and the rule-based method

proposed in [34] as methods that have specifically been

developed for the activity recommendation problem.

2.2 Knowledge Graph Completion Methods

We compare the selected methods for activity recom-

mendation against some of the best and most promi-

nent methods for solving the general problem of knowl-

edge base completion. In particular, we focus on several

knowledge graph embedding models and one rule-based

system. To explain these methods, we first introduce the

notion of a knowledge graph and describe the knowl-

edge graph completion problem.

A knowledge graph G = {(e, r, e′) | e, e′ ∈ E ∧
r ∈ R} is a set of triples. E denotes a set of entities.

These entities can be persons, locations, organizations

or, in our case, activities and their labels. R is a set of

relations that might contain relations as worksFor or

locatesIn. From a logical point of view a relation is a

binary predicate and a triple (e, r, e′) is a atomic fact

that expresses that e is in relation r to e′. Knowledge

graphs are used to store our knowledge about a certain

domain in simple formal representation.

Given that our knowledge about a certain domain

is usually incomplete, we can assume that the knowl-

edge graph itself is also incomplete. Knowledge graph

completion deals with this problem in terms of com-

pletion tasks. A completion task (or completion query)

asks to find a correct candidate for the question mark

in an incomplete triple (e, r, ?). The answer to such a

query is a ranking of candidates. The higher the cor-

rect candidate is ranked the better. We introduce the

metrics that are usually used to quantify the quality of

a ranking in Section 2.3.

The field of knowledge graph completion has for

a long time been dominated by knowledge graph em-

bedding models. The standard evaluation protocol for

knowledge graph completion has already been proposed

in 2013 in the paper that also introduced the well-

known model TransE [2]. TransE is a model that be-

longs to the family of translational models. Given a

triple (e1, r, e2), in a (pure) translational model, the

embedding of a relation r is used as a means to map

(translate) the subject e1 into the object e2. Formally,

we have e∗1 + r∗ = e∗2 if the embedding function is de-

noted by ∗. Another well-known translation model, that

has proven to achieve very good results, is the model
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RotatE [38]. Here the translation can be understood

as a rotation in the complex embedding space. We in-

cluded both TransE and RotatE in our experiments.

Specifically, the RotatE model maps the entities and

relations to the vector space and defines each relation

as a rotation from the source entity to the target entity.

In adition to these models, we included two factor-

ization models (DistMult [44] and TuckER [43]) and

one hierarchical Transformer model (HittER [5]). These

knowledge graph embedding (KGE) models are differ-

ent in terms of how they combine entity and relation

embeddings to capture the existence or absence of edges

within the given graph. While DistMult uses a sim-

ple bilinear interaction between entities and relations

[44], TuckER offers the advantages of parameter shar-

ing across various relations and the decoupling of en-

tity and relation embedding dimensions [43]. Finally,

HittER employs a hierarchical Transformer model to

capture the interaction between entity and relation em-

beddings.

As an alternative to the embedding-based models,

we also consider AnyBURL [23,22], which is a rule

learner specifically designed for knowledge graph com-

pletion problem. AnyBURL has been shown to perform

on the same level as current state of the art KGE mod-

els [27]. Unlike embedding-based models, AnyBURL is

a symbolic model that offers interpretability by pro-

viding the rules contributing to its predictions. In our

experiments, we have incorporated AnyBURL as an ad-

ditional general method for the knowledge graph com-

pletion task.

We have chosen the knowledge graph embedding

models TransE, DistMult, TuckEr, HittER, RotateE for

the following reasons: TransE and DistMult are prob-

ably the models that are used most often in different

application settings. They can be understood as classi-

cal models. TuckEr, HittER and RotateE are younger

models that have achieved very good results (see an

overview in [27]). AnyBURL is a rule-based model that

is also know to perform very well. All of these mod-

els have in common that they are generic knowledge

graph completion models. None of these models has

been specifically been designed for activity label rec-

ommendation. Within this paper we want to find out

in how far these generic models can be used to solve

label recommendation tasks. To understand how well

these generic models perform, we compare them against

the current state of the art approach for label recom-

mendation described in [34]. This approach is a rule

learning approach that is similar to AnyBURL. How-

ever, the supported rule types have specifically been

designed for activity label recommendation. Addition-

ally, we include RLRecommender [42], which is also a

non-generic label recommendation approach that uses

internally embeddings in rather specific way. Both ap-

proaches work directly on the given process models. To

apply the generic models, we first need to translate the

given process model into a knowledge graph. We explain

this translation in Section 3.2.

2.3 Evaluation Criteria

The evaluation activity label recommendation should

consider different aspects, which should be reflected in

the criteria used to evaluate and compare recommen-

dation techniques. To illustrate these, reconsider the

example from Figure 1. The most important aspect is

related to the quality of the predictions. In Figure 1,

three possible candidates are shown to the user followed

by the Show more option. These candidates are the top-

3 candidates of a (in most cases) relatively long ranking

of candidates. The predictive quality of an approach is

usually quantified by the positions of the correct can-

didates. With respect to our use case position #1, #2

and #3 are displayed to the user, while a position lower

in the ranking requires an additional interaction with

the user interface to be displayed. Candidates that are

ranked very low will not be displayed to the user at all.

In [2] the authors proposed the Hits@k measure to

quantify the quality of predictions, where k is usually

set to 1 or 10, resulting in Hits@1 and Hits@10 mea-

sures. Hits@10, for example, captures the fraction of

hits in the top-10 recommendations, i.e., the fraction of

cases where the label that was actually used in a pro-

cess model is among the ten recommendations which

are according to the employed method the most likely.

The Hits@10 metric distinguishes only between can-

didates ranked within the top-10 and those that are

ranked lower. It does not differentiate between a cor-

rect candidate ranked at #2 and a correct candidate

ranked at #9. To account for these differences, the

MRR (mean rank reciprocal) has been proposed [39],

which has become the most important metric in knowl-

edge base completion and link prediction [27]. The re-

ciprocal rank of a recommendation list has the value

0 if the actually chosen activity is not in the provided

list and 1/p otherwise, where p denotes the position of

the hit in the list. The MRR is the mean of the recipro-

cal ranks of all generated recommendation lists. Within

our experiments we consider a recommendation list of

length 10 to compute the MRR, which is a close approx-

imation of the MRR that is based on the full ranking.

This approach is more realistic within our use case, as

the list of recommendations shown to the user has to be

limited. Within our example, one can imagine that first
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the top-3 candidates are shown and by pressing Show

more this list is enlarged to display the top-10.

However, the predictive quality of the recommended

activities is only one aspect. Another aspect is related

to the runtime of the algorithms that compute the rec-

ommendations. If we are concerned with a user inter-

face depicted in Figure 1, the time required to make a

prediction should be limited, to avoid waiting time for

the user. Within this paper, we will not focus on an

experimental analysis of runtimes. Instead, we refer to

runtimes reported and discussed in [27]. If we look at

the runtimes reported there, a trained model can make

a single predictions within several milliseconds no mat-

ter if these models belong to the family of embedding-

based models or rule-based models. However, there is

a significant difference between both model families:

Embedding-based models need to include the process

model under development in the embedding. This means

that each edit operation performed by the user requires

to retrain or to update [16] the embeddings. While an

update operation requires acceptable computational re-

sources compared to a full training run, it is unclear in

how far predictive quality remains stable.

Finally, a user might also be interested in the rea-

son or an explanation for a recommendation. Symbolic

approaches are usually better suited to deliver these ex-

planations in terms of the rules that fired [30]. While

there are also approaches to explain embedding-based

models, more computational effort is required and it can

be doubted that these explanations are as appropriate

as the direct symbolic explanations of a rule based ap-

proach [1]. We will not further discuss this issue within

this paper, where we focus mainly on the predictive

quality of the models that we analyze in our experi-

ments.

3 Activity Recommendation through

Knowledge Graph Completion

In this section, we formally define the activity recom-

mendation problem and discuss different approaches for

applying knowledge graph completion methods.

3.1 Problem Definition

Our paper focuses on recommending activity labels for

imperative process models, which are widely utilized

due to their formal execution semantics and under-

standability to both business and IT users. These mod-

els are labeled directed graphs which explicitly define

control-flow relations between model nodes (i.e. the ex-

ecution order of activities). Common notations for im-

perative process modeling include BPMNs, Petri nets,

and EPCs [10]. In our work, we abstract from spe-

cific notations and their unique node and edge types,

instead utilizing the generic concept of a Business Pro-

cess Graph (based on Dijkman et al. [8]), comprised of

labeled nodes and directed edges, formally defined as

follows:

Definition 1 (Business process graph) Let L be

a set of labels. A business process graph is a tuple

(N,E, λ), where N is a set of nodes, E ⊆ N × N is

a set of directed edges and λ : N → L is a function

that maps a node to a label.

Given a process model, the set of nodes N of a

business process graph corresponds to a subset of the

nodes of the model, e.g., the (non-silent) transitions

of a Petri net, whereas the set of edges E reflects the

directly-follows relation between these nodes, defined

by the model’s execution semantics. The mapping func-

tion λ follows straightforwardly from the process model

as well.

Given a process model under development, the ac-

tivity recommendation problem is concerned with rec-

ommending suitable activities to extend the model at a

user-defined position. The position of the activity that

has to be recommended is given by the activity that was

last added to the model. Therefore, the activity recom-

mendation problem breaks down to finding a suitable

label for the last added, and so far unlabeled, activity

node ñ.

Definition 2 (Activity recommendation problem)

Let B be a set of business process graphs and LB the set

of activity labels that are used in B. Let B = (N,E, λ)

be a given business process graph under development,

where each node n ∈ N except one node ñ is labeled,

i.e., λ(n) is given for all n ∈ N\{ñ}. The activity recom-

mendation problem is to find a suitable label λ(ñ) ∈ LB
for ñ.

In the next section, we explore various approaches to

construct a knowledge graph from given process mod-

els. This enables us to apply general knowledge graph

embedding models and rule-based methods to activity

recommendation problem.

3.2 Knowledge Graph Construction

A knowledge graph is a collection of triples (head entity,

relation, tail entity). While entities are represented as

nodes in the graph, the relation between two entities is

given as a labeled edge. The entities that will appear as

nodes in the knowledge graph comprise both the nodes
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and the activity labels from the given business process

graphs.

To utilize methods initially developed for knowledge

graph completion in the context of activity recommen-

dation, it is essential to represent each business process

graph B ∈ B from the given repository, as well as the

process model under development, in the form of such

triples. For instance, a partial knowledge graph derived

from a graph B = (N,E, λ) might comprise the nodes

N and the activity labels L as entities. We have devel-

oped three different approaches to translate a business

process graph into a set of triples. These approaches

differ in the sets of entities and relations employed in

the knowledge graph construction process.

The simplest approach uses the relations hasLabel

and followedBy. These two relations are the basis for

all approaches, as they capture the core information

of a business process graph as knowledge graph, i.e., a

triple (n, hasLabel, λ(n)) expresses that a node n has the

label λ(n), whereas an edge (m,n) becomes the triple

(m, followedBy, n).

The other two approaches are alternative extensions

which, in addition to the structural patterns captured

by followedBy, consider co-occurrence patterns by us-

ing the relations inSameProcess and inProcess, respec-

tively. This results in the following three translation

approaches:

1. For each node n ∈ N , a triple (n, hasLabel, λ(n)) is

added to the knowledge graph. Furthermore, we add

for each edge (m,n) ∈ E a triple (m, followedBy, n).

2a. This approach extends the first one by addition-

ally using the relation inSameProcess: In addition

to the first approach, we add for each pair of nodes
m ̸= n ∈ N the triples (m, inSameProcess, n) and

(n, inSameProcess,m) to link all nodes that belong

to the same process.

2b. This approach is another extension of the first one

and an alternative to 2a, where the additional re-

lation is given by inProcess: Let P be a set of pro-

cess identifiers and π be a function that maps each

given business process graph B to its unique iden-

tifier π(B) ∈ P. In addition to the triples of the

first approach, we add for each node n ∈ N a triple

(n, inProcess, π(B)).

To better understand the differences and common-

alities between these translation approaches, we added

Figure 2 where we have depicted the outcome of the

different translation approaches in different colors. The

black lines correspond to translation approach 1. By

adding the blue lines to the black lines we get the re-

sults of translation approach 2b. Using the purple lines

instead of the blue lines corresponds to translation ap-

n0 followedBy n1

n1 followedBy n2

n1 followedBy n3

n2 followedBy n4

n3 followedBy n4

n0 hasLabel "Start"

n1 hasLabel "Register"

n2 hasLabel "Enter Personal Details"

n3 hasLabel "Upload Documents"

n0 inSameProcess n1

n1 inSameProcess n0

n0 inSameProcess n2

n2 inSameProcess n0

n0 inSameProcess n3

n3 inSameProcess n0

n0 inSameProcess n4

n4 inSameProcess n1

n1 inSameProcess n2

n2 inSameProcess n1

n1 inSameProcess n3

n3 inSameProcess n1

n1 inSameProcess n4

n4 inSameProcess n1

n2 inSameProcess n3

n3 inSameProcess n2

n2 inSameProcess n4

n4 inSameProcess n2

n3 inSameProcess n4

n4 inSameProcess n3

n0 inProcess p1

n1 inProcess p1

n2 inProcess p1

n3 inProcess p1

n4 inProcess p1

Fig. 2 The upper part shows an example of a process model
where the completion task (n4, hasLabel, ?) has to be solved.
The lower part shows the outcome of different translation
approaches: black = 1, black+blue = 2a, black+purple = 2b

proach 2b. Figure 2 illustrates also that translation 2a

requires significantly more triples than the other ap-

proaches, as it needs to list all possible combination of

activities within a process model.

Different translation approaches are closely related,

yet they exhibit subtle differences. In particular, two

triples inProcess(m, p) and inProcess(n, p) in transla-

tion approach 2b imply inSameProcess(m,n) triple in

translation 2a and vice versa. However, there is a slight

difference. In 2a two activities m and n are not in the

same process, if the triple inSameProcess(m,n) does

not exist. In 2b they are not in the same process, be-
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cause we have inProcess(m, p) and inProcess(n, p′) with

p ̸= p′. Detecting that two activities m and n are in the

same process within approach 1 is a bit more compli-

cated, as it requires to identify a sequence of followedBy

triples (the direction does not matter) which establishes

a path that connects m and n. This path might be rela-

tively long. When working with translation approach 1

it is thus more complicated to make use of the implicit

information that two activities are or are not in the

same process model. As we will see later, the different

approaches have their merits depending on the choice

of the applied knowledge graph completion method.

For the construction of a knowledge graph from the

business process graphs of the given repository and the

process model under development, each of the busi-

ness process graphs is translated to a partial knowl-

edge graph by one of the above approaches. The par-

tial knowledge graphs of the different processes are con-

nected by the activity labels that they share, while an

activity node always belongs to exactly one process.

If, for example, two processes both contain an activity

Register, then the two respective activity nodes are both

linked to the node that represents the label Register in

the graph.

Given a knowledge graph under development (i.e.,

a knowledge graph in the validation or test set), we

are interested in predicting tail entity in the comple-

tion task (ñ, hasLabel, ?), where ñ denotes the unlabeled

node in the process model under development for which

we want to suggest a suitable label. Once we applied

one of the translation approaches, we can use a general

knowledge graph completion technique to solve such a

completion task.

3.3 Training Specifics and Knowledge Graph

Augmentation

We can directly apply any standard knowledge graph

completion approach on the outcome of our translation

approaches. However, we have to be aware that there

are some specifics in our setting that might require us to

modify the standard training procedure to achieve good

results. While our graph contains two or three relations,

depending on the translation approach, we are only

interested in completions task as (ñ, hasLabel, ?). This

means that we are always concerned with the hasLabel

relation and, moreover, we are only asking for possible

objects (tails) given an activity ñ as subject (head).

This query direction is sometimes called tail-direction.

Training a knowledge graph embedding model usu-

ally involves exploring a hyperparameter search space

to identify the optimal or, at the very least, a profi-

cient hyperparameter configuration. This process typ-

ically relies on a validation set. Adhering to this con-

ventional approach, we have generated a validation set

that resembles the test set by exclusively containing

hasLabel triples. Note that in most standard evaluation

datasets, the validation set contains triples for each of

the relations that appear in the training set.

The validation set is also used to stop the training

process after several epochs to avoid overfitting to the

training data. This is usually done by analysing the de-

velopment of the mean reciprocal rank (MRR) against

the validation set. If the MRR no longer improves (for

several epochs), the training phase ends and the model

that has been learned is used in the prediction phase.

As we know that we are only interested in the tail-

direction, we use the MRR in tail-direction as the stop-

ping criteria.

If we take a look at the example in Figure 2, it

becomes obvious that the hasLabel triples are only a

small fraction of all triples. This means that the embed-

dings of the entities are only to a limited degree deter-

mined by the activity labels. In [17] the authors argued

that a similar setting is quite often the case in down-

stream applications of knowledge base completion that

the authors refer to as the recommendation case. They

propose a specific training strategy that is based on

the idea to generate additional negative examples for

the target relation that has to be predicted. Unfortu-

nately, we were not able to re-implement the proposed

approach. Instead of that we simply increased the num-

ber of hasLabel triples by adding for each hasLabel triple

a copy of that triple. That results within the training

process into twice as much hasLabel updates based on

the positive and negative examples derived from the
training triple. In our experiments, we report on the

results for the original dataset and the dataset that we

created with this augmentation strategy. We refer to

the latter as the augmented dataset.

4 Experimental Study

In this section, we report on the design and results of

our experimental study. We investigate the performance

of different approaches for applying existing knowledge

graph completion methods that have not specifically

been designed for activity recommendation. Addition-

ally, we compare the approaches to the embedding-

based activity recommendation technique RLRecom-

mender [42] and to the rule-based method presented

in [34]. By analyzing the resulting predictions in de-

tail, we detect an important reason for negative results

and apply a post-hoc filtering technique to resolve it.
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4.1 Process model repository

The Business Process Management Academic Initia-

tive (BPMAI) [24] and SAP Signavio Academic Models

(SAP-SAM) [36] datasets are the most representative

collections of process models publicly available. SAP-

SAM and BPMAI, are collections of models that were

created over the course of roughly a decade on a plat-

form that researchers, teachers, and students could use

to create business (process) models. As both datasets

are created by humans, they provide the closest repre-

sentation of typical modeling projects. Both have simi-

lar characteristics, with SAP-SAM being an essentially

larger version of BPMAI2.

We chose to use the BPMAI dataset for our experi-

ments for two primary reasons. First, it is more widely

employed in previous research [31,34] for the label pre-

diction task. Within this paper we analyze for the first

time in how far standard KGE approaches can be used

for label prediction. Thus, we focus only on results for a

process model repository that has already been used for

evaluating the activity recommendation problem. Sec-

ond, size of BPMAI dataset is more manageable, allow-

ing us to conduct more in-depth experiments, including

hyperparameter tuning for knowledge graph embedding

(KGE) models, thus providing more insights than could

be achieved by using the SAP-SAM dataset.3

Contrary to previous work, we only use the last revi-

sions of the BPMN 2.0 models in the collection. In con-

trast to using all revisions, we thus represent the possi-

ble case that the recommendation methods sometimes

only have few or even none domain-specific reference

models for the suggestion of activities available. This

makes the datasets more realistic and increases the test

hardness. Moreover, out of all last revision BPMN 2.0

models, we use only those with 3 to 50 activities and

English labels. This choice results in a process model

repository consisting of 3, 688 process models. On aver-

age, the processes involve 14.3 activities while the stan-

dard deviation equals 8.3.

4.2 Evaluation setup

We employed a 80%-10%-10% data split to separate the

process model repository into train, validation and test

2 While SAP-SAM dataset contains more than one mil-
lion business (process) models, its subset BPMAI dataset,
includes roughly 30 thousands models.
3 Note that we performed the experiments dividedly on two

computers: Intel® Xeon® CPU E5-2640 v3@40x2.40 GHz
and Intel® Xeon® Silver 4114 CPU@40x2.20 GHz. The run-
times of the evaluated KGE models remain in a reasonable
range of maximum 48 hours for the hyperparameter search
given a particular translation approach.

splits. For the experiments, we create one recommenda-

tion task for every process model in the validation and

test split.

Evaluation procedure. We want to evaluate the ap-

proaches on realistic recommendation tasks. Therefore,

we use an evaluation procedure in which we simulate

the current status of a process model under develop-

ment from a given business process graph by specify-

ing the amount of information that is available for the

recommendation. The basic idea is to remove some of

the nodes and all edges connected to these nodes from

a given business process graph while treating the re-

maining graph as the intermediate result of a modeling

process. The employed evaluation procedure is based

on breadth-first search. In this procedure, we randomly

select one activity, which is neither a source nor sink

node, as the one to be predicted. During the evalua-

tion, we therefore filter out processes which do not have

a chain of at least three different activities when exe-

cuted. Then we hide the label of the chosen activity and

determine the shortest path s from a source node to the

activity. After that we hide all other activities that are

not on a path of length s starting from a source node

while the remaining activities and edges between them

serve as a context for the recommendation task.

Evaluated methods. Evaluated methods encompass

the rule learner AnyBURL [23], and five KGE models

(also referred to as embedding-based methods).

To apply knowledge graph embedding models, we

use the PyTorch-based library libKGE [3]. The selected

KGE models encompass TransE [2] and RotatE [38]

from the translational family, along with two factoriza-

tion models: DistMult [44], TuckER [43]. Additionally,

we incorporate HittER [5], which utilizes the Trans-

former model.

For the KGE model HittER, we opt for the context

independent Transformer model available in libKGE.

This variant comprises a three-layer entity Transformer,

excluding the six-layer context Transformer [5]. We re-

fer to this model in the following as HittER*. We also

tested other popular KGE models (ComplEx [41] and

ConvE [7]) but they yielded comparatively poor results

that we do not report here.

Additionally, the results of the rule-based activity

recommendation method [34] and the results of the

embedding-based technique RLRecommender [42] are

included in our evaluation. Both techniques have been

developed with a special focus on the activity recom-

mendation problem. One of our main goals within this

paper is to find out whether these specialized techniques

perform worse or better compared to the general knowl-

edge graph completion methods.
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T A Entities Rel. Train Valid. Test

1
-

70, 876 2
105, 150

358 362×2 153, 059

2a
-

70, 876 3
955, 492

358 362×2 1, 003, 401

2b
-

74, 548 3
153, 827

358 362×2 201, 736

Table 1 Statistics for the six knowledge graphs used to eval-
uate knowledge graph embedding models. With “T” and “A”
as the employed translation and augmentation approaches,
“Entitities” as the number of entities in the knowledge graph,
“Rel.” as the number of relation types, and “Train”, “Valid.”,
“Test” as the number of triples per split.

Datasets. We take each of the three translation ap-

proaches defined in Section 3.2 along with their aug-

mented counterparts (see Section 3.3) to construct six

different knowledge graphs for our experiments. Each

of these knowledge graphs captures the triples obtained

from process models in the training split (with or with-

out augmentation), complemented with the triples de-

scribing the context of the process models under devel-

opment from the validation and test splits.

Table 1 shows the statistics of these graphs, showing

the number of entities, relation types, and number of

triples in the training, validation, and test sets.

While the translation approaches 1 and 2a yield

70, 876 entities, which is the sum of the total number

of activity nodes (48, 677) and activity labels (22, 199),

approach 2b also considers processes as entities, which

adds the total number of processes in the evaluation

(3, 672) to the sum.

Relations followedBy and hasLabel are the basis for
all approaches. In the training set, there exist 57, 241

instances of the followedBy relation across all datasets.

Additionally, there are 47, 909 instances of the hasLa-

bel relation in the datasets that are not augmented.

The count of the this relation is doubled in augmented

datasets. Moreover, translation approaches 2a, 2b con-

sider co-occurrence patterns. This is done by either in-

corporating 850, 342 instances of the inSameProcess re-

lation in the former translation approach or 48, 677 in-

stances of the inProcess relation in the latter one.

The large difference in the number of triples between

the training set and the validation and test sets has

two reasons. First, we are only interested in one special

prediction task, which is the tail prediction of triples

(ñ, hasLabel, λ(ñ)), where ñ denotes the node for which

we want to recommend an activity label λ(ñ). There-

fore, the validation and test sets comprise for each pro-

cess model in the validation or test split only one triple

(ñ, hasLabel, λ(ñ)), whereas the training set contains all

triples of the process models in the training split.

Second, we want to consider the context of the pro-

cess model under development, i.e., the activities and

relations so far included in the process model. Since, for

embedding-based approaches, the entity that appears

in the completion task needs to be part of the learned

embeddings, this means that the contexts of the pro-

cess models in the validation and test splits must be

included in the training set. As such, the training set

additionally contains all context triples of the validation

and test process models. This is not necessary for rule-

based approaches such as AnyBURL, since they natu-

rally allow for the consideration of the context, which

thus does not have to be included in the training set.

It is noteworthy that the augmentation approach

outlined in Section 3.3 has no impact on the outcomes

of AnyBURL. While for an embedding-based method

two identical triples result into two updates within the

training phase, two identical triples collapse into the

same logical formula from the perspective of AnyBURL.

Consequently, our experimentation encompasses a to-

tal of 33 distinct combinations, incorporating various

translation approaches, both with and without augmen-

tation, and an array of knowledge graph completion

methods.

Hyperparameters. For the KGEmodels, we generally

employed the large hyperparameter space presented by

Ruffinelli et al. [28]. However, we additionally consid-

ered the embedding sizes 32 and 64 for all five KGE

models as well as the embedding size of 16 for TuckER,

HittER*, and RotatE. The rationale behind expanding

the hyperparameter search space is the limited diver-

sity of relation types in our knowledge graph which

makes larger KGE models prone to overfitting. Fol-

lowing the hyperparameter optimization algorithm pre-

sented in [28], we conducted a quasi-random hyperpa-

rameter search, followed by a Bayesian optimization

phase.

While the rule-based activity recommendation tech-

nique proposed in [34] operates without hyperparam-

eters, AnyBURL is configured with two parameters.

Specifically, the length of cyclic rules is set to 5, and the

length of acyclic rules is set to 2 (as AnyBURL does not

support a higher parameter value)4. Aside from these

changes we used AnyBURL in its default setting. Also

note that rule-based approaches usually do not fine-

tune their hyperparameters against the validation set.

Thus, AnyBURL and the specialized rule-based activ-

ity recommendation method from [34] do not make any

use of the validation set.

4 These parameter settings are specified by
MAX LENGTH CYCLIC = 5 and MAX LENGTH ACYCLIC = 2.
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4.3 Results

The results of our experiments are shown in Table 2.

Before we look at the results of the general knowledge

graph completion methods, we first conside the results

of the specialized activity recommendations methods

(RLRecommender and the state-of-the-art rule-based

approach). RLRecommender, which has been published

in 2018, has an MRR of 23.8% and a Hits@10 score of

35.1%. The latter means that in roughly one third of all

recommendations the correct one is among the top-10

list of recommendation. These results have clearly been

topped in the rule-based approach proposed in 2021

(see [34]) with an MRR of 41.4% and a Hits@10 score

of 47.5%, which means that in nearly half of all recom-

mendation tasks a correct recommendation is among

the top-10 list. This is a clear improvement and di-

vides the space of possible results into three areas: i)

outcomes inferior to RLRecommender, ii) outcomes at

least comparable to RLRecommender but falling short

of the state-of-the-art rule-based approach (highlighted

in bold in Table 2), and iii) outcomes as accurate as

or potentially outperforming the state-of-the-art rule-

based approach (highlighted in bold and underlined in

Table 2).

When looking at the results obtained by general

knowledge graph completion methods, we observe that

the Hits@10 numbers are at least 10 percentage points

worse than those achieved by the rule-based activity

recommendation approach and also the MRR scores

are worse. This means that no combination of tested

methods and translation approaches works well for the

activity recommendation problem. While some of the

KGE models demonstrate Hits@10 scores that are bet-

ter than those achieved by RLRecommender, it is ev-

ident that both specialized methods, particularly the

rule-based approach, significantly outperform general

knowledge graph completion methods.

In terms of Hits@10, TuckER stands out as the most

proficient model. AnyBURL and DistMult achieve sim-

ilar yet slightly worse results. These top three mod-

els yield results at least on par with RLRecommender.

Notably, AnyBURL and DistMult exhibit robust stabil-

ity, consistently delivering comparable outcomes across

various translation approaches. In contrast, TuckER’s

performance experiences a decline specifically when em-

ploying translation approach 2a. Surprisingly, provid-

ing more information through inSameProcess or in-

Process relations does not always translate into higher

Hits@10 figures for TuckER. This trend extends beyond

TuckER, encompassing all knowledge graph completion

methods, with the exception of DistMult. In the case

of DistMult, the incorporation of supplementary infor-

mation through inSameProcess or inProcess relations

consistently leads to enhanced performance, observed

through improvements in both Hits@10 and MRR met-

rics.

While some of the general knowledge graph com-

pletion methods exhibit comparable Hits@10 results to

the RLRecommender, they perform surprisingly bad

with respect to the MRR metric. DistMult emerges as

the most successful model, followed by AnyBURL and

TuckER. However, none of these three models manage

to surpass RLRecommender, and evidently the perfor-

mance gap between these models and the Rule-based

approach is quite significant.

Examination of the Predictions. To spot the reason

for these unexpected results, we looked at some concrete

cases. Figure 3 shows a process model in the validation

set, where the activity Search for Units Available has

been randomly selected as the one to be predicted. The

T A Method Hits@10 MRR

1

-

TransE 29.2 % 7.3 %
DistMult 35.1 % 14.5 %
TuckER 37.8 % 14.2 %
HittER* 27.9 % 10.1 %
RotatE 30.4 % 13.2 %

AnyBURL 36.1 % 14.8 %

×2

TransE 29.3 % 7.2 %
DistMult 36.5 % 15.0 %
TuckER 33.4 % 14.8 %
HittER* 31.2 % 12.1 %
RotatE 29.6 % 12.4 %

2a

-

TransE 11.0 % 2.6 %
DistMult 35.4 % 21.1 %
TuckER 34.2 % 11.4 %
HittER* 14.3 % 4.1 %
RotatE 25.1 % 8.1 %

AnyBURL 37.2 % 15.2 %

×2

TransE 22.1 % 5.5 %
DistMult 33.4 % 21.7 %
TuckER 30.1 % 10.2 %
HittER* 22.6 % 6.2 %
RotatE 23.2 % 7.0 %

2b

-

TransE 30.9 % 6.2 %
DistMult 35.4 % 15.2 %
TuckER 38.4 % 14.3 %
HittER* 15.7 % 5.9 %
RotatE 20.4 % 6.4 %

AnyBURL 35.8 % 14.5 %

×2

TransE 31.5 % 6.4 %
DistMult 35.1 % 14.6 %
TuckER 37.3 % 15.0 %
HittER* 25.4 % 10.2 %
RotatE 23.5 % 10.0 %

RLRecommender [42] 35.1 % 23.8 %

Rule-based Approach [34] 47.5 % 41.4 %

Table 2 Experimental results
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#1 Register
#2 Upload Documents
#3 Enter Personal Details
#4 Enter Details of Unit for Rent
#5 Upload Pictures
#6 n4
#7 Select Units for Inspectation
#8 Search For Units Available
#9 Start
#10 n3

Fig. 3 An example of a process model where the completion
task (n4, hasLabel, ?) has to be solved, given that Search
For Units Available is the correct answer, and the top-10
recommendations of TransE in combination with translation
approach 1.

use of translation approach 1 combined with TransE

yields the top 10 recommendations shown on the right.

The correct activity Search for Units Available is at

position eight of the recommendation list, which means

that the MRR would be 1/8 = 0.125, if this was the

only completion task of the whole evaluation. Surpris-

ingly, some of the items in the recommendation list are

not labels but activity nodes of the given process model,

i.e., n3 and n4, as well as activity labels like Register

or Enter Personal Details that have already been used

in the process model. Clearly, the recommendation of

activity nodes is not useful since we are interested in

the prediction of activity labels. Also, it is likely that
activity labels that have already been inserted into the

process model are not added a second time. Therefore,

we decided to do a post-processing in which we filter out

other recommendations than labels, i.e., activity nodes

and processes, as well as activity labels that are already

present in the given process model. In the example of

Figure 3, this means that the correct prediction moves

from position eight to position four of the recommen-

dation list. This corresponds to an MRR improvement

from 0.125 to 0.25.

Results with Post-processing.We applied this post-

processing to all our experimental results. This resulted

in significant improvements shown in Table 3. The per-

centages in brackets indicate the improvement of the

associated Hits@10 or MRR numbers in comparison to

the results without post-processing. It seems general

knowledge graph completion methods are not capable

to distinguish between different types of entities. This

has already been observed in [18], where the authors ar-

gue that especially knowledge graph embedding meth-

ods often violate constraints on the domain and range

of relations. In our case this corresponds to a missing

distinction between activity nodes and activity labels.

Moreover, none of the approaches, including the rule

learner AnyBURL, was able to learn that a label that

has already been used in the process under development

will not be used for another activity node in the same

process.

If we now compare the results of the general knowl-

edge graph completion methods with post-processing to

the results of the specialized methods (i.e., RLRecom-

mender and the rule-based activity recommendation),

we observe that the gap between general and special-

ized methods has become less significant after post-

processing. Except for HittER*, every general knowl-

edge graph completion technique demonstrates results

that are, at the very least, comparable to those achieved

by RLRecommender.

As described in Section 2, RLRecommender [42] is

based on a rather specific approach to use embeddings

in which only one related activity in the process model

is used for the recommendation of an activity. In con-

trast, knowledge graph embedding (KGE) models do

not face such constraints and, as a result, have the

potential to surpass RLRecommender in performance.

This is particularly evident in the case of translation

approach 2b, where models such as TuckER, DistMult

and TransE exhibit superior performance in Hits@10

and MRR.

The post-processing step notably enhances the per-

formance of the TransE model, leading to its superior

results in the Hits@10 metric. However, the TransE

results strongly depend on the translation approach.
Similar observation applies to TuckER, which excels in

terms of MRR. On the contrary, both DistMult and

AnyBURL showcase greater stability, consistently de-

livering comparable results across various translation

approaches.

5 Discussion and practical implications

In this section we will analyse performance of generic

knowledge graph completion methods in more detail.

Our goal is to explore why these methods do not reach

state-of-the-art performance and discuss the practical

implications of our findings.

Based on the results provided in Table 3, transla-

tion approach 2b proves to be the most effective for the

KGE models TransE, TuckER and DistMult. This out-

come underscores the value of the additional explicit

information presented in triples featuring the inProcess

relation. In contrast, approach 2a works comparably
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Translation approach Augmentation Method Hits@10 MRR

1

-

TransE 41.7 % (+ 7.7 %) 24.9 % (+ 21.1 %)
DistMult 37.8 % (+ 2.7 %) 29.1 % (+ 14.6 %)
TuckER 39.2 % (+ 1.4 %) 28.6 % (+ 14.4 %)
HittER* 31.2 % (+ 3.3 %) 20.5 % (+ 10.4 %)
RotatE 36.2 % (+ 5.8 %) 24.1 % (+ 10.9 %)

AnyBURL 36.9 % (+ 0.1 %) 24.4% (+ 9.6 %)

×2

TransE 34.5 % (+ 5.2 %) 20.8 % (+ 13.6 %)
DistMult 39.5 % (+ 3.0 %) 30.1 % (+ 15.1 %)
TuckER 35.1 % (+ 1.7 %) 23.8 % (+ 9.0 %)
HittER* 33.1 % (+ 1.9 %) 21.1 % (+ 9.0 %)
RotatE 31.2 % (+ 1.6 %) 21.1 % (+ 8.7 %)

2a

-

TransE 37.3 % (+ 26.3 %) 18.2 % (+ 15.6 %)
DistMult 35.9 % (+ 0.5 %) 28.6 % (+ 7.5 %)
TuckER 36.3 % (+ 2.1 %) 25.8 % (+ 14.4 %)
HittER* 17.6 % (+ 3.3 %) 7.8 % (+ 3.7 %)
RotatE 34.8 % (+ 9.7 %) 17.3 % (+ 9.2 %)

AnyBURL 38.6 % (+ 1.4 %) 24.2 % (+ 9.0 %)

×2

TransE 31.5 % (+ 9.4 %) 15.1 % (+ 9.6 %)
DistMult 35.6 % (+ 2.2 %) 27.3 % (+ 5.6 %)
TuckER 32.8 % (+ 2.7 %) 21.9 % (+ 11.7 %)
HittER* 25.7 % (+ 3.1 %) 10.3 % (+ 4.1 %)
RotatE 30.9 % (+ 7.7 %) 15.9 % (+ 8.9 %)

2b

-

TransE 42.5 % (+ 9.1 %) 29.3 % (+ 21.2 %)
DistMult 36.7 % (+ 1.3 %) 29.8 % (+ 14.6 %)
TuckER 40.9 % (+ 2.5 %) 32.1 % (+ 17.8 %)
HittER* 18.0 % (+ 2.3 %) 10.4 % (+ 4.5 %)
RotatE 28.2 % (+ 7.8 %) 13.5 % (+ 7.1 %)

AnyBURL 36.4 % (+ 0.5 %) 24.4 % (+ 9.8 %)

×2

TransE 41.4 % (+ 9.9 %) 27.8 % (+ 21.4 %)
DistMult 38.1 % (+ 3.0 %) 28.5 % (+ 13.9 %)
TuckER 41.4 % (+ 4.1 %) 28.9 % (+ 13.9 %)
HittER* 27.1 % (+ 1.7 %) 16.0 % (+ 5.8 %)
RotatE 26.5 % (+ 3.0 %) 16.1 % (+ 6.1 %)

RLRecommender 35.1 % 23.8 %

Rule-based Approach 47.5 % 41.4 %

Table 3 Experimental results with post-processing

poor in combination with the embedding-based meth-

ods. One reason for this could be that in approach 2a

the nodes are strongly interconnected via the relation

inSameProcess. Thus, the interconnection of the nodes

via inSameProcess is more prominent than via the re-

lation followedBy. This can be disadvantageous since

the co-occurrence patterns depicted by inSameProcess

are often less relevant than the structural patterns cap-

tured by followedBy, which avoid recommending activi-

ties that have high co-occurrence statistics, but are not

relevant at the current model position.

Unlike the embedding-based methods, AnyBURL

achieves the best results when using the translation ap-

proach 2a. While this approach only needs one triple

(m, inSameProcess, n) to express that two nodes m and

n are in a process p, approach 2b needs the two triples

(m, inProcess, p) and (n, inProcess, p). This has a direct

impact on the regularities that can be captured by Any-

BURL. A rule as

hasLabel(X, register)← inSameProcess(X,Y ),

hasLabel(Y, upload documents)

is within the supported language bias while the equiv-

alent rule will have a body length of three based on

translation approach 2b and is thus out of scope.

Overall, the rule-based method [34], which has been

specifically designed for activity recommendation, sur-

passes the performance of the best general knowledge

graph completion methods, exhibiting a minimum im-

provement of 5% in Hits@10 and 9% in MRR. These

significant differences illustrate that a general knowl-

edge graph completion method cannot compete with

an approach which has specifically been designed for

activity recommendation in business process modeling.

This remains the case despite our thorough exploration

of various translation approaches, augmentation of the
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knowledge graph, and the development of a problem

specific filtering as a post-processing step to increase

the quality of the results.

The specific regularities crucial for effective activity

recommendations appear to exert only a limited influ-

ence on the resulting embedding space. These specifics

are reflected in the types of rules supported by the

rule-based recommendation method [34] that are also

more expressive compared to the general rule types sup-

ported by AnyBURL. We can conclude that general

methods for knowledge graph completion are not flex-

ible enough to adapt to the given problem resulting in

a relatively low prediction quality.

The limited predictive accuracy of knowledge graph

embedding (KGE) models stems from their focus solely

on semantic evidence, disregarding local evidence such

as subgraphs around query triples. These models learn

triples independently as they learn an embedding for

each entity and relation. Therefore, they may overlook

sequential information inherent in triples [46]. In our

knowledge graph, followedBy relation is limited to ac-

tivity nodes. Consequently, it is impossible for KGE

models to capture similar sequential relations between

activity label nodes because information about such se-

quential relationships is only preserved along the paths

between activity label nodes. Therefore, crucial infor-

mation about the sequential order of activity labels

may be overlooked by KGE models. To address this,

path-based knowledge graph completion methods like

NBFNet [48], A∗Net [47], and RED-GNN [46] can

be applied to activity recommendation problem in fu-

ture research. These models predict relations between

entities by employing message-passing neural networks

[14] over all paths between them. Like rule-based meth-

ods such as AnyBURL, they provide interpretability by

identifying the most influential paths for predicting the

label of newly added activity node in the process model.

KGE models also face the challenge of overfitting,

evident in differences between loss function values for

training, validation, and test triples. To understand this

limitation, we compared our study’s datasets with com-

mon benchmarks for knowledge graph completion. Our

datasets have notably fewer relation types and are sparser.

For example, while FB15K-237 [40] and Yago3-10 [25]

contain 237 and 37 relation types, ours only have 2 or

3. Similarly, the ratio of triples to entities is much lower

in our datasets compared to benchmark datasets.

Due to the sparse nature of our datasets and their

limited relation types, general Knowledge Graph Em-

bedding (KGE) models exhibit excessive flexibility in

embedding entities in the vector space. Consequently,

entity embeddings are susceptible to initialization and

randomness, and more importantly are prone to overfit-

ting. Notably, overfitting issue is pronounced for more

flexible models like HittER* and RotatE. In contrast,

a simpler model like TransE tends to yield superior re-

sults. Additionally, we found that KGE models with

smaller embedding sizes often perform better.

Leveraging larger training datasets, such as the SAP-

SAM dataset [36], can potentially reduce overfitting

risks when training general KGE models for activity

recommendation tasks. Furthermore, investigating al-

ternative translation methods, including inverse rela-

tionships like precededBy and behavioural relationships

such as indirectFollowedBy, holds significance for fu-

ture research. These additional relations could augment

knowledge graph density and its informativeness, con-

sequently diminishing the likelihood of overfitting.

We showed that generic knowledge graph comple-

tion methods do not match the performance of special-

ized rule-based approaches as outlined in [34]. However,

our findings have broader implications. They suggest

greater potential for adapting knowledge graph com-

pletion methods in the business process domain, par-

ticularly in process modeling. Moreover, our results in-

dicate that knowledge graph embedding (KGE) mod-

els may underperform on sparse knowledge graphs with

few relation types. This underscores the need for fur-

ther research on KGE models tailored to different char-

acteristics of knowledge graphs beyond those found in

benchmark datasets.

6 Conclusion and Future Work

In this paper, we presented different approaches to use

knowledge graph completion methods for activity rec-

ommendation in business process modeling. A problem-

specific filtering as post-processing step improved the

quality of the predictions. However, the rule-based ac-

tivity recommendation method [34] still worked better

than the application of various general knowledge graph

completion methods, which revealed their lack of flex-

ibility to adapt to the given problem. In summary, we

conclude that the use of generic knowledge graph com-

pletion methods is not a good choice for solving the ac-

tivity recommendation problem. Our empirical results

indicate the use of the problem-specific rule-based ap-

proach proposed in [34] is currently the best solution

for any application, e.g., activity recommendation in a

process model editor (see Figure 1), that requires to

present ranked recommendations to a user.

A key limitation of the general knowledge graph

completion methods employed in this study is their

lack of explicit encoding for local sub-graphs between

entity pairs. Consequently, these models may struggle
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to capture intricate regularities crucial for determin-

ing the label of the unlabeled activity node. A poten-

tial remedy to tackle this challenge involves the use of

the Neural Bellman-Ford Networks in which represen-

tation of a pair of entities is defined as the generalized

sum of all the path representations connecting them

[48]. Similar path-based knowledge graph completion

approaches like A∗Net [47], and RED-GNN [46] can

be applied to the activity recommendation problem, of-

fering several advantages. Firstly, these approaches can

learn not only from semantic evidence but also from

local evidence provided by relational path between en-

tities [47]. Secondly, they identify influential paths be-

tween entities for predicting labels, enhancing explain-

ability. Thirdly, they feature a lower number of model

parameters compared to KGE models, potentially re-

ducing risk of overfitting and improving predictive ac-

curacy [48]. Lastly, path-based methods can general-

ize to unseen entities as path semantics are determined

solely by relations rather than entities [47]. To im-

plement path-based approaches, the knowledge graph

representation of process model repository needs aug-

mentation with inverse relations (e.g., precededBy) and

identity relations (i.e., self-loops for all entities). Besides

path-based approaches, alternative techniques working

on (RDF) knowledge graphs, e.g., Graph Convolutional

Networks [29] or RDF2Vec [26], could be tested in the

future.

Another direction for future research is related to

the current state of the process model under develop-

ment that should be taken into account as a context for

the recommendation of an activity. When putting the

context into the training set, as done for the embedding-

based methods, the KGE models have to be retrained

after every activity that has been added to the model

under development. This is very impractical for the ap-

plication of such methods for real-time recommenda-

tions, as the training takes too much time. In future

work, we would like to explore ways of avoiding the need

for complete retraining when the process model under

development has been extended, as it has, for example,

been done by Song et al. [37] for evolving knowledge

graphs and translation-based embeddings.

Last but not least, it is important to acknowledge

that our current exploration has focused exclusively on

co-occurrence and structural patterns, a choice nega-

tively influenced by the inherent sparseness of knowl-

edge graphs. In future research, we intend to incorpo-

rate textual patterns, potentially leveraging approaches

such as KG-Bert [45].

Reproducibility: Our source code and the configu-

ration files for different knowledge graph completion

methods are publicly accessible at https://github.

com/keyvan-amiri/KGE-ActivityRecommendation.
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Bouchard, G.: Complex embeddings for simple link pre-
diction. In: International conference on machine learning.
pp. 2071–2080. PMLR (2016)

42. Wang, H., Wen, L., Lin, L., Wang, J.: RLRecom-
mender: A representation-learning-based recommenda-
tion method for business process modeling. In: ICSOC.
pp. 478–486. Springer (2018)

43. Wang, Y., Broscheit, S., Gemulla, R.: A Relational
Tucker Decomposition for Multi-Relational Link Predic-
tion (Feb 2019), arXiv:1902.00898 [cs, stat]

44. Yang, B., tau Yih, W., He, X., Gao, J., Deng, L.: Em-
bedding entities and relations for learning and inference
in knowledge bases. In: ICLR (Poster) (2015)

45. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowl-
edge graph completion. CoRR abs/1909.03193 (2019)

46. Zhang, Y., Yao, Q.: Knowledge graph reasoning
with relational digraph. In: Proceedings of the
ACM Web Conference 2022. pp. 912–924. WWW
’22, Association for Computing Machinery (2022).
https://doi.org/10.1145/3485447.3512008

47. Zhu, Z., Yuan, X., Galkin, M., Xhonneux, L.P., Zhang,
M., Gazeau, M., Tang, J.: A*net: A scalable path-based
reasoning approach for knowledge graphs. Advances in
Neural Information Processing Systems 36, 59323–59336
(2023)

48. Zhu, Z., Zhang, Z., Xhonneux, L.P., Tang, J.: Neu-
ral Bellman-Ford Networks: A General Graph Neural
Network Framework for Link Prediction. In: Advances
in Neural Information Processing Systems. vol. 34, pp.
29476–29490. Curran Associates, Inc. (2021)

http://bpmai.org/
http://bpmai.org/

	Introduction
	Related Work
	Activity Recommendation through Knowledge Graph Completion
	Experimental Study
	Discussion and practical implications
	Conclusion and Future Work

