
Discovering Multi-Agent Systems for

Resource-centric Business Process Simulation

Lukas Kirchdorfer1,2*, Robert Blümel1,3, Timotheus Kampik1,4,
Han van der Aa3, Heiner Stuckenschmidt2

1*SAP Signavio, Walldorf, Germany.
2Data and Web Science Group, University of Mannheim, Germany.

3Faculty of Computer Science, University of Vienna, Austria.
4Department of Computing Science, Ume̊a University, Sweden.

*Corresponding author(s). E-mail(s): lukas.kirchdorfer@sap.com;
Contributing authors: robert.bluemel@sap.com;

timotheus.kampik@sap.com; han.van.der.aa@univie.ac.at;
heiner.stuckenschmidt@uni-mannheim.de;

Abstract

Business process simulation (BPS) is a powerful tool for estimating process per-
formance across different scenarios, offering critical support for organizational
process redesign and optimization. Traditional BPS approaches predominantly
rely on a control-flow-first perspective by enriching a process model with simu-
lation parameters. While these approaches seem suitable for capturing centrally
orchestrated processes, such as those managed by workflow systems, they fall
short of accurately reflecting real-world processes characterized by decentralized
decision-making and distinct resource behaviors. To overcome this limitation,
we propose AgentSimulator, a resource-first BPS approach that discovers a
multi-agent system from an event log. By modeling the distinct behaviors and
interaction patterns of individual resources, AgentSimulator effectively simulates
the underlying process. Our approach automatically identifies whether resource
behavior is rather orchestrated or autonomous, adapting to the specific decision-
making structure of the process. Experimental results reveal that AgentSimulator
achieves state-of-the-art simulation accuracy while ensuring high adaptability to
various process types.

Keywords: Business process simulation, Multi-agent system, Process mining,
Artificial intelligence

1

1 Introduction

Business process simulation (BPS) is a key tool for improving and redesigning orga-
nizational processes. By establishing a digital process twin (Dumas, 2021), simulation
can be used to estimate the impact of changes to a process with respect to key perfor-
mance indicators, such as cycle time, resource utilization, or waiting time for a given
activity—a practice known as counterfactual reasoning or “what-if” analysis (Dumas
et al., 2013). By providing such estimates of the impact of process changes prior to their
actual implementation, BPS has the potential to drastically improve the efficiency and
reduce the risks of redesign efforts for decision-makers. Nevertheless, the effectiveness
of BPS relies heavily on the availability of a simulation model that precisely mirrors
the characteristics of a process, since only accurate models can provide trustworthy
insights into the impact of a change. Since the manual construction of simulation mod-
els is time-consuming and error-prone due to several pitfalls (van der Aalst, 2015),
various automated approaches have been developed that discover simulation models
directly from historical execution data contained in event logs (Rozinat et al., 2009;
Camargo et al., 2020; Meneghello et al., 2023; Camargo et al., 2022; Khodyrev and
Popova, 2014). These data-driven simulation approaches typically initially discover a
process model representing the control flow of the entire process and then enhance it
with simulation parameters, such as arrival rates and resource availabilities.

This paper emphasizes that control-flow-first simulation models may fall short of
accurately reflecting the complexity of certain real-world processes, leading to poten-
tial inaccuracies in simulation outcomes. This issue is particularly pronounced in
processes where resource behavior varies significantly, or decision-making is decen-
tralized. While some processes operate under centralized coordination, such as those
managed by workflow systems (Dumas et al., 2013), many others allow participants
greater autonomy in how they execute their tasks. In such scenarios, each actor treats
their part of the process execution from their own perspective and, to some extent,
in their own manner, i.e., they receive a case from a co-worker, conduct one or more
tasks they deem necessary, and pass on the case to the next individual or system.
These distinct behaviors, preferences, and decision-making patterns can significantly
shape the process execution, creating dynamics that are challenging for traditional
control-flow-first approaches to model accurately.

Therefore, we use this paper to highlight the potential of resource-centric simu-
lation and propose AgentSimulator, a resource-first approach for data-driven process
simulation. To achieve this resource-centricity, we employ the concept of agent-based
modeling and simulation (North and Macal, 2007). By discovering a multi-agent sys-
tem (MAS) from an event log, where each agent corresponds to a real-world actor or
system, AgentSimulator can simulate the execution of a process through interactions
of distinct agents. This allows our approach to achieve various benefits in comparison
to existing approaches for data-driven process simulation:

• our approach provides full flexibility over the behavior of individual resources
involved in a process, allowing to capture differences in terms of control-flow
behavior, interaction preferences, capabilities, and availabilities;

2

• our approach is modular in how resource behavior is learned, allowing the inte-
gration of various methods, three of which are presented in this work: Frequentist
probabilities, LSTM networks, and Petri nets;

• agent-based systems are, contrary to black-box deep learning models, inter-
pretable and adaptable, which is crucial to performing what-if analyses;

• our approach provides a runtime-efficient alternative compared to deep learning-
based approaches;

• and finally, our approach yields state-of-the-art simulation accuracy, achieving
competitive performance when compared to 4 existing approaches across various
process dimensions on a number of event logs.

This paper presents an extended and revised version of our earlier work (Kirchdorfer
et al., 2024) in which we introduced the first version of our agent-based approach for
process simulation. The current paper extends our earlier work in two main directions.
First, we broaden the scope of the approach by incorporating two additional meth-
ods for learning agent behavior—LSTM networks and Petri nets—beyond the simple
frequentist approach covered in the original version. Second, we conduct extensive
evaluation experiments to assess these extensions, examining the applicability of the
different methods for learning agent behavior and identifying scenarios where modeling
individual agent behavior is particularly critical to gaining realistic simulations.

The remainder starts with a motivating scenario in Section 2, followed by the pre-
sentation of the AgentSimulator approach itself in Section 3. Then, Section 4 reports on
several evaluation experiments, before Section 5 discusses related work and Section 6
concludes the paper.

2 Motivation

This section illustrates the benefits of shifting simulation models from a control-flow-
first to a resource-first perspective.

For this illustration, we consider a simplified credit application process, for which
a schematic visualization is shown in Figure 1. As depicted, the process starts when
an application is received by the system, after which the applicant’s credit history
and income sources need to be checked by a clerk (in any order). Once both checks
have been completed, the application is passed on to a credit officer, who assesses the
application and notifies the applicant of the outcome. As shown, there are three clerks
(Steve, Oliver, and Angela) and two credit officers (Maria and Patrick) involved.

Even for such a simple scenario, we may observe various ways in which the
involvement of specific actors in a case can influence its execution:

• Process performance. The execution time of an activity may depend on the
employee who performs it. For example, Steve (a less experienced, Junior Clerk)
might need 45 minutes to check the credit history and the income sources, respec-
tively. For the same activities, the Senior Clerks Oliver and Angela only need 15 to
20 minutes. Considering these performance differences between resources is crit-
ical for accurate simulation, as has been recently demonstrated (López-Pintado
and Dumas, 2022).

3

Fig. 1 Sketch of the credit application process.

• Resource availability. Employees involved in a process may have different avail-
abilities, owing to factors such as part-time work and other duties. Such
considerations are particularly relevant in decentralized processes, where cases
may be handed over directly from employee to employee, rather than by a central
workflow system that can assign a case to the next available person. For example,
if Angela hands over an application specifically to Patrick, rather than to the next
available credit officer, this can lead to considerable delays in the case’s execution
if Patrick is not available for the next working days. Such irregularities should
be reflected in a simulation model, calling for individual resource calendars, as
again was recently demonstrated to positively impact accuracy (López-Pintado
and Dumas, 2022).

• Control-flow behavior. Control-flow-first simulation models impose the assump-
tion that the sequence of activities performed for a given case is independent of
the actors involved in it. However, there can be various reasons why this is not the
case. In our scenario, for example, we may observe that Angela always checks the
credit history first, before checking the income sources, whereas other actors may
alternate these orders. Furthermore, there may even be actor-specific rules that
influence the possible sequences of a case. For example, it may be necessary that
any application handled by a Junior Clerk (e.g., Steve) needs to go through an
additional verification step performed by a Senior Clerk. Capturing such actor-
dependent behavior is difficult and often generally omitted from control-flow-first
simulation models, despite it having a considerable impact on process execution.

• Interaction patterns. Finally, owing to a lack of central orchestration, there may
be specific interaction patterns among actors. For example, we may observe that
Steve always hands over a case to Maria, since they both work in Mannheim,
while he has no contact with Patrick in Hamburg. Such specific patterns influ-
ence the workload of individual resources, e.g., leading to an imbalance between
Maria and Patrick, which is missed by general simulation models. Furthermore,

4

as described above, specific interaction patterns may lead to additional delays
when the availability of individual resources differs.

All of the above factors influence the execution of cases in a process. Therefore, process
simulation models should reflect these as faithfully as possible in order to appropriately
mimic the dynamics of a real-world process. The former two aspects have already
been recognized and captured by control-flow-first models (López-Pintado and Dumas,
2022). However, the latter two aspects have not been considered so far in previous
BPS models. We argue that agent-based simulation models are particularly suitable
to explicitly model distinct resource behaviors as well as their respective interaction
patterns. Therefore, our proposed AgentSimulator approach, which is described next,
models a process as a system of distinct agents.

Schedule Capabilities

Behavior

Inter-arrival distribution

Set of extraneous delays

Check for
new cases

Determine
next activity

Determine
responsible

agent

Start activity
execution

Handle all running cases

Phase 2: Simulation

AgentSimulator

Phase 1: Discovery

Agent definition

General parametersInput
event log L

Simulated
event log L’

Set of running
cases

Fig. 2 Overview of the end-to-end AgentSimulator approach.

3 Our Approach: AgentSimulator

This section introduces AgentSimulator, our data-driven agent-based business process
simulation approach, with a high-level overview in Figure 2. To adopt a resource-
first perspective, AgentSimulator models agents in an MAS (see Section 3.1), which
is (along with general simulation parameters) discovered from an event log in the
discovery phase (see Section 3.2). Following the MAS discovery, we can simulate the
process and generate a new event log (see Section 3.3). We detail our approach for
both discovery and simulation, also discussing alternative configuration options for
different process types, highlighting AgentSimulator’s adaptability.

3.1 Definitions

In this section, we define event logs, as they constitute the input to our approach,
which in turn generates another event log as its output. Afterward, we define agents
and the resulting multi-agent system (MAS), the underlying model of our approach.

5

Event log. We define an event log L as a finite multi-set of traces. A trace σ ∈ L
is a finite sequence of events, ⟨e1, ..., en⟩, recording the execution of activities per-
formed for a single case in an organizational process. Each event ei is a tuple
(act, tsstart, tsend, res), where act is the activity to which the event corresponds, tsstart
and tsend, respectively, are the start and end timestamps of the activity’s execution,
and res is the resource that executed the activity. Note that we follow López-Pintado
and Dumas (2022) by representing each event with a start and end timestamp, which is
required in simulation settings to consider activity durations, and ordering the events
in a trace based on their start timestamp.

In the remainder, we commonly use dot notation to refer to components of tuples,
e.g., using ei.act as a shorthand to refer to the activity of an event ei, whereas we use
ACTL and RESL to, respectively, refer to the sets of activities and resources contained
in the traces of event log L.

Agent. The notion of an agent is a fundamental abstraction in Artificial Intelligence
(AI) (Russell and Norvig, 2020). Agents perceive their environment (including other
agents) to reason about the perceptions and decide on actions, which are then executed
against the environment. In our work, we use agents to represent actors and systems
involved in a process. We define an agent a ∈ A as a tuple a = (s, c, b) , where:
1. s refers to a schedule in the form of a weekly calendar, indicating intervals

during which the agent is available to perform activities. The simulation needs
to capture the distinct availabilities of agents (e.g., full-time vs. part-time) to
faithfully reflect the temporal dimension of the process. Following López-Pintado
and Dumas (2022), a weekly calendar can be defined as a binary relation W ×∆,
where W = {Monday, . . . ,Sunday} represents weekdays, and ∆ = {δ1, . . . , δn} is
a set of time intervals. Each time interval δi ∈ ∆ is a pair ⟨τs, τc⟩ with start and
end times τs, τc = ⟨hour,minute, second⟩, satisfying τs ≤ τc. A calendar entry
⟨ω, τs, τc⟩ specifies an interval for day ω. For example, ⟨Monday, 08 : 15 : 00, 12 :
00 : 00⟩ represents Monday from 08:15 to 12:00.

2. c refers to the capabilities of an agent, denoted as a tuple c = (Alloc, PT),
where:

• Alloc ⊆ ACTL is the set of activities that a can execute, i.e., that can be
allocated to agent a.

• PT refers to a set of PDFs, where each fpt(act) ∈ PT captures a distribution
over processing times pt ∈ [0,∞) for an activity act ∈ Alloc. Defining PT
per agent allows us to differentiate process performance across resources.

3. b refers to the behavior of an agent, capturing how agent a hands a case over to
continue its execution after finishing an activity. What b exactly entails depends
on the configuration of AgentSimulator being used. Since business processes can
be either centrally orchestrated or more autonomous, the behavior in AgentSim-
ulator can be defined for both process types accordingly. Therefore, we provide
further details and exact definitions in the following sections.

Multi-agent system. A multi-agent system (MAS) is composed of multiple agents
that operate within a shared environment, potentially working together to achieve
specific goals. We define an MAS for AgentSimulator as a tuple M = (A,P). Here, A
corresponds to the set of agents, whereas P is a tuple of general simulation parameters,

6

reflecting aspects of the process’s environment. In our MAS, P consists of a case inter-
arrival distribution, an arrival calendar, and a set of probability density functions
(PDFs) over extraneous delays (more details in Section 3.2).

3.2 Phase 1: MAS Discovery

In this section, we describe the discovery phase of AgentSimulator that yields an MAS
M. This phase covers, as visualized in Figure 2, the instantiation and parameterization
of agents in the set A and the general simulation parameters P from an event log L. In
the remainder of this section, we describe the details of this discovery phase, starting
with the instantiation of agents, followed by the derivation of their three attributes:
schedule, capabilities, and behavior. Here, we note that the first two attributes are
aspects commonly considered in non-agent-based simulation approaches as well, which
is why we largely follow existing works for their discovery. In contrast, the distinctive
agent behavior serves as the main ingredient of AgentSimulator, for which we discuss
a variety of configuration options, enabling adaptation to diverse collaborative work
dynamics.

3.2.1 Agent Instantiation

We start by instantiating one agent a ∈ A for each resource res ∈ RESL. For our
motivating example, we thus instantiate six agents (five human actors and System).
Since event logs may contain events that do not have any associated resource, we add
additional dummy agents to A that will be charged with the execution of their corre-
sponding activities. Specifically, we generate a single dummy agent for each activity in
ACTL for which event log L contains one or more events without resource information.

Assigning dummy agents for such events primarily ensures that any activity can
be associated with at least one agent, which is required for the simulation. Fur-
thermore, defining dummy agents allows us to differentiate them in terms of their
attributes schedule, capabilities, and behavior, enabling a more appropriate simula-
tion of their respective activities. Importantly, dummy agents are treated in the same
way as agents representing known resources. For example, if the recorded activity
durations for a dummy agent are consistently 0, the simulation models these activities
as instantaneous. Conversely, if a dummy agent is associated with non-zero activity
durations, these durations are accurately reflected in the simulation, including any
potential implications such as resource contention. An analysis of the event logs used
in this study’s evaluation revealed that approximately half of the logs contain events
with missing resource information. Among these events, around 30% correspond to
activities with instantaneous durations, whereas the remaining events exhibit a high
variability between different activities in terms of the length of their duration. This
highlights the necessity to model these dummy agents as well in a differentiated way.

3.2.2 Agent Schedule

We discover a schedule a.s for each agent a ∈ A by using the algorithm proposed
in López-Pintado and Dumas (2022), which creates a weekly calendar based on the

7

observed times agent a was active in L. The algorithm divides the timeline into fixed-
size intervals (time granules) and maps the start and end timestamps of events to
these intervals. Confidence and support metrics are then used to identify recurring
availability patterns: confidence measures the proportion of observed activity occur-
rences within a specific time interval across all relevant days, while support evaluates
the proportion of an agent’s total activity timestamps covered by the selected inter-
vals, ensuring the calendar reflects consistent and representative working patterns. The
schedule could, for example, indicate that Steve works Monday to Friday from 08:00
to 16:00, whereas Oliver works Monday to Friday only in the mornings. This sched-
ule is a critical attribute for our MAS, as it must closely reflect reality to accurately
model resource utilization, waiting times, and cycle times. While the approach enables
the discovery of agent-specific availability, which has been shown to produce more
realistic simulation outcomes than generalized calendars (López-Pintado and Dumas,
2022), it may struggle to capture complex patterns that deviate from weekly period-
icity, and limited data availability can impede robust discovery. Note that the more
recent approach to discovering probabilistic instead of crisp calendars (López-Pintado
and Dumas, 2023) could also be integrated.

3.2.3 Agent Capabilities

The capabilities a.c of an agent a consist of a set of activities and a set of PDFs over
the processing times for these activities.

Set of activities. We determine the set of activities a.c.Alloc that agent a can
execute by straightforwardly checking which activities from ACTL (the resource
corresponding to) a has performed in L.

Processing times. The set of PDFs over processing times a.c.PT contains a distribu-
tion for each activity in a.c.Alloc, which jointly capture how long agent a requires to
execute each of these activities. Thus, we estimate an agent’s performance by model-
ing the duration of each activity as a separate probability distribution, resulting in one
distribution per agent-activity pair. Following López-Pintado and Dumas (2022), for
each agent-activity pair, we fit a set of different distributions to the observed durations
that it took the resource corresponding to agent a to execute a certain activity. This
set of distributions includes Exponential, Gamma, Normal, Uniform, Log-Normal, and
a fixed value to capture activities with fixed durations. Subsequently, we select one of
these distributions that most closely represents the observed durations, measured by
the earth mover’s distance. More formally, this yields a mapping ACTL ×A → PTT ,
where PTT =

⋃
a∈A a.c.PT , ensuring the simulation of realistic activity processing

times, as, for example, a junior employee typically requires more time to perform the
same activity than a senior employee.

3.2.4 Agent Behavior

The behavior a.b of an agent a is used to determine how the execution of a case contin-
ues after agent a has just performed an activity for it, which involves determining the
next activity and which agent should perform that activity. To capture such behavior,
we provide various configuration options, which differ along two dimensions:

8

1. Overall setting. AgentSimulator offers the possibility to discover and simulate
process behavior for orchestrated and autonomous settings, following two high-
level ways in which process participants can behave in processes.

• Orchestrated behavior refers to agent behavior that is determined based
on global control-flow patterns only, independent of specific agents. Thus,
the selection of the next activity solely depends on the previous activities,
whereas the agent to perform that activity is simply assigned based on capa-
bilities and availability. This configuration option is useful when simulating
processes whose execution is centrally guided, such as those supported by a
workflow or business process management system (Dumas et al., 2013). In
these processes, the system generally determines which activity should be
performed next and who it is assigned to (or users pull activities).

• Autonomous behavior refers to agent behavior that is determined based on
local control-flow and handover patterns, which depend on specific agents.
Here, the selection of the next activity depends on both the previous activities
and the previous agent. Also, the selection of the next agent is determined
by the previous agent, acknowledging the autonomy of human resources in
choosing who they work with. This configuration option is particularly useful
for capturing processes that provide high flexibility and decision power to the
human actors involved, e.g., knowledge-intensive processes.

2. Learning method. We propose three different methods for representing and
learning agent behavior, where each method can be adapted to orchestrated and
autonomous behavior. These methods jointly cover three main families through
which process behavior can be captured:

• Frequentist probabilities provide a purely probabilistic view on agent behav-
ior, where the choice for the next activity (or agent) is determined based on
historical probabilities.

• LSTM networks are representative of black-box deep learning techniques
commonly used in predictive process monitoring (Tax et al., 2017) and
simulation (Camargo et al., 2019) to determine transitions and handovers.

• Petri nets provide symbolic means to explicitly capture control-flow logic in
processes.

Table 1 provides an overview of how these options are combined into six configura-
tions for AgentSimulator, which we next describe in detail. Note that only the Petri
net-based approach explicitly models concurrency, which is a limitation of the other
approaches. Furthermore, note that in orchestrated settings, the method that learns
agent behavior only needs to provide an explicit representation to determine the next
activity, as the next agent selection is determined during simulation based on capa-
bilities and availabilities. On the contrary, in autonomous settings, the method needs
to provide an explicit representation for both next activity and agent.

Frequentist probabilities. The simplest method for learning agent behavior in
AgentSimulator is purely probabilistic. It determines the next activity and agent based
on the observed frequencies of activity transitions and agent handovers in the event
log L. Here, activity transition refers to the occurrence of one activity directly followed
by another activity within a trace, whereas agent handover describes when one agent

9

Table 1 Overview of methods for learning agent behavior in AgentSimulator.

Frequentist prob. LSTM network Petri net

O
r
c
h
e
st
r
a
te

d

Activity Observed relative fre-
quency of transitioning
from an activity prefix to
any other next activity

LSTM trained to pre-
dict next activity based
on activity prefix

Inductive Miner-based
Petri net with branch-
ing probabilities

Agent The earliest available agent
capable of executing the
selected activity

— ” — — ” —

A
u
to

n
o
m

o
u
s

Activity Observed relative fre-
quency of transitioning
from an activity prefix
(with the last activity per-
formed by a specific agent)
to any other next activity

LSTM trained to pre-
dict next activity based
on activity and agent
prefixes

Agent Miner-based
agent net with branch-
ing probabilities

Agent Observed relative fre-
quency of one agent
performing a specific activ-
ity and handing over to
any other next agent

LSTM trained to pre-
dict next agent based
on activity and agent
prefixes

Agent Miner-based
interaction net with
branching probabilities

is directly followed by another agent within a trace. The details of the method are
introduced first for orchestrated behavior, and afterwards for autonomous behavior.

a) Orchestrated. To determine the next activity in orchestrated settings using fre-
quentist probabilities, we compute activity transition probabilities at the global log
level. Specifically, we compute the frequentist probability of transitioning to an activ-
ity given the activity prefix of an ongoing case, where a prefix σprefix = ⟨e1, e2, ..., ek⟩
is the sequence of events from the beginning of σ up to event ek, with σact

prefix being the

corresponding activity sequence. This transition probability P (act|σact
prefix) is computed

by determining how often each possible activity prefix σact
prefix in log L is followed by

each activity act ∈ ACTL. This is achieved by dividing the number of times the spe-
cific transition from σact

prefix to act happens by the number of times the activity prefix

occurs in the log. Note that, in case an activity prefix σact
prefix has not been observed

in the log, we iteratively remove the first activity of the prefix until we reach a subse-
quence that has been observed in L. For example, if we have not seen ⟨a, b, c, d⟩, we
next check for occurrences of ⟨b, c, d⟩. To transition to the end of a case, we introduce
a placeholder end event following the last activity in each case.

b) Autonomous. In autonomous settings, both next activity and agent need to be
explicitly modeled from the local agent perspective. Regarding the activity, we adapt
the computation of the probabilities described before for orchestrated behavior and
make it agent-specific. Thus, P (act|σact

prefix, a) is computed by counting for each agent

a ∈ A the number of transitions from σact
prefix to act with the last activity of the prefix

being performed by a, divided by the total number of occurrences of σact
prefix with its

last activity being executed by a. Consider Oliver in Figure 1 who, given the prefix

10

application received, always first checks the income sources before the credit history,
whereas Steve and Angela proceed the other way round.

To determine the next agent, we compute the frequentist probability of handing
over a case from one agent to another agent, specifically for each activity. The condi-
tional probability P (ai|aj , act) of handing over from agent aj to ai, i, j ∈ {1, ..., |A|}
with aj having performed activity act, is computed by counting all occurrences
where the specific activity act is performed by aj and the following activity is
executed by ai, divided by the total number of times act is performed by aj . Fol-
lowing our example, this results in P (Maria|Angela,Check income sources) = 0.0 and
P (Patrick|Angela,Check income sources) = 1.0.

The combination of P (act|σact
prefix, a) and P (ai|aj , act) defines agent behavior for

autonomous settings in a fully probabilistic way and captures agent-specifics that
influence the progress of a case.

LSTM network. LSTM models belong to the most popular methods in the field of
predictive process monitoring, aiming to solve tasks such as next activity prediction,
next time prediction, or remaining time prediction. Also, LSTM models are used in
some state-of-the-art BPS approaches (Camargo et al., 2019, 2022; Meneghello et al.,
2023). In particular, they demonstrate strong performance in learning the control-flow
of a process in the context of BPS, as recently shown by Meneghello et al. (2025). Due
to their performance and popularity, we also integrate LSTM networks and explain
how they can handle next activity prediction for both orchestrated and autonomous
behaviors, as well as next agent prediction for autonomous behavior.

a) Orchestrated. Orchestrated behavior in the context of an LSTM model can be cap-
tured by training the model on the global control-flow of the process, thus predicting
the next activity based on the prefix of activities. Similar to the model proposed by
Camargo et al. (2019), our LSTM uses n-grams to represent the prefix of activities in
a case. Given an activity prefix, the model takes this sequence alone and encodes it
through an embedding layer to represent categorical activities in a continuous space.
An LSTM layer then processes the sequence, capturing dependencies and patterns
within the activities over time, and a dense output layer with softmax activation
computes a distribution over the next activities.

The idea is very similar to the fully probabilistic method, as both determine the
next activity based on the prefix of activities. However, the LSTM goes one step
further by trying to learn underlying patterns in the control-flow.

b) Autonomous. To adapt the LSTM for autonomous behavior learning, which includes
predicting both the next activity and the next agent, we extend the orchestrated
method by incorporating prefixes of both activities and their associated agents as
input. This design captures agent-specific patterns in process execution. The model
uses two input embeddings—one for activities and one for agents—allowing it to
encode activity-agent pairs in parallel. These embeddings are concatenated and pro-
cessed together by the LSTM layer, enabling the model to learn patterns influenced
by agent assignments.

The model is trained in a multi-task learning framework, predicting both the next
activity and the next agent within a single model. The activity output layer predicts

11

a probability distribution over possible next activities, while the agent output layer
predicts a distribution over potential next agents.

Petri net. Petri nets are one of the most common representations of business pro-
cesses. Various algorithms have been proposed for automatically discovering Petri net
models from an event log (Augusto et al., 2019; Leemans et al., 2013). Most commonly,
Petri nets only describe the global control-flow perspective, making them a suitable
approach for representing orchestrated behavior. However, a more recent discovery
algorithm (Tour et al., 2023) also considers the agent perspective, resulting in Petri
nets that represent the local control-flow as well as agent handovers. Thus, the lat-
ter can be used to obtain a Petri net-based representation of autonomous behavior in
AgentSimulator. Again, the details of the method are introduced first for orchestrated
behavior, and afterwards for autonomous behavior.

a) Orchestrated. For modeling orchestrated behavior with Petri nets, we use the Induc-
tive Miner algorithm (Leemans et al., 2013) to discover a Petri net from the input
event log L, extended with a stochastic map to represent branching probabilities at
decision points. To compute a stochastic map for a given Petri net, we employ token-
based replay of the log on the Petri net model. During replay, each event in the trace
is matched with a corresponding Petri net transition τ ∈ T , simulating the progres-
sion of tokens through the net from an initial to a final marking. The replay enables
us to assess how often each transition τ is enabled, denoted as Cenabled(τ) versus how
often it is actually fired, denoted as Cfired(τ). Thus, for each decision point in the Petri

net, the branching probability of choosing that path is computed as Cfired(τ)
Cenabled(τ)

. The

resulting model captures the global control-flow of the process, determining at each
step which activities are allowed to execute next and the likelihood of each.

b) Autonomous. For modeling autonomous behavior with Petri nets, we employ the
Agent Miner algorithm (Tour et al., 2023)—an approach for discovering Petri net
models of agents and their interactions from event data. The Agent Miner algorithm
comprises three main steps, i.e., the construction of i) agent nets, ii) an interaction
net, and iii) an MAS net, to model business processes with an agent-centric approach.
i) Agent Nets: The algorithm first constructs an individual model, or agent net, for

each identified group of agents, where agents that perform the similar activities
belong to the same group. This net captures the internal workflow of each group,
detailing its specific local control-flow.

ii) Interaction Net: The interaction net is then developed to map the interactions
between agent groups. This step highlights points where agent groups collaborate,
allowing the algorithm to model the handover paths that define the multi-agent
interactions within the process.

iii) MAS Net: Finally, the individual agent nets and the interaction net are integrated
to form a comprehensive MAS net, representing the entire process.

To integrate the Agent Miner algorithm into AgentSimulator, we use the discovered
interaction net to identify the subsequent agent group and the corresponding agent
net to determine the next activity. Based on this selected agent group and activity,
we specify the next agent as we do in the frequentist method. In alignment with our
approach of augmenting the Inductive Miner-derived Petri net with a stochastic map,
we enhance the interaction and agent nets by incorporating branching probabilities.

12

3.2.5 General Simulation Parameters

After discovering the set of agents A, we discover some general simulation parameters
M.P = (fiat, AC,D), where fiat is a PDF of case inter-arrival times, AC denotes
the arrival calendar, and D a set of PDFs over extraneous delays. These parameters
are not specific to an agent-based simulation model but are also used in other BPS
approaches (Camargo et al., 2020).

Inter-arrival times and arrival calendar. Inter-arrival times denote the duration
between the start of two consecutive cases. The PDF over inter-arrival times is used
during simulation to sample new cases. For discovering the PDF over case inter-arrival
times fiat, we follow Camargo et al. (2020) who fit different distributions to the inter-
arrival times and take the one that yields the smallest earth mover’s distance. To ensure
that cases can only start during the organization’s working hours, we additionally
discover an arrival calendar AC, containing a set of intervals that describe the working
hours. Thus, during the simulation, samples from fiat will only create new case arrival
timestamps within intervals of AC.

Extraneous delays. Since different instances of a process typically compete for lim-
ited resources and because resources do not always start an activity as soon as it
can possibly be performed, processes are affected by waiting times. Extraneous delays
are waiting times that are not caused by resource contention or unavailability (e.g., a
resource waits for a response from the customer). They need to be modeled explicitly.
Following the algorithm in Chapela-Campa and Dumas (2024), we discover a PDF over
extraneous delays per activity, resulting in a set of extraneous delay distributions D.

3.2.6 Output of Phase 1

Having discovered the MAS, consisting of both the set of agents A and the general
simulation parameters P , we have created a fine-granular and interpretable model
of the underlying process. This model explicitly represents each process participant
(agent) along with their schedules, capabilities, and behaviors, providing a white-
box view of the system. The interpretability of the model stems from its explicit
representation, which allows practitioners to modify key aspects of the simulation. For
example:

• Agents can be added or removed from the process to explore changes in resource
staffing levels.

• The availability of individual agents (a.s) can be adjusted to simulate different
working time configurations, such as shift changes or increased availability.

• Agent capabilities can be modified by adding or removing activities from
a.c.Alloc or altering execution times in a.c.PT , allowing for the simulation of
upskilling or restructuring.

• Handovers between agents can be adjusted by modifying handover probabilities
in a.b, enabling the exploration of alternative collaboration structures.

• Changes to the activity transition probabilities in a.b allow for the simulation of
alternative process control-flow scenarios.

While this paper does not include specific what-if scenarios, the fine-granular nature
of the model positions AgentSimulator as a versatile tool for such analyses in future

13

studies. The ability to modify these elements in a targeted manner makes the model
suitable for scenario testing, optimization, and decision support. However, note that
a key limitation for now compared to process model-based approaches like Simod
(Camargo et al., 2020) is the lack of a straightforward method for visualizing the
discovered MAS.

Algorithm 1 Simulation

Input: A, fiat, AC, D, startAt, Num. of cases n
Output: Simulated event log L′

1: Σ← generate arrival events(fiat, AC, n, startAt), L′ ← {}
2: for a ∈ A do
3: a.next avail← minFrom(a.s, startAt)

4: while |L′| < n do
5: σprefix ← get case(Σ) ▷ get the case with the smallest current timestamp
6: e← () ▷ initialize new event
7: e.act← get next activity(σprefix) ▷ retrieve the next activity for the case
8: e.a← get next agent(σprefix, e.act) ▷ assign an agent
9: e.tsstart ← max(end time preceding event(σprefix), e.a.next avail)

10: e.tsstart ← add extr delays(e.tsstart, D)
11: e.tsend ← e.tsstart+ execution time(e.act, e.a)+ off time(e.a) ▷ calculate end time
12: e.a.next avail← minFrom(e.a.s, e.tsend) ▷ update agent availability
13: σprefix ← add to prefix(e) ▷ extend the prefix with the new event
14: if e.act = end then ▷ check if case is completed
15: L′,Σ← exit and add to log(σprefix) ▷ finalize case

3.3 Phase 2: Simulation

This section details how the AgentSimulator approach uses the discovered MAS M
to simulate an event log L′, illustrated by the pseudo-code in Algorithm 1. The fol-
lowing procedure, which is visualized on a high level in Figure 2, applies universally
to all three methods for learning agent behavior discussed in previous sections. The
simulation begins with an initialization, where n arrival events are generated based on
the inter-arrival time distribution and the arrival calendar (Line 1). Additionally, each
agent’s next availability is set based on their predefined schedule a.s and the simula-
tion’s starting timestamp (Line 3). The simulation proceeds in discrete steps until the
specified number of cases n has been completed. Each simulation step is structured as
follows:

1) Case selection. At each iteration, the case σprefix with the earliest current times-
tamp is selected from the set of active cases Σ (Line 5). This ensures that events are
processed in chronological order.

2) Activity determination. Given the prefix of the selected case σprefix, the next
activity to be executed is identified (Line 7). The activity selection is determined
using one of the three proposed methods: Frequentist probabilities, LSTM networks, or
Petri nets. Depending on the simulation mode, this selection can be performed either

14

globally, modeling orchestrated behavior, or locally, modeling autonomous decision-
making. For newly initiated cases, the first activity is always selected globally, as there
is no prior agent to influence the decision.

3) Agent assignment. Once the activity has been determined, it must be assigned
to an agent for execution. The agent is selected using the function get agent (Line 8),
differentiating between the two settings:

• Orchestrated. In an MAS with orchestrated handovers, no agent interaction pat-
terns are modeled. Therefore, the agent selection is based on agent capabilities
and availabilities. First, based on the set of activities that an agent can execute
a.c.Alloc, we identify possibly responsible agents. Second, we order this list
based on the agent availabilities and assign the activity to the agent that offers
the earliest availability indicated by a.next avail.

• Autonomous. In a system with autonomous handovers, agent transitions are
explicitly modeled through predefined interaction patterns, defining a probabil-
ity distribution over possible next agents. Unlike the orchestrated setting, agent
selection does not prioritize availability. Instead, an agent is sampled from the
distribution, favoring those with a higher probability of receiving the handover.

Note that a case’s first agent is always determined as described for orchestrated
handovers, as there is no previous agent to impact the agent selection.

4) Event timestamp calculation. The event’s start timestamp is determined
by the maximum timestamp between the end timestamp of the preceding activity
end time preceding event(σprefix) and the timestamp of the agent’s next availability
a.next avail (Line 9). In case extraneous delays should be considered in the simu-
lation, they can be added to determine the actual start timestamp (Line 10). The
event’s end timestamp is then determined by sampling its execution time from the
agent-specific activity duration distribution fpt(act) ∈ a.c.PT and potentially adding
the time periods in which the agent is not working according to its schedule a.s. Thus,
we allow simulating interruptions in activity executions.

5) Event finalization. Having determined all required event attributes, the agent
availabilities are updated in Line 12 and the event is added to the prefix of the current
case (Line 13). Finally, we check if the selected activity represents the process’s end
activity and if so the case is removed from Σ and added to the output event log L′

(Line 15).
The entire simulation concludes when the specified number of cases n has been pro-
cessed and finished. The output of the simulation is an event log L′, where each event
is a tuple e = (act, tsstart, tsend, a).

4 Experiments and Results

This section details the experiments conducted to comprehensively evaluate the perfor-
mance of our AgentSimulator approach in realistically simulating business processes.
The evaluation comprises three parts: in Section 4.1, we examine the ability of
AgentSimulator in its basic configuration—using frequentist probabilities—to faith-
fully simulate a range of synthetic and real-life processes and thereby automatically
determine per process if the orchestrated or autonomous setting is more suitable.

15

We compare our results to various state-of-the-art BPS approaches. In Section 4.2,
we investigate the impact of the various agent behavior learning methods outlined
in Table 1, also identifying to what extent the choice between the orchestrated or
autonomous setting is critical for different process types. Finally, in Section 4.3, we
evaluate the impact of orchestrated and autonomous settings for the simulation of
a synthetic event log that is subject to specific resource characteristics and interac-
tion patterns. Table 2 summarizes the characteristics of the 9 publicly available event
logs used in the first two experiments, which are commonly used in BPS evaluations
(Camargo et al., 2022; Meneghello et al., 2023; Chapela-Campa et al., 2023) as they
contain both start and end timestamps. Note that 6 of the 9 event logs contain con-
current activities. Our implementation, the event logs (with train-test splits), and
additional results are available through our repository1.

Table 2 Description of log properties.

Log Type #Traces #Events #Activities #Resources #Agents

Loan Application syn 1000 7492 12 19 19
P2P syn 608 9119 21 27 27
CVS syn 10000 103906 15 6 8

Confidential 1000 syn 1000 38160 42 14 26
Confidential 2000 syn 2000 77418 42 14 26

ACR real 954 6870 18 432 432
Production real 225 4503 24 41 41
BPI12W real 8616 59302 6 52 56
BPI17W real 30276 240854 8 136 136

4.1 Evaluation 1: Simulation Performance

In this section, we evaluate AgentSimulator against state-of-the-art BPS approaches
in accurately simulating different processes, both synthetic and real-world. This
evaluation considers Frequentist Probabilities for learning agent behavior, whereas
AgentSimulator needs to automatically determine and adapt to the underlying pro-
cess type, whether orchestrated or autonomous. In the following, we describe the
experimental setup and discuss the obtained results.

4.1.1 Experimental Setup

Implementation. We implemented our approach in Python using the agent-based
modeling framework mesa (Kazil et al., 2020).

Benchmark approaches. We empirically compare our AgentSimulator (AgentSim)
against four common data-driven BPS approaches. We adopt the state-of-the-art Data-
driven Process Simulation (DDPS) approach from López-Pintado and Dumas (2022),
which we refer to as Simod. It improves the original Simod from Camargo et al. (2020)

1https://github.com/lukaskirchdorfer/AgentSimulator

16

https://github.com/lukaskirchdorfer/AgentSimulator

by considering differentiated resource availability and performance and was shown
to outperform the original Simod. DeepGenerator (DGEN) (Camargo et al., 2019)
is a pure Deep Learning (DL) approach, whereas DeepSimulator (DSIM) (Camargo
et al., 2022) and RIMS (Meneghello et al., 2023) are both a hybrid of DDPS and DL.
RIMS extends upon DSIM by integrating the predictions of the DL model at runtime
during the simulation (more details in Section 5). Note that we use the vanilla RIMS
approach, not any adaptation of it as presented in Meneghello et al. (2025).

Data split. We follow evaluations of existing BPS approaches (Camargo et al., 2019,
2022; Meneghello et al., 2023) and perform a temporal hold-out split, excluding all
cases that span the separation time between the train set (first 80% of cases) and the
test set (last 20% of cases).

Hyperparameters. In this first experiment, we let AgentSim have two automatically
determined hyperparameters: the setting for learning agent behavior (orchestrated or
autonomous) and whether to consider extraneous delays, resulting in 4 possible con-
figurations. We treat the latter as a hyperparameter because we noticed considerable
differences regarding the benefit of considering extraneous delays between different
event logs. We determine both hyperparameters by initially simulating the last 20%
of the training set for each of the 4 possible configurations and checking which simu-
lation most closely resembles the training subset in terms of cycle time. To ensure a
fair comparison, we use the same option regarding extraneous delays for Simod. Gen-
erally, for the benchmark approaches, we tune all respective hyperparameters, trying
to provide a fair comparison.

Metrics. To evaluate and compare the different simulation approaches, we use multi-
ple metrics that are designed to evaluate simulation models across three dimensions:
control-flow, time, and congestion (Chapela-Campa et al., 2023). Each metric cal-
culates a distance between the simulated and test logs, where lower values indicate
better performance. To measure control-flow, we use the N-Gram Distance (NGD),
which compares the frequencies of activity n-grams observed in the event logs. In this
work, we set n = 3. The remaining 4 metrics are all based on the 1st Wasserstein
Distance (1WD), which is a computationally efficient variation of the Earth Mover’s
Distance (EMD), a measure that quantifies the dissimilarity between two probability
distributions. 1WD intuitively represents the minimum effort required to transform
one distribution into another by redistributing their mass. The time dimension is
evaluated by 3 metrics: The Absolute Event Distribution Distance (AEDD) measures
differences in the absolute timestamps of events, capturing how events are distributed
over time. The Relative Event Distribution Distance (REDD) evaluates the distribu-
tion of events relative to the arrival timestamp of their respective case, capturing how
cases progress over time. The Circadian Event Distribution Distance (CEDD) focuses
on weekly activity patterns, identifying differences in how events are distributed across
days of the week. Finally, we evaluate congestion using the Cycle Time Distribution
Distance (CTDD), which measures how accurately the simulated cycle times of cases
match those in the test log. We do not include the Case Arrival Distribution distance
as a metric in our analysis, as the same arrival method as Simod is applied, allowing
us to concentrate on metrics where AgentSim exhibits distinct performance.

17

4.1.2 Results

Overall results. Table 3 and Table 4 summarize the results for the 9 event logs,
showing the average metrics from 10 simulation runs as well as the standard deviation.
The best value per log and metric is marked in bold. For this, we apply a paired t-test
with a threshold for the p-value of 0.05 to determine statistical significance. Generally,
no single approach consistently outperforms the others across all datasets and metrics
as also observed in previous BPS works (Meneghello et al., 2023; Camargo et al.,
2022). However, AgentSim and DSIM stand out by most often achieving the best
performance. AgentSim simulates four of these logs (P2P, C.1000, C.2000, ACR) using
the autonomous setting, while the remaining five are simulated using the orchestrated
setting. When looking more closely at the 3 dimensions captured by the metrics, we
can obtain the following main insights:

Table 3 Comparison of simulation approaches across various performance metrics. The results for
AgentSim are based on the Frequentist probabilities method for learning agent behavior.

Metric Method
Event Log

Loan P2P CVS C.1000 C.2000

NGD

Simod 0.15 (0.02) 0.42 (0.01) 0.44 (0.00) 0.25 (0.01) 0.25 (0.00)
DGEN 0.21 (0.01) 0.20 (0.02) 0.22 (0.00) 0.58 (0.00) 0.16 (0.01)
DSIM n/a 0.22 (0.01) 0.20 (0.00) 0.20 (0.01) 0.18 (0.01)
RIMS n/a 0.22 (0.01) 0.44 (0.00) 0.25 (0.01) 0.28 (0.01)

AgentSim 0.07 (0.01) 0.24 (0.02) 0.10 (0.01) 0.25 (0.01) 0.25 (0.01)

AEDD

Simod 13.55 (1.84) 1044.25 (57.19) 52.95 (1.7) 344.48 (21.05) 820.45 (48.14)
DGEN 212.27 (0.01) 1481.46 (2.12) 310.39 (0.01) 462.84 (0.11) 857.68 (0.28)
DSIM n/a 1310.03 (14.22) 36.23 (2.94) 246.41 (8.50) 591.13 (5.50)
RIMS n/a 1266.30 (11.24) 58.73 (1.72) 242.80 (9.34) 620.61 (5.44)

AgentSim 2.97 (0.77) 1214.54 (12.51) 93.43 (1.44) 106.51 (11.43) 221.48 (9.56)

CEDD

Simod 0.40 (0.04) 2.21 (0.18) 0.44 (0.06) 3.01 (0.14) 2.96 (0.06)
DGEN 13.40 (0.00) 2.55 (0.08) 11.69 (0.01) 18.93 (0.05) 18.09 (0.49)
DSIM n/a 1.16 (0.10) 8.98 (0.05) 2.28 (0.30) 2.84 (0.14)
RIMS n/a 0.83 (0.12) 8.88 (0.04) 2.10 (0.3) 2.82 (0.14)

AgentSim 0.27 (0.04) 1.22 (0.13) 7.63 (0.04) 3.13 (0.95) 2.82 (0.92)

REDD

Simod 9.22 (1.67) 840.19 (1.23) 39.43 (3.53) 468.81 (33.93) 952.37 (85.53)
DGEN 5.26 (0.01) 828.09 (2.07) 176.65 (0.01) 8.11 (0.10) 4.58 (0.23)
DSIM n/a 722.33 (6.33) 19.74 (0.30) 5.34 (0.33) 1.7 (0.31)
RIMS n/a 727.77 (6.4) 40.05 (0.75) 5.06 (0.86) 2.29 (0.82)

AgentSim 1.66 (0.72) 725.37 (11.77) 87.24 (1.39) 16.70 (7.70) 31.74 (9.26)

CTDD

Simod 20.42 (2.78) 677.05 (1.78) 54.59 (4.12) 804.07 (56.60) 1614.91 (135.64)
DGEN 9.38 (0.01) 670.05 (4.14) 294.21 (0.07) 13.92 (0.11) 8.12 (0.25)
DSIM n/a 566.63 (8.13) 52.43 (0.74) 7.29 (0.31) 2.26 (0.43)
RIMS n/a 581.41 (13.85) 28.26 (1.24) 7.39 (0.95) 2.33 (0.68)

AgentSim 2.71 (0.99) 558.36 (8.54) 107.49 (2.25) 28.13 (13.08) 52.42 (13.10)

18

Table 4 Comparison of simulation approaches across various performance metrics. The results for
AgentSim are based on the Frequentist probabilities method for learning agent behavior.

Metric Method
Event Log

ACR Prod BPI12W BPI17W

NGD

Simod 0.24 (0.02) 0.93 (0.01) 0.72 (0.00) 0.59 (0.00)
DGEN 0.31 (0.03) 0.52 (0.03) 0.43 (0.01) 0.67 (0.00)
DSIM 0.26 (0.02) 0.86 (0.01) 0.65 (0.01) 0.54 (0.01)
RIMS 0.26 (0.02) 0.87 (0.01) 0.56 (0.00) 0.69 (0.00)

AgentSim 0.36 (0.01) 0.59 (0.03) 0.15 (0.01) 0.19 (0.00)

AEDD

Simod 287.27 (29.41) 146.38 (86.72) 71.97 (9.78) 300.28 (9.39)
DGEN 559.67 (0.18) 224.45 (10.54) 306.28 (0.93) 4557.19 (123.24)
DSIM 273.46 (8.71) 154.31 (9.47) 78.62 (6.76) 54.61 (4.04)
RIMS 241.95 (9.01) 132.82 (12.98) 73.82 (7.05) 122.32 (11.53)

AgentSim 328.71 (1.93) 61.13 (8.60) 115.45 (9.30) 218.43 (2.58)

CEDD

Simod 2.60 (0.10) 2.82 (0.18) 1.71 (0.09) 3.34 (0.02)
DGEN 17.84 (0.76) 9.30 (3.42) 4.53 (0.22) 3.39 (0.01)
DSIM 4.64 (0.24) 2.66 (0.17) 2.88 (0.05) 3.35 (0.08)
RIMS 3.07 (0.08) 2.73 (0.23) 3.01 (0.14) 3.72 (0.15)

AgentSim 7.61 (0.22) 5.70 (0.32) 1.85 (0.04) 2.39 (0.02)

REDD

Simod 32.46 (0.82) 83.88 (2.53) 95.72 (1.69) 136.63 (0.89)
DGEN 30.87 (0.15) 70.11 (10.48) 116.18 (0.80) 118.84 (0.24)
DSIM 15.62 (2.79) 33.30 (8.04) 119.12 (1.02) 33.10 (2.57)
RIMS 18.55 (8.67) 18.69 (5.41) 99.12 (1.09) 54.43 (1.54)

AgentSim 22.91 (0.62) 31.72 (6.58) 54.85 (6.13) 40.69 (1.27)

CTDD

Simod 93.51 (93.51) 89.15 (5.52) 155.46 (1.74) 148.40 (1.77)
DGEN 95.11 (0.24) 90.82 176.79 (0.73) 172.94 (1.46)
DSIM 48.24 (4.14) 43.26 (8.67) 173.49 (1.03) 30.26 (2.44)
RIMS 41.58 (10.30) 24.71 (7.94) 150.93 (1.67) 108.66 (1.58)

AgentSim 62.48 (2.00) 29.95 (7.96) 89.07 (3.72) 41.06 (2.18)

Control-flow. Achieving the best NGD (N-Gram Distance) in 4 out of 9 logs and
considerably outperforming Simod, DSIM, and RIMS, the results indicate that
our resource-first AgentSim approach, which is—with the frequentist method—
independent of an underlying process model, enhances the accuracy of the control-flow
dimension compared to control-flow-first approaches such as Simod. This is particu-
larly evident when analyzing the two real-life BPI logs. Thus, putting the resource at
the core of the simulation often delivers more realistic control-flow patterns.

Time. In terms of absolute (AEDD), circadian (CEDD), and relative (REDD) event
distributions over time, we observe mixed results with AgentSim mostly leading in
AEDD, Simod mostly leading in CEDD, and excelling in REDD. These results indicate
that AgentSim captures the temporal patterns in the log comparatively well.

Congestion. Accurately capturing the cycle time of a process instance serves as a
critical indicator of the accuracy of a simulation approach. The CTDD metric is influ-
enced by the processing times of individual activities and the corresponding waiting
times, which in turn are dependent on resource availability. Consequently, the cycle

19

time metric captures a comprehensive range of factors. Here, AgentSim, DSIM, and
RIMS clearly outperform Simod and DGEN. The advantage of AgentSim over Simod
is particularly pronounced with the Confidential logs. Here, Simod’s simulated logs
exhibit significantly longer cycle times compared to reality, primarily due to resource
contention and the consequent waiting times. AgentSim mitigates this issue by rec-
ognizing that some agents do not require waiting time, such as agents performing
instantaneous activities.

Post-hoc analysis on agent interactions. To illustrate AgentSim’s capability to
model agent interactions, we compare its interaction patterns to those of Simod using
the real-life BPI12W log. As shown in Figure 3, AgentSim effectively replicates the
interaction dynamics of the training log, accurately capturing the given activity chain-
ing of resources (visible along the diagonal). In contrast, Simod demonstrates random
interactions, failing to represent these patterns. This highlights the importance of con-
sidering individual interaction patterns in certain processes. It is worth noting that
other benchmark approaches are excluded from this comparison, as they simulate only
higher-level roles rather than individual resources.

Train AgentSimulator Simod

0.0

0.2

0.4

0.6

0.8

1.0

To Resource

Fr
om

 R
es

ou
rc

e

Fig. 3 Resource interactions for the BPI12W log.

Table 5 Average runtimes (with standard deviation) across all event logs. For AgentSim, we
measured the runtimes using the frequentist method for learning agent behavior.

Simod DGEN DSIM AgentSim

Discovery (minutes) 9.7 (4.6) 10.5 (12.0) 61.1 (89.1) 4.3 (5.9)
Simulation (seconds) 3.5 (1.2) 153.0 (294.3) 718.1 (597.3) 10.8 (24.0)

Runtime. Given the inherent stochasticity of simulation, simulating numerous logs is
crucial for reliable predictions, making runtime a key factor in the practical use of BPS.
Despite this, detailed runtime comparisons of existing data-driven BPS approaches
have not yet been made in the literature. To address this gap, we evaluated the run-
times of Simod, DGEN, DSIM, and AgentSim on a machine with 18GB RAM and an
Apple M3 Pro 12-core CPU, as shown in Table 5. The results, summarized in Table 5,

20

represent the time required to simulate a single event log. It is important to note
that all the evaluated approaches are research prototypes and were not specifically
optimized for runtime performance. Nevertheless, the observed runtime magnitudes
provide a general indication of their computational efficiency. Unsurprisingly, the
Deep Learning-based methods, DGEN and DSIM, demonstrated significantly longer
runtimes compared to Simod and AgentSimulator.

4.2 Evaluation 2: Assessment of AgentSimulator Configurations

In this section, we assess the impact of the different methods for learning agent behav-
ior presented in Table 1, consisting of Frequentist probabilities, LSTM networks, and
Petri nets, each in its orchestrated and autonomous setting. In the remainder, we first
describe the experimental setup and then discuss the obtained results. We use the
same event logs and data splits as used in Section 4.1.

4.2.1 Experimental Setup

Implementation. We integrated both the Petri net-based and LSTM-based methods
into our Python framework. For discovering Petri nets with Inductive Miner, we use
the pm4py library (Berti et al., 2023). The Agent Miner Petri nets are discovered
based on the implementation provided by Tour et al. (2023). The LSTM networks are
implemented using the TensorFlow framework.

Benchmark approaches. We benchmark six different configurations of AgentSimu-
lator. Each of the three agent behavior methods is evaluated in its orchestrated and
autonomous setting.

Hyperparameters. For all configurations, we fix the extraneous delays hyperparam-
eter for each log, as determined in Section 4.1, to ensure a controlled comparison
between the orchestrated and autonomous settings. The two Petri net-based config-
urations rely solely on the default settings of their respective discovery algorithms
without additional hyperparameter tuning. We train both LSTM networks for 20
epochs with the Adam optimizer, a learning rate of 0.001, and a batch size of 32. Note
that we do not tune the LSTM hyperparameters, as initial tuning experiments showed
no performance improvement. We attribute this to the simplicity of the data, as the
model is trained solely on sequences of activities and resources, without incorporating
additional case or event attributes.

Metrics. In this experiment, we want to focus our evaluation on only two of the five
metrics we used for the first evaluation. Specifically, we want to investigate the impact
of the different configurations on the control-flow and the cycle time—the two process
characteristics that are potentially most influenced by different agent behaviors—
represented by the NGD and CTDD metrics. For completeness, the results for the
other metrics can be found in our public repository.

4.2.2 Results

Table 6 and Table 7 present the experimental results for the 9 event logs, summarizing
the average outcomes across 10 simulation runs. It highlights the differences in control-
flow and cycle time accuracy across the six configurations of learning agent behavior

21

in AgentSimulator. We begin by comparing the general performance of the three
methods—Frequentist probabilities, LSTM networks, and Petri nets—before analyzing
the impact of orchestrated versus autonomous settings.

Table 6 Comparison of Frequentist probabilities (FP), LSTM network (LS), and Petri net (PN)
for learning agent behavior in AgentSimulator for orchestrated (Orch) and autonomous (Auto)
settings for synthetic event logs. The best value per metric and event log according to a paired
t-test is marked in bold.

Metric Method
Event Log

Loan P2P CVS C.1000 C.2000

NGD

FP Orch 0.07 (0.01) 0.25 (0.04) 0.10 (0.01) 0.24 (0.01) 0.24 (0.01)
FP Auto 0.07 (0.01) 0.24 (0.02) 0.09 (0.00) 0.25 (0.01) 0.24 (0.01)
LS Orch 0.08 (0.01) 0.31 (0.02) 0.10 (0.00) 0.24 (0.01) 0.29 (0.01)
LS Auto 0.14 (0.02) 0.30 (0.01) 0.11 (0.00) 0.29 (0.01) 0.28 (0.01)
PN Orch 0.09 (0.01) 0.54 (0.02) 0.28 (0.00) 0.56 (0.01) 0.55 (0.01)
PN Auto 0.65 (0.01) 0.89 (0.01) 0.85 (0.00) 0.80 (0.00) 0.82 (0.01)

CTDD

FP Orch 2.71 (0.99) 566.29 (11.56) 107.49 (2.25) 46.37 (21.13) 52.76 (8.49)
FP Auto 3.75 (0.80) 558.36 (8.54) 120.11 (2.24) 28.13 (13.08) 52.42 (13.10)
LS Orch 2.89 (0.87) 574.82 (6.28) 119.24 (1.99) 41.34 (14.38) 26.19 (8.92)
LS Auto 3.46 (0.98) 559.33 (6.26) 113.82 (2.23) 42.48 (17.14) 78.79 (26.71)
PN Orch 3.10 (1.47) 490.12 (14.37) 110.82 (1.73) 21.56 (2.21) 20.23 (1.91)
PN Auto 3.03 (0.51) 664.96 (7.96) 196.82 (2.62) 7.56 (0.64) 13.74 (1.21)

Table 7 Comparison of Frequentist probabilities (FP), LSTM network (LS), and Petri net (PN)
for learning agent behavior in AgentSimulator for orchestrated (Orch) and autonomous (Auto)
settings for real-life event logs. The best value per metric and event log according to a paired t-test
is marked in bold.

Metric Method
Event Log

ACR Prod BPI12W BPI17W

NGD

FP Orch 0.39 (0.02) 0.60 (0.03) 0.15 (0.01) 0.19 (0.00)
FP Auto 0.36 (0.01) 0.68 (0.07) 0.16 (0.01) 0.22 (0.00)
LS Orch 0.40 (0.02) 0.57 (0.02) 0.17 (0.01) 0.19 (0.00)
LS Auto 0.47 (0.03) 0.83 (0.02) 0.27 (0.02) 0.18 (0.00)
PN Orch 0.75 (0.02) 0.85 (0.02) 0.26 (0.01) 0.35 (0.00)
PN Auto 0.76 (0.01) 0.73 (0.02) 0.30 (0.01) 0.23 (0.00)

CTDD

FP Orch 69.67 (1.00) 29.95 (7.96) 89.07 (3.72) 41.06 (2.18)
FP Auto 62.48 (2.00) 38.19 (17.16) 96.79 (3.27) 44.65 (1.97)
LS Orch 71.68 (2.10) 24.80 (9.47) 72.98 (4.12) 34.83 (1.43)
LS Auto 67.89 (2.21) 20.03 (7.29) 114.26 (11.52) 48.34 (2.34)
PN Orch 76.80 (1.81) 2121.32 (238.43) 92.72 (4.72) 56.76 (2.67)
PN Auto 74.64 (1.20) 64.49 (4.08) 115.24 (2.89) 28.77 (1.91)

Comparison of methods for learning agent behavior. The choice of the learning
method significantly impacts both control-flow and cycle time accuracy. Remarkably,

22

the simple frequentist method outperforms others in control-flow accuracy, achieving
the best or second-best NGD in all 9 logs. While the LSTM methods consistently
perform only slightly worse, Petri nets fall substantially behind, often exhibiting 2 to
3 times higher NGD values. In terms of the cycle time, the results are more mixed
among the three methods, with Petri nets and the frequentist approaches being slightly
better than LSTMs. Overall, the Frequentist probabilities method seems to provide
an accurate and scalable alternative for learning agent behavior compared to the
other two methods, which currently are state-of-the-art in process simulation. While
Petri nets nets seem significantly worse at capturing the control-flow, LSTM networks
achieve comparable results but require training a separate black-box model for each
log, raising efficiency and interpretability concerns compared to the simpler, statistics-
based frequentist method.

Impact of orchestrated vs. autonomous setting. While the choice of learn-
ing method has a more significant overall impact than the orchestration setting,
the observed differences between orchestrated and autonomous settings highlight the
importance of considering this process perspective. The influence of the setting on
performance varies depending on both the selected method and the characteristics of
the simulated process.

For instance, the frequentist method and LSTM networks generally yield compara-
ble results across orchestrated and autonomous settings, with notable exceptions such
as the Production and C.1000 logs. In the Production log, the orchestrated setting
aligns well with the structured nature of production processes, resulting in superior
performance. Conversely, in the C.1000 log, the autonomous setting offers distinct
advantages: the frequentist method achieves a CTDD of 28.13, nearly halving the error
observed in the orchestrated setting. For Petri nets, the setting exerts a more pro-
nounced impact. Orchestrated settings often yield better results across both metrics.
However, the autonomous setting occasionally excels for some logs such as BPI17W,
where it achieves the best-in-class CTDD.

Overall, and particularly for the frequentist and LSTM-based approaches, the
impact of the agent behavior setting remains relatively minor. This limitation primar-
ily stems from the restricted availability of event logs suitable for simulation. Only nine
publicly available event logs contain both start and end timestamps for each activ-
ity, and most of these logs either originate from synthetically generated orchestrated
process models or represent real-world orchestrated workflows, where resource-level
decision-making plays only a minor role in process execution. To address this gap,
our final evaluation examines agent behavior settings in a more decentralized process
environment.

4.3 Evaluation 3: Comparison of Orchestrated and
Autonomous Behavior in Synthetic Process

To provide a more controlled scenario for assessing the impact of modeling autonomous
behavior, we generated a synthetic event log representing our motivating credit appli-
cation process (see Figure 1). This process involves distinct agents with varying
capabilities, availabilities, and specific interaction patterns. The event log contains

23

1000 cases executed by six agents, with each case consisting of five activities. The
event log is publicly available through our repository.

The resources in this process exhibit the following key differences:
• All human resources work from Monday to Friday, 9 a.m. to 5 p.m., except for
Maria, who is only available from Monday to Wednesday.

• Oliver follows a different execution order for checking income sources and credit
history compared to Steve and Angela.

• Angela exclusively collaborates with Patrick, while Steve and Oliver only
collaborate with Maria.

Table 8 Comparison of orchestrated (Orch) and autonomous (Auto) behavior using the
frequentist approach of AgentSimulator for the synthetic credit application process. The best value
per metric according to a paired t-test is marked in bold.

Method
Metrics

NGD AEDD CEDD REDD CTDD

FP Orch 0.07 (0.01) 40.89 (0.52) 0.32 (0.02) 14.43 (0.06) 39.11 (0.13)
FP Auto 0.01 (0.01) 14.63 (0.41) 0.32 (0.02) 6.89 (0.52) 20.04 (1.30)

Angela Marie Oliver Patrick Steve
To

An
ge

la
M

ar
ie

Ol
iv

er
Pa

tri
ck

St
ev

e
Sy

st
em

Fr
om

0.5 0.0 0.0 0.5 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.5 0.5 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.5 0.0 0.0 0.5

0.4 0.0 0.4 0.0 0.2

Test

Angela Marie Oliver Patrick Steve
To

An
ge

la
M

ar
ie

Ol
iv

er
Pa

tri
ck

St
ev

e
Sy

st
em

Fr
om

0.0 0.2 0.2 0.4 0.2

0.0 0.4 0.0 0.6 0.0

0.2 0.1 0.1 0.5 0.1

0.0 0.3 0.0 0.7 0.0

0.2 0.2 0.2 0.4 0.0

0.4 0.0 0.3 0.0 0.3

Orchestrated

Angela Marie Oliver Patrick Steve
To

An
ge

la
M

ar
ie

Ol
iv

er
Pa

tri
ck

St
ev

e
Sy

st
em

Fr
om

0.5 0.0 0.0 0.5 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.5 0.5 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.5 0.0 0.0 0.5

0.4 0.0 0.4 0.0 0.2

Autonomous

Fig. 4 Resource interactions for the synthetic credit application process.

Table 8 presents the results of simulating this process using the frequentist
approach of AgentSimulator under both orchestrated and autonomous settings. Across
all metrics, the autonomous setting significantly outperforms the orchestrated one,
except for the CEDD metric, where both settings perform similarly.

The superior performance of the autonomous setting can be attributed to two key
factors. First, it better represents time- and congestion-related dynamics by preserving
real interaction constraints, such as the lack of collaboration between Angela and
Maria or between Steve, Patrick, and Oliver. Second, it better captures the control-
flow by explicitly modeling the different execution orders used by clerks, particularly
accounting for Oliver’s distinct behavior.

A crucial limitation of the orchestrated setting is its inability to model realistic
workload distributions. Since Maria works only part-time, the orchestrated approach,

24

which assigns cases to the next available resource without explicitly modeling han-
dovers, fails to capture realistic delays. For example, it allows for handovers from Steve
to Patrick when Maria is unavailable even though this has never been observed in the
event log, artificially reducing waiting times. Consequently, the orchestrated model
underestimates cycle times by failing to simulate the workload bottlenecks caused by
Maria’s limited availability.

Finally, Figure 4 illustrates the accuracy of resource interaction modeling in both
settings. While the autonomous approach precisely reproduces the interaction pat-
terns observed in the test log, the orchestrated approach completely disregards these
patterns, leading to unrealistic resource allocations.

5 Related Work

This section briefly discusses related work on automated BPS and agent-based
modeling and simulation.

Automated BPS. We can divide existing literature on automated BPS approaches
into three categories: Data-Driven Process Simulation (DDPS), Deep Learning (DL),
and hybrid approaches. DDPS approaches automate simulation model discovery from
event logs by initially identifying a process model and then enhancing it with simu-
lation parameters. A semi-automated approach using colored Petri nets is proposed
in Rozinat et al. (2009), while Khodyrev and Popova (2014) introduces a data-driven
approach without considering resources. A more recent approach is Simod (Camargo
et al., 2020), which improves upon Rozinat et al. (2009) and incorporates hyperpa-
rameter tuning. Later, López-Pintado and Dumas (2022) extended Simod by modeling
differentiated resources. DL approaches for BPS typically rely on recurrent neural
networks. LSTM models are employed in Tax et al. (2017) to predict events and times-
tamps, later improved upon by DGEN (Camargo et al., 2019), incorporating n-grams
and embeddings. Due to their black-box nature, DL models are not applicable for
what-if analysis. Hybrid models combine DDPS and DL approaches. DSIM (Camargo
et al., 2022) combines a stochastic process model with DL for event timestamping,
extended by RIMS that integrates predictions at runtime (Meneghello et al., 2023).

Agent-based modeling and simulation. Over the past decades, the application
of MAS to various domains has been studied extensively (cf. Dorri et al. (2018) for
a review). Applying agents to Business Process Management (BPM) was initially
proposed in the 1990’s (Jennings et al., 1996), where a business process is modeled
as a system of negotiating agents. More recently, the concept of agent system min-
ing has been introduced, recognizing that processes often emerge from interactions
of autonomous agents (Tour et al., 2021), as demonstrated by an agent-based dis-
covery algorithm (Tour et al., 2023), and also shown for simulation (Halaška and
Šperka, 2018). Furthermore, the recent proposal of agent system event data provides
a promising data model for discovering meaningful agent types from event logs (Shen
et al., 2025). A general introduction to agent-based BPS can be found in Sulis and
Taveter (2022). However, such agent-based simulation approaches in BPM rely on
manual configurations to simulate a specific process, e.g., in a factory production

25

domain (Dornhöfer et al., 2020). To the best of our knowledge, our approach is the
first to use event logs to automatically infer MAS models for process simulation.

6 Conclusion

This paper introduced AgentSimulator—an agent-based approach for data-driven
business process simulation. Our approach discovers a multi-agent system from
an event log, representing real-world actors and systems, each characterized by
unique behaviors and interaction patterns. The discovered multi-agent system is then
used to simulate the execution of the process. Our resource-first approach provides
more means to capture distinct resource behaviors and interactions than traditional
control-flow-first approaches and achieves state-of-the-art results.

The evaluation highlights that centrally orchestrated and decentralized processes
often require different modeling approaches, with AgentSimulator automatically
adapting to both scenarios. However, the dominance of orchestrated event logs in sim-
ulation datasets limits the extent to which autonomous behavior can demonstrate its
advantages. Moreover, our findings indicate that simple statistical methods for learning
agent behavior—responsible for determining the next activity and resource in an ongo-
ing case—often rival or outperform more complex techniques such as LSTM networks
and Petri nets, raising questions about the efficiency of these advanced methods.

Modeling human behavior remains a challenging task. While AgentSimulator effec-
tively captures certain agent-specific behaviors, other factors, such as multitasking,
may require additional dedicated modeling efforts. Additionally, AgentSimulator cur-
rently does not account for dynamic resource behaviors, such as improvements in
activity processing durations over time due to learning effects. Our analysis comparing
orchestrated and autonomous agent behavior settings is also limited by the availability
of suitable event logs for simulation, particularly those derived from knowledge-
intensive processes. To advance research in resource-centric simulation and simulation
in general, it is crucial to develop and prepare more real-life event logs from a diverse
range of application domains that are readily usable for simulation. This would allow
for a more comprehensive comparison of different configurations of AgentSimulator
across varying degrees of freedom in knowledge-intensive processes. Finally, we plan
to enhance the usability of AgentSimulator by integrating the capability for conduct-
ing what-if analyses and providing a visual process representation, to increase its user
adoption and provide an accessible framework for other researchers to contribute to
the field of resource-centric simulation.

Statements and Declarations

Ethics approval and consent to participate

Not applicable

Funding

No funding was received to assist with the preparation of this manuscript.

26

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Availability of data and materials

The implementation, datasets, experimental details, and obtained raw results are
available through the repository linked in the Evaluation section.

Authors’ contributions

All authors contributed to the work’s conception; L.K. suggested the main idea, imple-
mented the approach, and conducted the experiments; L.K., R.B., T.K., and H.A.
wrote and revised the manuscript throughout all its versions.

References

Augusto, A., R. Conforti, M. Dumas, M.L. Rosa, and A. Polyvyanyy. 2019. Split
miner: automated discovery of accurate and simple business process models from
event logs. Knowl. Inf. Syst. 59 (2): 251–284 .

Berti, A., S.J. van Zelst, and D. Schuster. 2023. Pm4py: A process mining library for
python. Softw. Impacts 17: 100556 .

Camargo, M., M. Dumas, and O. González-Rojas. 2020. Automated discovery of
business process simulation models from event logs. Decision Support Systems 134:
113284 .

Camargo, M., M. Dumas, and O.G. Rojas 2019. Learning accurate LSTM models of
business processes. In BPM. Springer.

Camargo, M., M. Dumas, and O.G. Rojas 2022. Learning accurate business pro-
cess simulation models from event logs via automated process discovery and deep
learning. In CAiSE. Springer.

Chapela-Campa, D., I. Benchekroun, O. Baron, M. Dumas, D. Krass, and
A. Senderovich 2023. Can I trust my simulation model? measuring the quality of
business process simulation models. In BPM. Springer.

Chapela-Campa, D. and M. Dumas. 2024. Enhancing business process simulation
models with extraneous activity delays. Information Systems 122: 102346 .

Dornhöfer, M., S. Sack, J. Zenkert, and M. Fathi. 2020. Simulation of smart factory
processes applying multi-agent-systems—a knowledge management perspective.
JMMP 4 (3) .

Dorri, A., S.S. Kanhere, and R. Jurdak. 2018. Multi-agent systems: A survey. IEEE
Access 6: 28573–28593 .

27

Dumas, M. 2021. Constructing digital twins for accurate and reliable what-if busi-
ness process analysis. In I. Beerepoot, C. D. Ciccio, A. Marrella, H. A. Reijers,
S. Rinderle-Ma, and B. Weber (Eds.), Proceedings of the International Workshop
on BPM Problems to Solve Before We Die (PROBLEMS 2021) co-located with
the 19th International Conference on Business Process Management (BPM 2021),
Rome, Italy, September 6-10, 2021, Volume 2938 of CEUR Workshop Proceedings,
pp. 23–27. CEUR-WS.org.

Dumas, M., M.L. Rosa, J. Mendling, and H.A. Reijers. 2013. Fundamentals of Business
Process Management. Springer.

Halaška, M. and R. Šperka. 2018. Is there a need for agent-based modelling and
simulation in business process management? Organizacija 51 (4): 255–269 .

Jennings, N.R., P. Faratin, M.J. Johnson, T.J. Norman, P.D. O’Brien, and M.E. Wie-
gand. 1996. Agent-based business process management. Int. J. Cooperative Inf.
Syst. 5 (2&3): 105–130 .

Kazil, J., D. Masad, and A.T. Crooks 2020. Utilizing python for agent-based modeling:
The mesa framework. In Social, Cultural, and Behavioral Modeling: 13th Interna-
tional Conference, SBP-BRiMS 2020, Washington, DC, USA, October 18–21, 2020,
Proceedings 13, Volume 12268, pp. 308–317. Springer.

Khodyrev, I. and S. Popova 2014. Discrete modeling and simulation of business
processes using event logs. In ICCS. Elsevier.

Kirchdorfer, L., R. Blümel, T. Kampik, H. van der Aa, and H. Stuckenschmidt 2024.
Agentsimulator: An agent-based approach for data-driven business process simula-
tion. In 6th International Conference on Process Mining, ICPM 2024, Kgs. Lyngby,
Denmark, October 14-18, 2024, pp. 97–104. IEEE.

Leemans, S.J.J., D. Fahland, and W.M.P. van der Aalst 2013. Discovering block-
structured process models from event logs containing infrequent behaviour. In
N. Lohmann, M. Song, and P. Wohed (Eds.), Business Process Management Work-
shops - BPM 2013 International Workshops, Beijing, China, August 26, 2013,
Revised Papers, Volume 171 of Lecture Notes in Business Information Processing,
pp. 66–78. Springer.

López-Pintado, O. and M. Dumas 2022. Business process simulation with differenti-
ated resources: Does it make a difference? In BPM. Springer.

López-Pintado, O. and M. Dumas 2023. Discovery and simulation of business processes
with probabilistic resource availability calendars. In ICPM. IEEE.

Meneghello, F., C.D. Francescomarino, and C. Ghidini 2023. Runtime integration of
machine learning and simulation for business processes. In ICPM. IEEE.

28

Meneghello, F., C.D. Francescomarino, C. Ghidini, and M. Ronzani. 2025. Runtime
integration of machine learning and simulation for business processes: Time and
decision mining predictions. Inf. Syst. 128: 102472 .

North, M.J. and C.M. Macal. 2007. Managing Business Complexity: Discover-
ing Strategic Solutions with Agent-Based Modeling and Simulation. USA: Oxford
University Press, Inc.

Rozinat, A., R.S. Mans, M. Song, and W.M.P. van der Aalst. 2009. Discovering
simulation models. Inf. Syst. 34 (3): 305–327 .

Russell, S. and P. Norvig. 2020. Artificial Intelligence: A Modern Approach (4th
Edition). Pearson.

Shen, Q., A. Polyvyanyy, N. Lipovetzky, and T. Kampik 2025. Agent system
event data: Concepts, dimensions, applications. In W. Maass, H. Han, H. Yasar,
and N. Multari (Eds.), Conceptual Modeling, Cham, pp. 56–72. Springer Nature
Switzerland.

Sulis, E. and K. Taveter. 2022. Agent-Based Business Process Simulation - A Primer
with Applications and Examples. Springer.

Tax, N., I. Verenich, M.L. Rosa, and M. Dumas 2017. Predictive business process
monitoring with LSTM neural networks. In CAiSE. Springer.

Tour, A., A. Polyvyanyy, and A.A. Kalenkova. 2021. Agent system mining: Vision,
benefits, and challenges. IEEE Access 9: 99480–99494 .

Tour, A., A. Polyvyanyy, A.A. Kalenkova, and A. Senderovich 2023. Agent miner: An
algorithm for discovering agent systems from event data. In BPM. Springer.

van der Aalst, W.M.P. 2015. Business process simulation survival guide, In Handbook
on Business Process Management 1, Introduction, Methods, and Information Sys-
tems, 2nd Ed, eds. vom Brocke, J. and M. Rosemann, International Handbooks on
Information Systems, 337–370. Springer.

29

	Introduction
	Motivation
	Our Approach: AgentSimulator
	Definitions
	Phase 1: MAS Discovery
	Agent Instantiation
	Agent Schedule
	Agent Capabilities
	Agent Behavior
	General Simulation Parameters
	Output of Phase 1

	Phase 2: Simulation

	Experiments and Results
	Evaluation 1: Simulation Performance
	Experimental Setup
	Results

	Evaluation 2: Assessment of AgentSimulator Configurations
	Experimental Setup
	Results

	Evaluation 3: Comparison of Orchestrated and Autonomous Behavior in Synthetic Process

	Related Work
	Conclusion

