
A Divide-and-Conquer Approach for Modeling
Arrival Times in Business Process Simulation

Lukas Kirchdorfer⋆1,2, Konrad Özdemir⋆2,
Stjepan Kusenic2, Han van der Aa3, and Heiner Stuckenschmidt2

1 SAP Signavio, Walldorf, Germany
lukas.kirchdorfer@sap.com

2 Data and Web Science Group, University of Mannheim, Germany
{konrad.oezdemir, heiner.stuckenschmidt}@uni-mannheim.de

3 Faculty of Computer Science, University of Vienna, Austria
han.van.der.aa@univie.ac.at

Abstract. Business Process Simulation (BPS) is a critical tool for ana-
lyzing and improving organizational processes by estimating the impact
of process changes. A key component of BPS is the case-arrival model,
which determines the pattern of new case entries into a process. Although
accurate case-arrival modeling is essential for reliable simulations—as
it influences waiting and overall cycle times—existing approaches often
rely on oversimplified static distributions of inter-arrival times. These
approaches fail to capture the dynamic and temporal complexities in-
herent in organizational environments, leading to less accurate and reli-
able outcomes. To address this limitation, we propose Auto Time Ker-
nel Density Estimation (AT-KDE), a divide-and-conquer approach that
models arrival times of processes by incorporating global dynamics, day-
of-week variations, and intraday distributional changes, ensuring both
precision and scalability. Experiments conducted across 20 diverse pro-
cesses demonstrate that AT-KDE is far more accurate and robust than
existing approaches while maintaining sensible execution time efficiency.

Keywords: Business process simulation · Time series segmentation ·
Kernel density estimation · Process mining.

1 Introduction

Business Process Simulation (BPS) is a key tool to support the redesign of orga-
nizational processes and their underlying information systems [1]. By being able
to establish digital process twins [7], BPS can be used to estimate the impact of
process improvement ideas on performance indicators such as cycle time. This
may include the implementation of a new system or the roll-out of a new pro-
cess version. By providing such estimates in advance, process simulation has the
potential to drastically improve the efficiency and reduce the risks of redesign
efforts for decision-makers [8]. However, the effectiveness of BPS heavily relies on
⋆ Equal contribution

2 L. Kirchdorfer and K. Özdemir et al.

the availability of a simulation model that accurately mimics the real-world be-
havior of a process, since only accurate models can provide trustworthy insights
into the impact of a redesign. Given that the manual construction of simulation
models is time-consuming and error-prone [1], various automated approaches
have been developed for discovering BPS models from historical execution data
contained in event logs [3,4,11,17,20]. Usually, such data-driven simulators dis-
cover a process model and augment it with simulation parameters, such as a
case-arrival model and activity processing times.

In this work, we argue that existing data-driven BPS approaches have a clear
limitation when it comes to the manner in which they model the arrival of new
cases, a factor shown to critically impact simulation outcomes [16]. Specifically,
most approaches in BPS use a static distribution to represent the case-arrival
model. However, static models cannot account for dynamic organizational envi-
ronments with varying arrival rates over time, as their parameters are inherently
time-invariant. Consequently, these models are unable to adapt to environmen-
tal changes driven by global seasonalities, local weekday patterns, or intraday
fluctuations. For instance, patient arrivals in a hospital emergency department
vary considerably, spiking during flu season, decreasing on weekends, and surg-
ing in the mornings compared to late nights. Failing to capture such variations
in a case-arrival model means that simulation results obtained from it will not
reflect realistic loads of the system, despite this having a tremendous impact on
factors such as resource utilization, waiting time, and cycle time.

Therefore, we use this work to propose Auto Time Kernel Density Estima-
tion (AT-KDE), an approach for modeling arrival times in BPS. AT-KDE com-
bines a divide-and-conquer strategy with Kernel Density Estimation (KDE) [18]
to iteratively segment the arrival time series and learn the segments’ distribu-
tions non-parametrically. Thereby, it captures varying patterns at multiple time-
related levels. Our approach enables precise and scalable arrival time modeling
by explicitly accounting for global dynamics like seasonalities or drifts, day-
of-week variations, and time-specific distributions within a day, most of which
are ignored by existing approaches. Our extensive evaluation across 20 different
processes demonstrates that AT-KDE is considerably more accurate and robust
than existing approaches used in BPS and approaches from other domains.

The remainder starts by discussing related work in Section 2, before motivat-
ing our approach in Section 3. Afterwards, Section 4 describes our approach for
modeling and simulating arrival times with an experimental evaluation in Sec-
tion 5. Finally, Section 6 concludes our work.

2 Related Work

This section reviews work on modeling arrivals in BPS and in other domains.
Approaches Applied in BPS. Arrival modeling in BPS, so far, predominantly
employs static approaches, with only one dynamic alternative.
Static Approaches. Case arrivals are typically simulated by sampling from a fit-
ted probability distribution of inter-arrival times and cumulatively adding those

A Divide-and-Conquer Approach for Modeling Arrival Times 3

samples to attain the concrete case’s arrival timestamps. The respective inter-
arrival times are typically modeled using an exponential distribution with a con-
stant rate [1], as seen in Rozinat et al.’s simulation model [20]. Martin et al. [16]
similarly adopt the gamma distribution—a generalization of the exponential. A
more recent approach by Camargo et al. [3] relaxes the apriori selection by al-
lowing for a discovery of the best-fitting distribution from a predefined set of
distributions. This has been adopted also by other BPS approaches [11,15].
Dynamic Approaches. Differently to fitting a distribution on inter-arrival times,
two BPS approaches [4,17] use Prophet [22] to decompose time series into trend,
seasonality, holidays, and error components. It is used to predict hourly ar-
rival counts, which are then uniformly distributed within each hour to form
timestamps. Although it improves upon static approaches, Prophet has notable
limitations for process simulation, as we will discuss in Section 3.
Approaches Used Beyond BPS. The simulation of process arrivals can also
be viewed as a (dynamic) time series forecasting problem, relevant in many sce-
narios beyond BPS, with approaches categorized into Classical and ML Models.
Classical Models. Classical time series models provide a reliable basis for forecast-
ing temporal events. A notable example is the Autoregressive Integrated Moving
Average (ARIMA) model, which predicts future values by leveraging past ob-
servations and error terms. Its robust framework is well established, though it
requires careful stationarity checks and parameter tuning, limiting its out-of-the-
box use [10]. Despite this, ARIMA remains versatile and efficient; e.g., with ap-
plications in healthcare, finance, and energy [13]. Another established approach
is the Hawkes Process. This nonhomogeneous, self-exciting point process (NPP)
captures temporal clustering, making it ideal for scenarios where current events
trigger future arrivals. It has gained significant attention in queuing systems [6].
However, due to its inherently parametric nature, we consider it to be static.
ML Models. In recent years, machine learning models have emerged as a powerful
complement to classical approaches by directly modeling complex relationships
in temporal data. The Long Short-Term Memory (LSTM) network, a recurrent
neural network variant, is widely used to capture long-term dependencies and
forecast events in environments with complex temporal dynamics [14]. Ensem-
ble methods such as XGBoost have also been applied effectively to arrival time
forecasting, offering competitive performance by exploiting non-linear interac-
tions in the data [19]. More recently, frameworks like Chronos, which build upon
advances in foundation time series modeling, have been proposed to leverage
large-scale data and pre-trained representations [2].

Our experiments will show that static methods ignore pattern variability
and dynamic methods lack robustness and incur high computational costs; in
contrast, AT-KDE captures process dynamics both efficiently and robustly.

3 Motivation

In this section, we highlight the critical impact of case arrivals on the accuracy of
BPS outcomes. Using a loan application process as an example, we examine how

4 L. Kirchdorfer and K. Özdemir et al.

different types of dynamics influence arrival patterns and complicate the extrac-
tion of a reliable arrival model from process data. We then show that existing
arrival modeling approaches used in BPS fail to account for these dynamics,
leading to inaccurate arrival estimates and, thus, poor simulation accuracy.
Understanding Arrival Behavior. To illustrate the intricate complexities
within arrival data, we consider a loan application process (cf. [8, Chapter 10.8])
during a period of changing interest rates (data available in [12]) and focus on
arrivals of new applications, visualized in Figure 1. Within this scenario, we can
expect various types of dynamics leading to variations in arrival rates over time:
– Intraday Dynamics. The arrival pattern can change over the course of a single

day. For instance, customers may be more likely to submit loan applications
in the morning, with fewer arrivals in the evening or overnight.

– Weekday Dynamics. The arrival pattern can vary across the days of the week.
For instance, loan applications may peak on Mondays as customers submit
documents prepared over the weekend, decline gradually during the week,
and drop on weekends—especially if applications require in-person visits.

– Global Dynamics. Broader trends and external factors can alter arrival rates
over extended periods. In our scenario, rising interest rates driven by inflation
due to a market crash may lead to a sudden decline in loan applications,
followed by a gradual recovery as economic conditions stabilize.

Note that we define global dynamics to include all variations beyond weekly
patterns, such as seasonal trends (e.g., peaks at the beginning of the month),
long-term drifts (e.g., evolving financial policies), and one-off events (e.g., eco-
nomic shocks). While some of these changes are predictable, others are sudden
and disruptive. By explicitly modeling even one-off events, we separate their im-
pact from recurring patterns, leading to more accurate future arrival estimates
without distortions by past anomalies.

Fig. 1: 7-Day rolling average of arrival count in the loan application process.

Limitations of Existing Approaches in BPS. Given the above illustration,
we postulate that an effective approach for deriving an arrival model from data

A Divide-and-Conquer Approach for Modeling Arrival Times 5

should take these three dynamics into account, i.e., it needs to be able to consider
potentially varying arrival patterns on the intraday, weekday, and global level.

Moreover, from this perspective, we argue that existing approaches used in
BPS fail to do so, leading to poor arrival estimates as shown in the green-shaded
area of Figure 1. Static approaches ignore all three dynamics by assuming a
single distribution over inter-arrival times. For instance, Best Distribution [3],
which fits a parameterized distribution to the inter-arrival times just fluctuates
around the naive Mean baseline. Prophet, a dynamic approach, appears to cap-
ture weekday and global variations to some extent but neglects intraday patterns,
as its common implementation in BPS approaches [4, 17] estimates arrivals per
time unit and distributes them randomly, lacking a direct mechanism for pre-
cise timestamp estimation. In our loan process, Prophet greatly exaggerates the
gradual trend, which we suspect to be a general problem due to a lack of autore-
gressive components [22]. In contrast, the green line representing our AT-KDE
approach (detailed in the next section) shows that more accurate arrivals can be
generated by appropriately taking dynamics at different levels into account.
Impact on BPS Accuracy. We compare arrival modeling approaches in the
loan application process to demonstrate how poor arrival estimates—e.g., those
that ignore temporal dynamics—can degrade simulation accuracy. We employ
AgentSimulator [11] to discover a BPS model and simulate process executions,
evaluating results against a held-out test set using the current state-of-the-art
BPS evaluation framework [5]. Focusing on time and congestion perspectives,
we report distribution distances for cycle time (CTDD), absolute event time
(AEDD), circadian event time (CEDD), and relative event time (REDD).

Table 1: Simulation accuracy for different arrival models (lower is better).
Arrival approach CTDD AEDD CEDD REDD

Mean 114.53 146.86 0.20 118.23
Best Distribution 112.67 145.47 0.24 115.97
Prophet 504.65 605.26 0.83 433.67
AT-KDE 54.08 85.59 0.12 56.18

Table 1 suggests that (i) simulation quality varies greatly depending on the
chosen arrival approach, and (ii) AT-KDE consistently achieves the most ac-
curate results. For instance, AT-KDE yields a CTDD of 54.08, caused by an
average simulated cycle time of 119 hours, compared to 143 hours in the ground
truth, 29 hours with Best Distribution, and 640 hours with Prophet. These de-
viations reflect arrival estimation errors (cf. Figure 1): Best Distribution under-
estimates arrivals, shortening cycle times, while Prophet overestimates them,
inflating delays. Now, consider a simulation used to assess whether hiring an
additional employee would reduce application-to-decision times. If the arrival
model significantly misrepresents the actual workload—as with Best Distribu-
tion or Prophet—the simulation’s outcome may be misleading, potentially caus-
ing costly or ineffective staffing decisions. These results highlight the critical
need for accurate arrival modeling to ensure simulation outcomes are realistic.

6 L. Kirchdorfer and K. Özdemir et al.

4 Approach

This section presents our AT-KDE approach for modeling and simulating arrival
times in BPS. Its input, output, and main steps are as follows:
Input. Our approach takes as input an arrival dataset, denoted by D = (ti)Ni=1.
This dataset is a sequence of N sequences, where each ti represents the sequence
of arrival timestamps on a day i ∈ {1, . . . , N}. Note that the length of ti varies.
Output. Similar to its input, our approach generates as output another sequence
of sequences of arrival timestamps D′ = (t̃i)Ñi=1 over Ñ days.
Approach Steps. The overarching goal is to simulate realistic arrival times by
discovering a case-arrival model that explicitly captures the dynamic nature of
organizational environments. To achieve this, our divide-and-conquer AT-KDE
approach consists of five main steps, as visualized in Figure 2. The first three
steps make up the divide phase, where the arrival dataset is partitioned into
subsets to address the different types of dynamics outlined in Section 3. In the
conquer phase, steps 4 and 5 focus on learning a separate KDE model for each
subset and combining these models to generate new arrivals.
1. Global Segmenting and Clustering. Given the arrival dataset D, we account

for global dynamics by identifying change points that signal potential drifts
or seasonalities in the data. These change points divide the dataset into
segments, capturing periods of consistent arrival patterns. To group similar
patterns, the segments are clustered into a set of J ≥ 1 segment clusters
{D1, . . . , DJ}, where each cluster contains one or more segments from D.

2. Weekday Clustering. Given a segment cluster Dj , we account for weekday dy-
namics by grouping weekdays with similar arrival patterns. Thus, we divide
the global cluster Dj into weekday clusters {W j

1 , . . . ,W
j
Kj

}. If no clusters
are found we obtain the upper bound (number of days in a week): Kj = 7.

3. Intraday Binning. Given a weekday cluster W j
k , we account for intraday

dynamics by dividing a day ti ∈ W j
k into L ∈ N equally long bins.

4. Inter-arrival Learning via KDE. The arrival dataset D is now divided into
multiple disjoint subsets. Each of those contains sequences of arrival times-
tamps that exhibit similar characteristics. Next, for each subset, a separate
KDE-model is fitted to the inter-arrival times, resulting in an ensemble of
KDE-models that collectively capture the diverse dynamics of the data.

5. Arrival Generation. Finally, we iteratively sample from the KDE-model en-
semble to generate new arrival timestamps for the simulation period, result-
ing in the output arrival dataset D′.

4.1 Step 1: Global Segmenting and Clustering

The first step focuses on identifying global dynamics in the arrival dataset D,
such as seasonalities or concept drifts. As outlined in Algorithm 1, this is achieved
by three key phases: Data Transformation transforms the arrival dataset into a
higher-level representation, enabling the detection of meaningful change points

A Divide-and-Conquer Approach for Modeling Arrival Times 7

M T
W T
F S
S

1. Global Segmenting
& Clustering

2. Weekday
Clustering

5. Arrival
Generation

4. Inter-arrival
Learning via KDE

ARRIVALS

3. Intraday
Binning

Fig. 2: Workflow of the modeling methodology of our AT-KDE approach.

and clustering of the resulting segments based on statistical similarity in the
Segmentation and Clustering phase. Finally, the Solution Validation phase eval-
uates the admissibility of the identified segment clusters by checking if they meet
a set of predefined requirements.

Algorithm 1 ClusterGlobalSegments
Input: Arrival dataset D, window size ω, max clusters kmax, sensitivity range Z
Output: Set of global segment clusters G = {D1, . . . , DJ}, cluster labels L
1: ▷ Data Transformation
2: M ← GetArrivalCountSequence(D)
3: MA ← ComputeMovingAverages(M,ω)
4: Λ← ComputeSlidingWindowDifferences(MA, ω)
5: ▷ Segmentation and Clustering
6: for z ∈ Z do
7: C ← DetectChangePoints(Λ, z)
8: S ← GetSegments(C,D)
9: G,L ← ClusterSegments(S)

10: lens ← GetSegmentLengthsInDays(S)
11: ▷ Solution Validation
12: if min(lens) < ω or |S| < 2 or |unique(L)| ≥ kmax then
13: if z == FinalElementOf(Z) then
14: G ← {D};L ← ⟨1⟩
15:15: else
16: break
17:17:17: return G,L

Data Transformation. First, we aggregate the arrival dataset D into a se-
quence of daily arrival counts M , where each Mi = |ti| represents the number of
arrivals on day i, for i = 1, . . . , N (Line 2). This aggregation forms the basis for
detecting global dynamics. Next, we compute the moving averages MA based on
M using a window size ω ∈ N (Line 3). This smoothing reduces noise and high-
lights trends in the arrival counts. The moving average at position i is calculated

8 L. Kirchdorfer and K. Özdemir et al.

as MA,i = ω−1
∑i+ω−1

k=i Mk, i = 1, . . . , N−ω+1. We then calculate the sequence
of sliding window differences Λ based on MA (Line 4), which measures the aver-
age change between two consecutive moving windows: Λi = MA,i+ω −MA,i, for
i = 1, . . . , N − 2ω + 1. This sequence captures the rate of change in MA, where
larger absolute values indicate more significant shifts in arrival patterns.

Segmentation and Clustering. Given the sequence of sliding window differ-
ences Λ, we proceed with identifying change points and clustering the resulting
segments. The segment clustering serves two main purposes: it mitigates vari-
ance inflation due to data scarcity by combining data from similar segments,
and it reveals global patterns given by the ordering of segment clusters, which
is essential for simulating new arrival data D′ in later steps.

DetectChangePoints: We detect change points in the manner of outlier de-
tection: We begin with some sensitivity parameter value z ∈ Z ⊆ (0, 1], con-
trolling the strictness of the outlier detection, and compute a change factor
CF = 1.5 × IQR × z, where IQR = Q3 − Q1 is the interquartile range given
by the first (Q1) and third (Q3) quartiles of Λ. The factor of 1.5 is a standard
rule-of-thumb from box plot construction that defines the whiskers outside of the
IQR to flag potential outliers, balancing sensitivity to extremes with robustness.
Then, indices where Λi falls outside the range R = [Q1−CF, Q3+CF] are iden-
tified as candidate change points: C̃ = {i | Λi /∈ R}. To assign only one change
point to each drift, we constrain C̃: For each set of consecutive outlier-indices
G ⊆ C̃, we select the index i ∈ G with the maximum absolute value of Λi. The
set of change points is then defined as C = {i ∈ G | i = argmaxj∈G |Λj |}.

GetSegments: The identified change points C partition D into a collection of
disjoint segments S = {D̃1, D̃2, . . . } (Line 8). Each D̃s corresponds to a period
between two change points and reflects a consistent arrival pattern. For instance,
in our motivating loan application process in Figure 1, three change points are
detected during the training period: Start inflation, Start gradual decrease of
inflation, and End inflation, resulting in four adjacent segments.

ClusterSegments: We next group segments with similar arrival patterns through
clustering (Line 9). To do this, we characterize each segment via six statistical
features: the average number of arrivals per day, the 25th and 75th percentiles
of daily arrivals, the standard deviation of inter-arrival times, and the 25th and
75th percentiles of inter-arrival times. After standardizing these features (remov-
ing the mean and scaling to unit variance), and to avoid assuming the number of
clusters apriori, we apply DBSCAN [9] to label segments. Each unique label in
L corresponds to a cluster Dj ∈ G, j ∈ {1, . . . , J}, J ≤ |S|, denoting the disjoint
union of all segments whose arrival sequences exhibit similar patterns.

Solution Validation. Finally, we assess the admissibility of the segmentation
and clustering results (Lines 10–17). Each segment must span at least ω days to
capture meaningful global dynamics—shorter patterns are addressed in subse-
quent steps—ensuring segments are of sufficient length. Additionally, there must
be at least two segments (|S| ≥ 2) to identify data changes, and fewer than kmax

clusters to ensure each provides enough data for robust model fitting following
subsequent steps. If these conditions are not met for the current sensitivity pa-

A Divide-and-Conquer Approach for Modeling Arrival Times 9

rameter z, we proceed to the next value in Z. If no value in Z yields an admissible
solution, we conclude that meaningful global change points are absent and set
G = {D} with a single cluster label L = ⟨1⟩ (Line 14).

As a result, this step divides the entire dataset into statistically more coherent
and disjoint subsets: D =

⊎J
j=1 Dj . For example, in our loan application process

(cf. Figure 1), the segments [Begin-of-data, Start inflation] and [End inflation,
End-of-data] fall into the same cluster based on similar global dynamics.

4.2 Step 2: Weekday Clustering

Step 2 addresses weekday dynamics within each global segment cluster identified
in the first step. Specifically, for each global cluster Dj , we group weekdays with
similar arrival patterns into weekday clusters {W j

1 , . . . ,W
j
Kj

}, where Kj ≤ 7, j =
1, . . . , J . This allows us to model day-of-week variations effectively. Algorithm 2
outlines this process, which is divided into two phases:

Algorithm 2 ClusterWeekdays
Input: Global clusters G = {D1, . . . , DJ}
Output: Set of weekday clusters W
1: for each global cluster Dj do
2: ▷ Weekday Data Extraction
3: for each weekday w ∈ {1, 2, . . . , 7} do
4: T j

w ← {ti ∈ Dj | weekday(ti) = w}
5: ▷ Feature Computation and Clustering
6: if T j

w ̸= ∅ then
7: f jw ← ComputeStatistics(T j

w)
8:8:8: Fj ← StandardizeFeatures({f jw | T j

w ̸= ∅})
9: WTCj ←WardClustering(Fj) ▷ Mapping from weekdays to cluster labels

10: for each cluster label k in WTCj do
11: W j

k ← {t
i ∈ Dj |WTCj(weekday(ti)) = k}

12:12: for each weekday w ∈ {1, 2, . . . , 7} do
13: if T j

w = ∅ then
14: Assign w to the special cluster W j

NoData
15:15:15:15: return W =

⋃J
j=1{W

j
1 , . . . ,W

j
Kj
}

Weekday Data Extraction. For each weekday w ∈ {1, 2, . . . , 7}, we extract all
arrival times ti that occur on that weekday within the global cluster Dj (Line 4):
T j
w = {ti | ti ∈ Dj , weekday(ti) = w}.

Feature Computation and Clustering. For each weekday w with arrivals
(i.e., T j

w ̸= ∅), we compute a feature vector f jw characterizing its arrival pat-
terns, such as the average number of arrivals per day (Lines 7–8). We then
cluster4 the feature matrix Fj to group similar weekdays, resulting in a map-
ping WTCj from weekdays to cluster labels (Line 9). Subsequently, the arrival
4 We use Ward’s method [23], but other clustering algorithms are also applicable.

10 L. Kirchdorfer and K. Özdemir et al.

times of the current global segment cluster ti ∈ Dj are assigned to weekday
clusters W j

k based on their weekdays’ cluster labels (Line 11): W j
k = {ti ∈ Dj |

WTCj(weekday(ti)) = k}. Weekdays without arrivals (i.e., T j
w = ∅) are grouped

into a separate cluster W j
NoData (Line 14). The total number of weekday clusters

Kj equals the number of unique cluster labels in WTCj , incremented by one if
empty weekdays are present. Finally, the set of weekday clusters over all global
clusters W =

⋃J
j=1{W

j
1 , . . . ,W

j
Kj

} represents the output of step 2, with each

global cluster Dj divided into disjoint subsets such that Dj =
⊎Kj

k=1 W
j
k , with

W j
k ∈ W. Since each subset W j

k is created by performing clustering within its
global cluster Dj , the elements within a subset are more similar to each other
than to those in any other subset, reflecting improved statistical coherence.

4.3 Step 3: Intraday Binning

This step addresses intraday dynamics within each weekday cluster W j
k ∈ W

identified in Section 4.2. To capture variations in arrival patterns throughout the
day, we divide each day ti ∈ W j

k into L ∈ N equally long time bins. Specifically,
we partition the time domain of a day into L consecutive intervals, where each bin
spans an equal duration (e.g., 3 hours). For each day ti(j,k) in W j

k , we segregate
the arrival times into these bins, resulting in subsets {ti(j,k,1), . . . , t

i
(j,k,L)}, where:

ti(j,k,l) represents all timestamps that occurred during the l-th bin on day ti(j,k).
Also, we obtain that each weekday cluster W j

k can now be represented via a
disjoint union of the aforementioned bins: W j

k =
⊎L

l=1 t
i
(j,k,l).

4.4 Step 4: Inter-arrival Learning via KDE

Having completed the divide phase of our approach, we are able to fully partition
the arrival dataset: D =

⊎J
j=1

⊎Kj

k=1

⊎L
l=1 t(j,k,l). Concretely, each sequence of ar-

rival times t(j,k,l) corresponds to a global cluster Dj , a weekday cluster W j
k , and

an intraday bin l, and will be associated to a separate arrival time model. By di-
viding the dataset along these temporal dimensions, we expect to mitigate much
of the underlying dynamic variability, thereby enabling an effective application
of static modeling methods. However, in contrast to static methods that fit a
parametric distribution to the inter-arrival times, we generalize this endeavor via
Kernel Density Estimation (KDE); a flexible, non-parametric tool that learns the
distribution directly from data. Briefly, the KDE for a probability density func-
tion f , given i.i.d. realizations (Xi)

n
i=1, is defined as f̂(x) = 1

nh

∑n
i=1 K

(
x−Xi

h

)
.

Here, h is termed bandwidth and K(·) the kernel function. The quality of the
estimated density f̂ depends on both K and h (cf. [18]).

Modeling each subset’s inter-arrival times with a separate KDE forms an
ensemble of models E , which we use in the final step to generate new arrivals.

A Divide-and-Conquer Approach for Modeling Arrival Times 11

4.5 Step 5: Arrival Generation

The final step of our AT-KDE approach generates new arrival data for the simu-
lation period. Algorithm 3 outlines this step, which consists of two main phases:

Time Frame Initialization. We first need to estimate which of the observed
global segment clusters best represent the future simulation period. Thus, each
to-be-simulated day i ∈ {1, . . . , Ñ} is assigned to a global segment cluster label
(Line 2). For this, we propose a procedure following two rules: 1) If the sequence
of observed global segment cluster labels L indicates a recurring pattern, we
replicate it over the simulation period by determining the order and lengths of
the segments and dividing the simulation period accordingly. For instance, if we
have four global segments with cluster labels L = ⟨1, 2, 1, 2⟩, we can observe
the recurring pattern that cluster 1 is followed by 2, which we then replicate
accordingly. 2) If no recurring pattern is found (as in our motivation in Figure 1),
we assume that the most recent global segment cluster best represents the future.

Then, we identify the earliest and latest times of the day when an arrival was
observed in the training dataset D (Line 3) to approximate the working hours
of the process. Subsequently, this range is divided into L equally long time bins
(Line 4), as also done in Section 4.3.

By default, our approach initiates the simulation of new arrivals at the start
time of the test set and generates cases over the same time span. However, it
also supports user-defined configurations, allowing for a custom simulation start
time and a specified number of cases to be generated.

Algorithm 3 GenerateArrivals

Input: Num. of days Ñ , Labels L, Segments S, Dataset D, Bins L, KDE ensemble E
Output: Generated arrival dataset D′

1: ▷ Time Frame Initialization
2: estim_segments_per_day← EstimateSegmentCluster(Ñ ,L,S)
3: lower_time, upper_time← DetermineBounds(D)
4: time_bins← CreateTimeBins(lower_time, upper_time, L)
5: ▷ Arrival Data Generation
6: D′ ← ⟨⟩ ▷ Initialize sequence of arrival sequences
7: for i ∈ {1, . . . , Ñ} do
8: current_date← GetDate(i)
9: weekday_cluster← GetWeekdayCluster(current_date)

10: estim_segment← estim_segments_per_day[i]
11: seq← ⟨⟩ ▷ Initialize arrivals for one day
12: for each bin in time_bins do
13: interarrivals← SampleInterarrivals(E , bin,weekday_cluster, estim_segment)
14: arrivals← GenerateArrivals(interarrivals, bin.start_time, bin.end_time)
15: seq.append(arrivals)
16:16: D′.append(seq)
17:17: return D′

12 L. Kirchdorfer and K. Özdemir et al.

Arrival Data Generation. We generate arrivals for each day i ∈ {1, . . . , Ñ}
in the simulation period (Line 7) by first determining the following parameters
for our generation-method: the date corresponding to day i, beginning with the
last date of the training data (Line 8) per default, the corresponding weekday
cluster (Line 9), and the estimated global segment cluster (Line 10).

Given these parameters for day i, we iterate through each time bin of that
day (Line 12) and sample inter-arrivals from the corresponding KDE in E , which
are cumulatively summed to form the actual timestamps until the end of the bin
is reached. Note that weekday clusters W j

NoData based on absent arrivals yield
no KDE model. Respective days are instead reflected via no arrivals. The final
output is the sequence of generated arrival timestamps D′.

5 Experiments and Results

This section presents the experiments used to evaluate the performance of our
AT-KDE approach for simulating arrival times. In the remainder, Section 5.1
describes the experimental setup, followed by the results in Section 5.2. Imple-
mentations and additional results can be found in our repository5.

5.1 Experimental Setup

Evaluation Data. Our evaluation is based on a diverse set of 20 event logs6
spanning domains such as financial services, public administration, and health-
care. These logs vary widely in key characteristics (details available in our repos-
itory), including the number of arrivals, time spans, and arrival rates. For ex-
ample, some processes exhibit pronounced global dynamics, such as abrupt in-
creases in daily arrivals, while others remain relatively stable. Additionally, the
logs feature a range of weekday and intraday patterns, from standard business
hours (Monday to Friday, 9am–5pm) to continuous 24/7 arrivals, offering a com-
prehensive testing ground. For each event log, we derive the arrival dataset by
selecting the earliest recorded timestamp for each case.

Benchmark Approaches. We compare our approach against seven others,
selected to ensure broad coverage of techniques from various domains:
– Mean: A simple baseline using the mean inter-arrival time to model arrivals.
– Best Distribution [3]: A static approach that selects the best fitting distri-

bution out of a set of distributions to sample new arrival timestamps from.
– Prophet [22]: A dynamic time series forecasting method estimating hourly

arrivals and distributing them uniformly within each hour to get timestamps.
– LSTM : A recurrent neural network with LSTM cell trained to predict the

next inter-arrival time based on a prefix of arrivals and temporal features.
– Chronos [2]: A pretrained time series forecaster based on language models.

5 https://github.com/konradoezdemir/AT-KDE
6 Datasets available at https://data.4tu.nl or https://zenodo.org/records/5734443

https://github.com/konradoezdemir/AT-KDE
https://data.4tu.nl
https://zenodo.org/records/5734443

A Divide-and-Conquer Approach for Modeling Arrival Times 13

– XGBoost : A gradient boosting model that predicts inter-arrival times using
engineered temporal and contextual features in a regression task.

– NPP [6]: Models arrivals as a Hawkes process with an exponential kernel,
with the intensity function capturing baseline variations and self-excitation.

Note that we augment Mean, Best Distribution, and NPP with a probabilistic
component to consider non-working days and first and last arrival timestamps
within a day, aligning with their usage in simulation models [3,11]. Initially, we
considered ARIMA-based forecasting via, for example, auto-ARIMA7. However,
automatic parameter selection proved inconsistent across datasets, frequently
yielding configurations that critically undermined the model’s performance. Re-
liable ARIMA forecasts required manual tuning per dataset, contradicting our
goal of a generalized approach; thus, we excluded ARIMA from our analysis.
Data Split. We perform a temporal hold-out split with the first 80% of cases
being in the training set and the last 20% of cases in the test set.
Hyperparameters. AT-KDE requires bandwidth optimization, which we ini-
tially estimate via Silverman’s rule of thumb [21] using the first 80% of the
training data. This ground bandwidth is then multiplied with a factor k, where
k ∈ (0, 200], selecting the product-bandwidth that performs best on the remain-
ing 20% of the training set. Moreover, we opt for the Gaussian Kernel K [18]. For
clustering and segmentation, we adopt a sensitivity range Z = [0.1, 1], a temporal
window ω = 7 days, a maximum kmax = 6 weekday clusters, and a bin size L = 3.
This configuration proved robust across diverse datasets, though practitioners
may widen or narrow these settings (e.g., to accommodate different arrival spar-
sities). For both LSTM and XGBoost, grid-search-based hyperparameter tuning
is performed. For Prophet, we follow the tuning protocol of Camargo et al. [4].
The parameters for NPP are determined via maximum likelihood estimation.
Metrics. To evaluate and compare the different arrival time prediction ap-
proaches, we use the Case Arrival Distribution Distance (CADD) metric pro-
posed by Chapela-Campa et al. [5]. This metric aggregates the test and simu-
lated arrival timestamps into (separate) hourly counts and computes the Earth
Mover’s Distance between the resulting empirical distributions.

5.2 Results

Overall Results. Table 2 summarizes the experimental results for the 20 event
logs over 10 runs. Our AT-KDE approach achieves the best performance in 12
logs—clearly outperforming the benchmarks—followed by Prophet, LSTM, and
XGBoost leading in the remaining 3/3/2 logs respectively. The static approaches
Mean, Best Distribution, and NPP, likely due to the rigidness of their parametric
assumptions, lack the flexibility required to adapt effectively to temporal dynam-
ics, failing to claim a single dataset. Notably, the recently proposed time series
foundation framework Chronos does not achieve a best performance on any of
the datasets. In all logs where AT-KDE is not the top performer, the gap to
7 https://alkaline-ml.com/pmdarima

https://alkaline-ml.com/pmdarima

14 L. Kirchdorfer and K. Özdemir et al.

Table 2: Average results of benchmarks measured by the square root of CADD.
Missing entries based on convergence failure due to data size.
Event log Mean Best Dist. Prophet LSTM Chronos XGBoost NPP AT-KDE

BPIC12 4.83 5.12 4.46 4.18 5.48 4.26 5.08 3.71
BPIC12CW 6.61 6.84 4.47 6.27 8.33 8.69 6.79 3.21
BPIC12O 14.75 14.55 13.61 15.00 11.72 12.73 14.59 11.56
BPIC12W 4.78 4.76 5.07 4.54 4.87 3.66 4.48 4.80
BPIC13C 66.22 66.65 13.99 27.93 14.14 13.39 68.70 13.25
BPIC17W 15.63 15.47 9.65 13.74 13.29 11.96 15.57 10.24
BPIC19 300.66 295.53 17.83 / 22.54 21.38 / 17.58
BPIC20D 10.33 11.55 5.95 6.94 8.58 6.90 11.31 6.84
BPIC20I 28.02 29.09 17.41 15.01 19.93 17.37 / 16.59
BPIC20P 25.06 24.47 15.08 10.91 13.58 12.58 25.14 13.82
Env.permit 33.48 31.99 17.97 19.62 18.19 14.98 31.76 13.74
HelpDesk 55.69 56.15 23.28 19.58 44.39 36.79 55.61 19.48
Hospital 22.59 22.45 15.89 22.91 31.10 22.25 22.56 22.75
Sepsis 20.97 21.55 15.60 18.33 18.19 18.52 20.86 15.56
P2P 25.28 25.91 22.65 26.41 24.42 20.43 13.05 12.87
CVS 8.97 9.02 6.97 8.01 5.78 6.99 9.09 3.54
Conf. 1000 12.54 12.25 6.26 7.16 6.05 9.68 12.16 5.20
Conf. 2000 18.23 17.97 9.86 11.33 10.15 8.99 18.30 6.49
ACR 9.48 9.63 6.80 6.49 8.63 7.34 8.78 7.00
Production 9.06 8.47 10.66 7.06 6.38 4.15 8.97 6.42

the leading approach is rather small. The only exception is Hospital, where the
gap to Prophet is substantial. This can likely be attributed to a sudden decrease
in arrival counts during the log’s test period. We believe that Prophet ’s focus
on uncovering trends allowed it to anticipate this drop, whilst, for AT-KDE,
the evidence hinting at this phenomenon appears too scarce. Overall, the results
suggest that AT-KDE provides a robust approach for modeling arrival times in
diverse and complex process datasets, not only outperforming static distribu-
tions but also more competitive dynamic approaches from other domains such
as time-series and queueing theory.

Fig. 3: Distribution of arrivals of BPIC12 per hour of each day of the week.

A Divide-and-Conquer Approach for Modeling Arrival Times 15

2011-02-01 2011-04-01 2011-06-01 2011-08-01 2011-10-01
Time

2

4

6

8

N
um

. o
f A

rr
iv

al
s

pe
r D

ay Training Data
Test Data
AT-KDE

Best Distribution
LSTM

(a) P2P

2011-11-01 2012-01-01 2012-03-01
Time

20

40

60

80

100

120

N
um

. o
f A

rr
iv

al
s

pe
r D

ay Training Data
Test Data
AT-KDE

Best Distribution
LSTM

(b) BPIC12W

Fig. 4: Comparison of arrivals between AT-KDE, LSTM and Best Distribution.

Outline of Weekday and Intraday Simulation Quality. To gain a better
understanding of how the simulated arrival timestamps differ across approaches
already used in BPS, we compare the hour-day distribution of arrivals in the
BPIC12 log for AT-KDE, Prophet, and Best Distribution against the test data
in Figure 3. The process shows most arrivals between Monday and Wednesday,
with only few at night. While Best Distribution fails to capture this pattern,
both AT-KDE and Prophet are able to distinguish between day and night pat-
terns. However, AT-KDE more accurately concentrates arrivals on the first three
weekdays, whereas Prophet overestimates arrivals from Thursday to Sunday.

Post-hoc Analysis. To examine in which scenarios AT-KDE outperforms ex-
isting approaches and when differences are negligible, we showcase two event
logs in detail. For P2P, AT-KDE significantly outperforms the benchmarks. As
shown in Figure 4a, P2P is subject to a strong decrease in daily arrival counts
during the first half of the training period. The static approach Best Distribution
ignores this drift and takes all training data into account, leading to a substantial
overestimate of daily arrivals compared to the actual test data. Notably, even a
dynamic approach like the LSTM fails to produce realistic arrival timestamps, as
it appears biased by the high arrival volumes at the start of the training period.
In contrast, AT-KDE correctly identifies this drop and explicitly considers it by
leveraging only post-drift data for the simulation, yielding significantly more ac-
curate arrival times. Conversely, BPIC12W (Figure 4b) shows no drift behavior
on the global scale with arrival counts exhibiting a rather constant mean and
variance throughout time. Therefore, a static approach such as Best Distribution
can achieve comparable performance as LSTM or AT-KDE in this scenario.

Execution Time. All experiments were run on an Apple M3 Pro (12-core CPU,
18GB RAM). As suggested by Table 3, Mean and Best Distribution achieve near-
instantaneous times. Although AT-KDE’s training takes slightly longer (13s),
its simulation is competitively fast (0.03s). In contrast, all other benchmarks are
notably slower in both phases, highlighting AT-KDE’s overall efficiency.8

8 The full overview including standard deviations can be found in our repository.

16 L. Kirchdorfer and K. Özdemir et al.

Table 3: Mean execution times in seconds across all 20 logs.
Mean BD Prophet LSTM Chronos XGB NPP AT-KDE

Training 0.02 1.76 745.19 25.45 102.37 77.67 270.09 13.16
Simulation 0.03 0.13 174.73 337.55 0.58 26.66 0.31 0.03

6 Conclusion

In this work, we introduced Auto Time Kernel Density Estimation (AT-KDE),
an approach for learning a case-arrival model from data and generating new ar-
rival times for BPS. AT-KDE employs a divide-and-conquer strategy combined
with a kernel density estimator to effectively capture global, weekday, and in-
traday arrival dynamics. By partitioning the input arrival dataset into subsets
and modeling each with a dedicated KDE, our approach can generate new arrival
timestamps that reflect the dynamic nature of organizational processes, enabling
more accurate simulation outcomes. Extensive evaluations highlight the critical
role of incorporating these temporal dynamics, with AT-KDE delivering superior
accuracy and robustness compared to a variety of existing approaches, all while
maintaining sensible runtime efficiency.
Limitations. Despite its strong empirical performance, AT-KDE is still con-
fronted with limitations. First, its effectiveness relies on careful calibration tai-
lored to each process to ensure optimal performance. Also, while we demon-
strated that accurate arrival estimates improve overall simulation quality, the
evaluation is restricted to arrival estimation due to missing event start times-
tamps in the process logs and the scope of this work. Moreover, in the absence
of clear training-data patterns, AT-KDE falls back on recent behavior to predict
future arrivals—a heuristic that, while usually adequate, can miss subtler trends
captured by more complex deep-learning models.
Future Work. While initially developed for modeling arrival times, our divide-
and-conquer approach may be extended to capture further process dynamics,
such as evolving activity durations or delays. Furthermore, its underlying prin-
ciples are broadly applicable beyond BPS, offering value in any domain where
time-dependent behavior plays a critical role in arrival modeling. Moreover, while
we and related works give empirical evidence of the positive impact of accurate
arrival modeling on overall simulation quality, the research community would
benefit from a comprehensive analysis of this assumed correlation across a broad
range of real-life event logs.

References

1. van der Aalst, W.M.P.: Business process simulation survival guide. In: vom Brocke,
J., Rosemann, M. (eds.) Handbook on Business Process Management 1, Intro-
duction, Methods, and Information Systems, 2nd Ed, pp. 337–370. International
Handbooks on Information Systems, Springer (2015)

A Divide-and-Conquer Approach for Modeling Arrival Times 17

2. Ansari, A.F., Stella, L., Turkmen, C., et al.: Chronos: Learning the language of
time series. TMLR (2024)

3. Camargo, M., Dumas, M., González-Rojas, O.: Automated discovery of business
process simulation models from event logs. Decision Support Systems 134 (2020)

4. Camargo, M., Dumas, M., Rojas, O.G.: Learning accurate business process simu-
lation models from event logs via automated process discovery and deep learning.
In: CAiSE. Springer (2022)

5. Chapela-Campa, D., Benchekroun, I., Baron, O., Dumas, M., Krass, D.,
Senderovich, A.: Can I trust my simulation model? measuring the quality of busi-
ness process simulation models. In: BPM. Springer (2023)

6. Daw, A., Pender, J.: Queues driven by hawkes processes. Stoch. Syst. 8(3) (2018)
7. Dumas, M.: Constructing digital twins for accurate and reliable what-if business

process analysis. In: BPM Workshops. vol. 2938, pp. 23–27. CEUR-WS.org (2021)
8. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business

Process Management. Springer (2013)
9. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In: KDD. AAAI Press (1996)
10. Hamilton, J.D.: Time Series Analysis. Princeton University Press (1994)
11. Kirchdorfer, L., Blümel, R., Kampik, T., van der Aa, H., Stuckenschmidt, H.:

Agentsimulator: An agent-based approach for data-driven business process simu-
lation. In: ICPM. pp. 97–104. IEEE (2024)

12. Kirchdorfer, L., Özdemir, K., Kusenic, S., Van der Aa, H., Stuckenschmidt, H.:
Codebase: A divide-and-conquer approach for modeling arrival times in business
process simulation (May 2025). https://doi.org/10.5281/zenodo.15489114

13. Kontopoulou, V.I., Panagopoulos, A.D., Kakkos, I., Matsopoulos, G.K.: A review
of arima vs. machine learning approaches for time series forecasting in data driven
networks. Future Internet 15(8) (2023)

14. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., Weyrich, M.: A survey on long
short-term memory networks for time series prediction. Procedia CIRP 99, 650–
655 (2021), 14th CIRP Conference on Intelligent Computation in Manufacturing
Engineering, 15-17 July 2020

15. López-Pintado, O., Dumas, M.: Business process simulation with differentiated
resources: Does it make a difference? In: BPM. Springer (2022)

16. Martin, N., Depaire, B., Caris, A.: Using event logs to model interarrival times in
business process simulation. In: BPM Workshops. pp. 255–267. Springer (2015)

17. Meneghello, F., Francescomarino, C.D., Ghidini, C.: Runtime integration of ma-
chine learning and simulation for business processes. In: ICPM. IEEE (2023)

18. Parzen, E.: On Estimation of a Probability Density Function and Mode. The An-
nals of Mathematical Statistics 33(3), 1065 – 1076 (1962)

19. Porto, B.M., Fogliatto, F.S.: Enhanced forecasting of emergency department pa-
tient arrivals using feature engineering approach and machine learning. BMC Med-
ical Informatics Decis. Mak. 24(1), 377 (2024)

20. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

21. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
& Hall, London (1986)

22. Taylor, S.J., Letham, B.: Forecasting at scale. American Statistician 72(1) (2018)
23. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association 58(301), 236–244 (1963)

https://doi.org/10.5281/zenodo.15489114
https://doi.org/10.5281/zenodo.15489114

	A Divide-and-Conquer Approach for Modeling Arrival Times in Business Process Simulation

