
On the Potential of Large Language Models to

Solve Semantics-Aware Process Mining Tasks

Adrian Rebmann1*, Fabian David Schmidt2, Goran Glavaš2, Han
van der Aa3

1*SAP Signavio, SAP SE, Dietmar-Hopp-Allee 16, Walldorf, 69190,
Baden-Württemberg, Germany.

2Center for Artificial Intelligence and Data Science, University of
Würzburg, Sanderring 2, Würzburg, 97070, Bavaria, Germany.

3Faculty of Computer Science, University of Vienna, Währinger Str. 29,
Vienna, 1090, Austria.

*Corresponding author(s). E-mail(s): adrian.rebmann@sap.com;
Contributing authors: fabian.schmidt@uni-wuerzburg.de;

goran.glavas@uni-wuerzburg.de; han.van.der.aa@univie.ac.at;

Abstract

Large language models (LLMs) have shown to be valuable tools for tackling pro-
cess mining tasks. Existing studies report on their capability to support various
data-driven process analyses and even, to some extent, that they are able to
reason about how processes work. This reasoning ability suggests that there is
potential for LLMs to tackle semantics-aware process mining tasks, which are
tasks that rely on an understanding of the meaning of activities and their rela-
tionships. Examples of these include process discovery, where the meaning of
activities can indicate their dependency, whereas in anomaly detection the mean-
ing can be used to recognize process behavior that is abnormal. In this paper,
we systematically explore the capabilities of LLMs for such tasks. Unlike prior
work, which largely evaluates LLMs in their default state, we investigate their
utility through both in-context learning and supervised fine-tuning. Concretely,
we define five process mining tasks requiring semantic understanding and pro-
vide extensive benchmarking datasets for evaluation. Our experiments reveal that
while LLMs struggle with challenging process mining tasks when used out of the
box or with minimal in-context examples, they achieve strong performance when
fine-tuned for these tasks across a broad range of process types and industries.

Keywords: process mining, large language models, semantics-awareness

1

1 Introduction

Process mining focuses on analyzing event data from organizational processes to
uncover actionable insights about their actual execution. Common process mining
tasks include the discovery of process models, recognizing abnormal behavior, and
making predictions about the future of ongoing cases. The majority of techniques that
have been developed to tackle these tasks are based on the analysis of frequencies,
e.g., how often a certain activity A is followed by a activity B in an event log. While
such techniques have been proven to be successful, recent works have recognized the
potential of incorporating considerations of activity semantics, i.e., the meaning of
activities, when conducting process mining tasks such as discovery, anomaly detection,
and prediction [1–3].

Given that such semantics-aware analyses exploit the textual labels associated
with events, the advent of large language models (LLMs) is a particularly promising
development, due to their impressive capabilities when it comes to handling natural
language. Language models have proven useful for semantic anomaly detection [2, 4]
and preliminary explorations of LLMs for interacting with event data show poten-
tial [5–7]. However, existing works either focus on evaluating one smaller language
model that was fine-tuned on semantic anomaly detection or only use LLMs out of
the box to solve general process analysis questions instead of clearly defined pro-
cess mining tasks. Consequently, a systematic and in-depth study of the application
of LLMs to semantics-aware process mining tasks remains absent. This research gap
largely follows from the lack of well-defined natural language processing (NLP) tasks
that effectively conceptualize the capability to perform semantics-aware process min-
ing tasks, along with the corresponding benchmarking datasets that are necessary
for structured evaluations. Addressing these issues is crucial for enabling robust and
comparative assessments of LLMs for tackling process mining tasks.

Recognizing this, our work makes the following contributions:

• We define five tasks designed to evaluate the capabilities of LLMs in semantics-
aware process mining. These tasks focus on (forms of) anomaly detection, next
activity prediction, and process discovery. These tasks are motivated by the potential
benefits they offer in enhancing approaches to their non-semantic counterparts.
Anomaly detection can be improved by identifying undesired process behavior based
on activity meaning, such as detecting that a delivery is created after a canceled
purchase order. Similarly, next activity prediction benefits by narrowing options
to semantically valid choices, e.g., discarding a check request if already approved.
Process discovery can leverage activity meaning to, among others, handle event
log incompleteness, inferring parallel executions even if not explicitly recorded. For
example, in order fulfillment, packaging and invoicing might occur simultaneously,
but a frequency-based approach could misrepresent them as sequential.

• We provide benchmarking datasets for each of the proposed tasks, enabling rigorous
quantitative evaluations of the performance of LLMs for semantics-aware process
mining. The foundation of these datasets is provided by a corpus of process behavior
that we derived from the largest publicly available collection of process models.

2

• We conduct an experimental evaluation of several open-source LLMs on the pro-
posed tasks and their corresponding benchmarking datasets. The evaluation includes
a comparison of LLMs in both in-context learning and fine-tuning settings, alongside
discriminative encoder-based language models.

In this manner, our work provides the first systematic evaluation of (L)LMs on
semantics-aware process mining tasks. Our experiments reveal that LLMs struggle
with these tasks when used out of the box or with minimal in-context examples, but
they achieve strong performance when fine-tuned for these tasks.

This paper is an extended and revised version of our earlier work on evaluating
the ability of LLMs to solve semantics-aware process mining tasks, published as part
of the proceedings of the International Conference on Process Mining 2024 [8]. This
works extends the conference paper in the following ways. First, we broadened the
scope of our work by introducing two new semantics-aware process mining tasks. These
tasks fundamentally differ from the three previously introduced ones, since they focus
on generation (of directly-follows relations and process trees), whereas the previous
tasks were all classification-based. For both new tasks, we established and publish a
benchmarking dataset to assess and compare the performance of LLMs when solving
them. We use these datasets to extend our experimental evaluation, shedding light on
the ability of open source LLMs to solve process-oriented generation tasks. Beyond
these conceptual and experimental extensions, we provide more detailed statistics
about the process models that our benchmarking datasets are based on. Further-
more, we thoroughly revised and extended the related work section, highlighting recent
advancements in evaluating LLMs for data-driven process analysis tasks.

The remainder of this paper is structured as follows. Section 2 introduces pre-
liminary definitions that form the basis for the semantics-aware process mining tasks
that we define in Section 3. Section 4 describes the publicly available process behavior
corpus and benchmarking datasets that we have established. Section 5 describes the
different ways in which we use and adapt LLMs to tackle the proposed tasks. Section 6
reports on the setup that we used to conduct our evaluation experiments, of which
the results are presented in Section 7. Finally, Section 8 discusses related work, before
we conclude in Section 9.

2 Preliminaries

In this section, we introduce the preliminaries that are essential for the remainder of
the paper, covering event data, process models, directly-follows relations and graphs,
footprints, process trees, and eventually-follows relations.

Event Data.We adopt a simple event model, focusing on the control-flow of a process.
A trace σ is a sequence that represents the events that have been recorded for the
execution of a single instance of an organizational process. Such a trace consists of a
finite sequence of events with each event as a record of the execution of an activity.
We denote this as σ = ⟨a1, ..., an⟩, with ai ∈ A, with A as the universe of possible
activities that can be performed in organizational processes. An event log L is a finite
multi-set of traces. AL ⊂ A denotes the set of activities that appear in the traces of L.

For instance, we may have an event log L1 = [σ1, σ2, σ3], with:

3

σ1 = ⟨receive order, accept order, deliver package⟩
σ2 = ⟨receive order, reject order⟩
σ3 = ⟨receive order, deliver package⟩.
This then gives AL1 = {receive order, accept order, reject order, deliver package}.

Process Models. We define a process model M as the set of executions that are
allowed in a process. Each execution π is represented as an activity sequence π =
⟨a1, ..., an⟩, with ai ∈ A. We use AM ⊂ A, to denote the set of activities that appear
in the sequences of M .

For instance, M1 = {π1, π2} with:
π1 = ⟨receive order, accept order, deliver package⟩
π2 = ⟨receive order, reject order⟩

Then, AM1 = {receive order, accept order, reject order, deliver package}.
Process Trees. A process tree is a hierarchical representation of a process, with a
concise notation. Such a tree has a single root node and its leaves correspond to activ-
ities. Commonly, four operator types are used: → (sequence operator), × (exclusive
choice operator), ∧ (parallel operator), and ⟲ (loop operator). We follow the defini-
tion of van der Aalst [9]: Let O = {→,×,∧,⟲} be the set of operators and τ ̸∈ A be
the silent activity. A process tree is defined recursively:

• if a ∈ A ∪ {τ}, then T = a is a process tree
• if T1, T2, . . . , Tn with n ≥ 1 are process trees and ⊕ ∈ {→,×,∧}, then T =
⊕(T1, T2, . . . , Tn) is a process tree

• if T1, T2, . . . , Tn with n ≥ 2 are process trees and T = ⟲(T1, T2, . . . , Tn).

For instance, → (receive order,×(→ (accept order, deliver package), reject order)) is a
tree that captures the behavior defined by the execution sequences of M1, i.e., that,
after receiving an order, it is either accepted and then delivered, or it is rejected.

Directly-Follows Relations and Graphs. The directly-follows relation > captures
that two activities can immediately follow each other, either in the execution sequences
of a process model or the traces of an event log. For a process model M , x > y if there
exists an execution sequence π = ⟨a1, ..., an⟩ ∈M for which there exists ai = x, aj = y
with j = i+ 1. The same applies for a log L, where these constraints should hold for
at least one trace σ ∈ L.

We define a directly follows graph (DFG) D as a pair (A,F). A is the set of possible
activities in a given process and F is a set of pairs (x, y) that represent the process’
directly-follows relations (or edges in the DFG), i.e., {(x, y) ∈ A×A | x > y
For instance, given M1, we obtain a DFG DM1

= (AM1
, FM1

), with:
FM1

= {(receive order, accept order), (accept order, deliver package), (receive order,
reject order)}.
Directly-Follows Footprints. Following the definition of van der Aalst [9], let D =
(A,F) be a directly-follows graph. D defines a (directly-follows) footprint fpD : (A×
A)→ {→,←, ||,#} such that for all (x, y) ∈ A×A:

• fpD((x, y)) =→ if (x, y) ∈ F and (y, x) /∈ F
• fpD((x, y)) =← if (x, y) /∈ F and (y, x) ∈ F
• fpD((x, y)) = ∥ if (x, y) ∈ F and (y, x) ∈ F

4

• fpD((x, y)) = # if (x, y) /∈ F and (y, x) /∈ F

For instance, fpDM1
is:

fpDM1
((receive order, accept order)) = →

fpDM1
((accept order, receive order)) = ←

fpDM1
((receive order, reject order)) = →

fpDM1
((reject order, receive order)) = ←

fpDM1
((accept order, deliver package)) = →

fpDM1
((deliver package, accept order)) = ←

All other pairs in (AM1
×AM1

) = #

Eventually-Follows Relations. The eventually-follows relation ≺ is a more relaxed
ordering relation than the directly-follows relation described above, focusing on activ-
ities that can either directly or indirectly follow each other in the activity sequences
of a process model or in the traces of a log. For a process model M , x ≺ y if there
exists an execution sequence π = ⟨a1, ..., an⟩ ∈M for which there exists ai = x, aj = y
with i < j. The same applies for a log L, where these constraints should hold for at
least one trace σ ∈ L. We use EFM to denote all eventually-follows relations of the
activity sequences allowed by a model M .
For instance, EFM1 = {(receive order, accept order), (receive order, reject order),
(receive order, deliver package), (accept order, deliver package)}

3 Semantics-Aware Process Mining Tasks

This section describes and defines five process mining tasks that benefit from an under-
standing of process behavior. The tasks all focus on the control-flow perspective and
are designed so that they do not involve (nor require) access to historical event data in
order to perform them. In this manner, we are able to assess whether a language model
can solve the tasks based purely on its encoded knowledge of how processes gener-
ally work with respect to the meaning of activities and their inter-relations. Our tasks
include two forms of semantic anomaly detection, semantic next activity prediction,
and two flavors of semantic process discovery. These tasks represent semantics-aware
counterparts to well-established tasks in process mining and vary considerably in terms
of their complexity.

3.1 Semantic Anomaly Detection

Anomaly detection in process mining focuses on identifying outlying process behaviors
within the traces of an event log [10]. Many approaches achieve this by detecting
statistical outliers [11], based on the premise that infrequent behavior is anomalous.

In contrast, semantic anomaly detection [1] focuses on identifying process behav-
iors that lack logical coherence. It challenges the assumption that infrequent behavior
is necessarily anomalous and emphasizes that regular occurrences do not always con-
stitute proper process behavior. For example, from a semantic perspective, creating
an invoice for a rejected purchase order constitutes anomalous behavior, regardless of
how frequently it occurs.

5

Detecting anomalies based on process semantics requires a different approach com-
pared to frequency-based anomaly detection. Whereas frequency-based detection can
be performed by just using data in an event log (revealing statistical outliers), seman-
tic anomaly detection requires information about how a process should (or should not)
work in general. By definition, such information needs to be obtained from outside of
the event log, e.g., from large knowledge bases or—as we do in this paper—from the
knowledge encoded in LLMs.

We define two specific tasks in this context, focusing on the trace and activity-
relation levels.

Trace-Level Semantic Anomaly Detection. Trace-level semantic anomaly detec-
tion (T-SAD) is a binary classification problem in which a trace σ ∈ L needs to be
classified as anomalous or not, based on its semantics and the set of possible activities
AL, which is provided as context information. For instance, for a trace σ = ⟨register
application, approve application, review application⟩, the task is to classify that σ is
anomalous. This is because an application should first be reviewed and only then
approved (or rejected). The challenge here is that there is no specification available
of the process at hand that can be used for this. Rather that anomaly needs to be
inferred, requiring an understanding of how processes generally work.

Activity-Level Semantic Anomaly Detection. Activity-level semantic anomaly
detection (A-SAD) is more fine-granular than T-SAD, focusing on pairs of activities
in a trace rather than on an entire trace at once. In particular, A-SAD focuses on
classifying any eventually-follows relation ai ≺σ aj of two activities ai and aj that
appear in a trace σ ∈ L as anomalous or not, based on its semantics and the set
of possible activities AL. For instance, given the trace σ = ⟨create purchase order,
reject purchase order, create invoice⟩, the eventually-follows relation reject purchase
order ≺σ create invoice should be classified as anomalous, whereas the other pairwise
relations, i.e., create purchase order ≺σ reject purchase order and create purchase
order ≺σ create invoice should be classified as valid.

3.2 Semantic Next Activity Prediction

Next activity prediction, also referred to as next event or next step prediction, is a
fundamental task in predictive process monitoring [12]. The goal is to predict the
next activity in an ongoing process execution [13]. To address this task, numerous
approaches, primarily leveraging supervised deep learning methods (e.g., [14, 15]),
have been proposed.

As a semantics-aware counterpart for next activity prediction, we introduce the
semantic next activity prediction (S-NAP) task. For an incomplete trace σ, which
represents an ongoing process execution in which k activities have been performed
(k ≥ 1), the task is to predict the next activity ak+1 in σ ∈ L based on a set of
possible activitiesAL. For instance, given σ = ⟨create purchase order, approve purchase
order⟩ and AL = {create purchase order, approve purchase order, create invoice, make
payment}, the task is to predict ak+1 as create invoice. This is because, generally, an
invoice should be created before a payment is made.

Whereas approaches for (traditional) next activity prediction train a model on
historical traces from an event log L to predict the next activity in ongoing (i.e.,

6

unseen) executions of the process, S-NAP focuses on situations where no such historical
traces are available. As a result, the next activity must be inferred by considering the
semantics of the activities involved in a process.

3.3 Semantic Process Discovery

Semantic process discovery focuses on generating a process representation that accu-
rately captures the underlying semantics of a process, rather than reflecting observed
behavior in event logs. Unlike traditional approaches that generate models based on
behavioral relations recorded from historical process executions, semantic discovery
incorporates domain knowledge to ensure that the resulting models represent proper
and reasonable process behavior only based on a set of possible activities. This enables
the detection of not what is frequent in event data but what is meaningful and cor-
rect in a process context. Such semantic models can form the basis for downstream
tasks such as conformance checking, where we can compare the appropriate behavior
(captured through the semantic model), to the actually observed traces.

For instance, a semantic discovery result should represent that a review application
activity must precede an approve application activity, regardless of how frequently
traces in the event log adhere to or violate this rule. This is because the process repre-
sentation needs to align with logical process semantics rather than reflecting patterns
in historical event data. Discovering such representations requires knowledge about
how processes should work, which can be sourced from domain-specific knowledge
bases, human expertise or—as done in our work—LLMs.

We define two semantic discovery tasks, focusing on constructing directly-follows
graphs and process trees:

Semantic Directly-Follows Graph Discovery. Semantic directly-follows graph
discovery (S-DFD) is the task of generating a directly-follows graph that represents
all reasonable relations between activities in a process. The goal is to produce a
graph D = (A,F), where each edge (a, b) ∈ F reflects a valid directly-follows rela-
tion between activities a and b, only based on the set of activities A. For instance,
given a set of activities {create purchase order, approve purchase order, reject purchase
order, create invoice}, the semantic DFG should include the edge (create purchase
order, approve purchase order). This edge aligns with the common-sense understanding
that an invoice is typically created following an approved purchase order. Conversely,
the DFG should not include the edge (reject purchase order, create invoice). This is
because such a directly-follows relation contradicts the common-sense rule that an
invoice should only be created for approved purchase orders.

The challenge lies in inferring the semantics of valid directly-follows relations
without being able to rely on explicit process specifications and execution sequences.

Semantic Process Tree Discovery. Semantic process tree discovery (S-PTD) is a
more structured task than S-DFD, focusing on constructing a hierarchical represen-
tation of a process, namely a process tree (see Section 2). The goal is to generate a
process tree whose structure reflects the behavioral constraints in a process, such as
parallelism, choices, and sequential behavior, only based on a set of possible activities
A. For instance, given the activity set {register application, review application, approve

7

application, reject application}, the semantic process tree should be →(register appli-
cation, review application, ×(approve application, reject application)). This ensures
that the applications are registered before they are reviewed and, finally, a decision is
made, while only one outcome per review decision should be possible.

S-PTD is particularly challenging as it requires an understanding of not only pair-
wise relations but also how subsets of activities (parts of the entire process) relate to
one another as well as how process trees work. Doing this without having historical
execution data available, necessitates external knowledge about process semantics to
be able to construct trees that are both structurally and semantically sound.

4 Datasets

This section outlines the creation and key characteristics of the corpus of process
behavior and benchmarking datasets used to evaluate the ability of language models
to solve the proposed tasks. All datasets are made publicly available [16].

4.1 A Corpus of Process Behaviors

Language models require textual input. To assess their ability to solve semantics-
aware process mining tasks, we need a collection of textual representations of process
behavior, referred to as a corpus. This corpus serves as the foundation for creating
task-specific data, which can then be used to train and evaluate language models on
the proposed tasks.

4.1.1 Corpus Creation

As no suitable corpus is readily available, we create one based on graphical process
models (i.e., process diagrams). For this purpose, we use sap-sam [17], the largest pub-
licly available collection of process diagrams to date. In order to create a high-quality
corpus, we select only English BPMN diagrams from sap-sam that meet specific
requirements. These ensure that the corpus includes only unique and valid process
behavior. In particular, we require that a diagram can be transformed into a sound
block-structured workflow net and that no two diagrams have the same activity set.
The former requirement mitigates data quality issues in the sap-sam collection [17]
and ensures that we can properly generate activity sequences from the diagram, and
valid process trees from said activity sequences. The latter makes sure that different
models in the corpus capture different process behavior and ensures a robust evalua-
tion setup. Therefore, we discard a diagram, when another one with the same activity
set is already present in the corpus. Furthermore, we require a diagram to contain
at least two different activities to ensure that it actually captures ordering relations
between different activities.

We use the workflow net of each selected diagram to generate activity sequences,
capturing all executions allowed by the net. For loops, we ensure that each loop is
executed at most once, so that we capture relations involving rework, yet, obtain a
finite set of activity sequences. For each net, this yields a process model M according
to the definition in Section 2, i.e., a set of activity sequences capturing its allowed
behavior. We add each such M to the corpus.

8

4.1.2 Corpus Characteristics

We show the characteristics of the resulting corpus in Table 1. As depicted there, the
complexity of the process models varies considerably. For instance, the median number
of unique activities is 4, whereas the maximum is 21 and the process models allow for
10.34 activity sequences on average, whereas the maximum amount is 10,080.

Table 1: Characteristics of the process behavior corpus.

Characteristic Total Per process model
Avg. Med. Min. Max.

Process models 15,857 – – – –
Unique activities 49,108 4.70 4 2 21
Unique sequences 163,484 10.34 1 1 10,080

To highlight the broad coverage of the established corpus, we categorized its pro-
cess models according to their process type and the industry they relate to, using
established frameworks. We leveraged an LLM to perform the categorization itself.
The LLM was prompted with each process model’s name, its unique set of activi-
ties, and the target APQC categories. Based on this, it assigned the most appropriate
category or “Other” if no suitable match was found.

For the categorization by cross-industry process types, we used the first level of the
APQC Process Classification Framework1. The results, shown in Figure 1a, indicate
that the corpus spans a wide range of process types, including HR, delivery of prod-
ucts and services, customer service management, and financial resource management.
However, 28% of the models could not be categorized using this framework.

For the industry-based categorization, we applied the industry categories defined by
SAP2. The resulting distribution, illustrated in Figure 1b, shows broad representation
across diverse industries, such as retail, healthcare, banking, insurance, and travel.
Still, 38% of the models could not be matched to any industry category.

Overall, while some models remained uncategorized per framework, only 14% could
not be assigned to a category in either of the frameworks. Manual inspection of these
reveals that these cases largely consist of generic, low-level processes—such as down-
loading documents or filling in unspecified forms—as well as daily routine processes
like preparing a meal or getting ready for work.

4.2 Task-Specific Benchmarking Datasets

Having established a text corpus of process behaviors, we are able to generate task-
specific benchmarking datasets that include task samples and a gold standard. This
gold standard enables objective, quantitative evaluation of language models on the
tasks based on established evaluation measures such as F-1 score for classification and
fitness scores for discovery tasks. The characteristics of the datasets are as follows:

1https://www.apqc.org/process-frameworks
2https://www.sap.com/industries.html

9

https://www.apqc.org/process-frameworks
https://www.sap.com/industries.html

(a) Categorization by process type.

(b) Categorization by industry.

Fig. 1: Categorization of the process models in the corpus.

• T-SAD contains a total of 291,251 samples, of which 150,301 are valid, and 140,950
are labeled as anomalous. Trace lengths range from 1 to 17, with an average of 6.3
and a median of 7.

• A-SAD consists of 316,308 samples in total, equally divided between 158,154 valid
samples and 158,154 anomalous samples.

10

• S-NAP comprises 1,289,081 samples in total, with prefix lengths ranging from of 1
to their full length. The mean prefix length is 4.6, and the median is 5.

• S-DFD consists of a total of 15,857 samples, with one sample per model. The number
of edges ranges from a minimum of 1 to a maximum of 87, with an average of 5.2
and a median of 4.

• S-PTD features 15,857 samples as well (as for S-DFD there is one sample per original
model).

We next describe how we established each of these datasets.

4.2.1 Classification-Task Datasets

T-SAD. To establish the T-SAD dataset, we first create an event log L for each
process model M in the corpus such that each π ∈ M becomes a trace σ ∈ L. To
make sure that there is a minimum number of traces per log, we randomly duplicate
traces in L until a size of 100 is reached if L does not already contain at least 100
traces. Subsequently, for each trace σ ∈ L, we make a decision regarding the insertion
of noise, with a 50 percent probability. This noise insertion involves swapping two
randomly selected activities within the trace. After swapping, we check whether the
resulting sequence σ′ is indeed anomalous, i.e., σ′ /∈M . If the sequence is found to still
be valid, i.e., σ′ ∈ M , we continue iterating through potential swaps until we obtain
an anomalous sequence3. This ensures that the dataset contains (roughly) the same
amount of valid and anomalous traces, which is crucial for robust model training and
evaluation.

Each of the 291,251 records of the T-SAD dataset then consists of a trace σ, the
correct label of σ, i.e., Anomalous if σ /∈M and Valid otherwise, and the set of possible
activities in the process from which σ originates as context information.

A-SAD. We create the A-SAD dataset based on the set of eventually-follows relations
EFM for each process model M in the corpus. The relations in EFM represent all
valid execution orders of activities of M . Next to these, we create a set of anomalous
relations EF̸M , i.e., ones that are not in EFM . To provide a balanced dataset, we
establish EF̸M by randomly selecting relations that are not in EFM , until we have an
equal number of valid and anomalous relations.

Each of the 316,308 records of the A-SAD dataset consists of an eventually-follows
relation r, the correct label of r, (i.e., if r is anomalous or not), and the set of activities
AM of the process model from which r originates (as context information).

S-NAP. For the S-NAP dataset, we first create an event log L for each process model
M in the corpus such that each π ∈ M becomes a trace σ ∈ L. Then, we generate
all possible prefixes for each trace σ ∈ L and add them to L. This involves iteratively
considering sub-traces of increasing length k from the first activity of a trace σ, up to
one less than the full trace length, ensuring that there is always a subsequent activity
available to serve as a prediction label.

Each of the 1,289,081 records of the S-NAP dataset then consists of a length-k
prefix (σk) of σ, the correct label of σk, i.e., the activity at position k + 1 in σ, and

3We limit the number of retries to 10 per trace to guarantee termination.

11

the set of possible activities AL of the event log from which σ originates as context
information.

4.2.2 Generation-Task Datasets

S-DFD. To establish the S-DFD dataset, we discover a DFG DM = (AM , FM) for
each process model M and its activity set AM following the definition in Section 2.
The pairs in FM represent the valid directly-follows relation between two activities in
the execution sequences of M .

As a result, each of the 15,857 records of the S-DFD dataset consists of the set of
possible activities AM and the true DFG DM , obtained from a process model M .

S-PTD. We establish the S-DPT dataset based on the workflow nets we obtained
during the creation of our process behavior corpus. For each workflow net that was
used to generate a process model M , we translate it into a process tree TM according
to the definition in Section 2.4

Each of the resulting 15,857 records of the S-PTD dataset comprises the set of
activities AM and the true process tree TM , obtained from a process model M .

5 LLM-Based Process Mining

This section provides an overview of how we adapt (L)LMs for solving semantics-aware
process mining tasks, using few-shot in-context learning and fine-tuning for both the
classification and generation tasks.

Neural language models, based on the Transformer architecture [19, 20], come in
two main flavors: (1) bidirectional language models, also commonly called encoders,
which are typically (pre-)trained via masked language modeling objectives in which
masked tokens are predicted from both left and right context [20, 21], and (2) unidirec-
tional language models, also known as decoders, which are trained via autoregressive
language modeling objectives where the next token is predicted from the preceding
context [22, 23]. LLMs are large instances of the latter category (with at least a billion
parameters) and are, following large-scale autoregressive language modeling, typically
additionally trained for instruction following, i.e., to provide solutions to tasks given
the natural language description of these tasks [24, 25]. Such instruction-tuning allows
LLMs to generalize to new tasks through textual task descriptions (since capturing
meaning of language is what LLMs excel at) and solve them successfully even when not
provided with any or only few task-specific (training) examples (in-context learning).

5.1 Few-Shot In-Context Learning

In-context learning (ICL) aims to induce a model to perform a task by providing a
small set of input-label examples (so-called “shots”) along with the task description;
the query sample—the example (input) for which the label is to be generated—is

4This translation is straightforward as we only retained block-structured workflow nets when creating
the corpus. For the details on how this translation exactly works, we refer to work on process discovery
approaches, in particular, the Inductive Miner [18].

12

provided at the end of the prompt [26]. In-context learning allows the LLM to under-
stand the task (via the description and a few labeled examples), without supervised
fine-tuning (i.e., without any updates to the LLM’s parameters).

Figure 2 illustrates one-shot prompts for the S-NAP and S-DFD tasks. Each
prompt begins with a description of the task, followed by a single labeled instance.
For the S-NAP task, the labeled instance includes a list of possible activities and the
prefix trace in question, followed by the correct label. In contrast, the S-DFD task
only presents the list of possible activities, followed by the corresponding true directly-
follows pairs. In both cases, the query instance for which the LLM is expected to
generate a solution appears at the end of the prompt.

5.2 Fine-Tuning LMs

Fine-tuning is the procedure of further training a pretrained language model, in order
to specialize it for a specific task. The advantage compared to training a model from
scratch is that the training data size for fine-tuning is considerably smaller, thus reduc-
ing resources required to train a task-specific model. We fine-tune (large) language
models for each of our semantics-aware process mining tasks. While it is possible to
train decoder LLMs for both classification and generation tasks we propose, the man-
ner in which encoders are trained makes it difficult to adapt them for generation, as
explained in the following sections.

Fine-Tuning LMs on Classification Tasks. Both encoder and decoder models
can be tailored for classification tasks. We next describe the fine-tuning procedures
for (a) discriminative classification with encoder language models and (b) generative
classification with a decoder language models.

You are given a list of activities that can be
performed in an organizational process and a
sequence of activities that have been performed in
the given order. Which activity from the list should
be performed next in the sequence? Provide one
activity from the list and nothing else.

List of activities:
1. create purchase order 2. approve purchase order
3. create invoice 4. make payment

Activity sequence:
[create purchase order, approve purchase order]

Next activity: create invoice

List of activities:
1. receive application 2. assess documents
3. accept application 4. notify applicant

Activity sequence:
[receive application]

Next activity:

Ta
sk

 d
es

cr
ip

tio
n

Ex
am

pl
e

(s
ho

t)
Ta

sk
 in

st
an

ce

(a) Prompt for the S-NAP task.

Given a list of activities that constitute an organizational
process, determine all pairs of activities that can
reasonably follow each other directly in an execution of
this process.Provide only a list of pairs and use only
activities from the given list, followed by [END]

List of activities:
1. notify applicant, 2. register application,
3. approve application, 4. reject application,
5. review application

Pairs of activities:
register application -> review application
review application -> approve application
review application -> reject application
approve application -> notify applicant
reject application-> notify applicant
[END]

List of activities:
1. create purchase order 2. approve purchase order
3. create invoice 4. make payment

Pairs of activities:

Ta
sk

 d
es

cr
ip

tio
n

Ex
am

pl
e

(s
ho

t)
Ta

sk
 in

st
an

ce

(b) Prompt for the S-DFD task.

Fig. 2: One-shot in-context-learning prompts.

13

Classifier (Θcl)

Pooling

Encoder (Θenc)

0 (Valid) or 1 (Anomalous)

…

[CLS] create invoice … [SEP], make payment…
Fig. 3: Illustration of discriminative classification with an encoder LM.

Discriminative Fine-Tuning of Encoder LMs. To fine-tune an encoder LM for classifi-
cation tasks, we extend the model’s base architecture (i.e., the pretrained Transformer
network) with an additional classification layer: the parameters of the classifier are
trained from scratch (i.e., randomly initialized), whereas the encoder’s parameters are
updated (i.e., fine-tuned). Fine-tuning of an encoder LM for the T-SAD task is illus-
trated in Figure 3 using a record with a trace ⟨create invoice, make payment, . . . ⟩ as
input. The input is first split into a sequence of subword tokens.5 The actual input
for encoder LMs is commonly surrounded with synthetic sequence start ([CLS]) and
sequence end ([SEP]) tokens. The encoder (i.e., the Transformer network) outputs
one vector—a transformed/contextualized representation—for each token in the input
sequence, including the sequence start/end tokens. Let xCLS ∈ Rd be the representa-
tion of the sequence start token CLS (output of the encoder) with d as the hidden size of
the encoder’s Transformer network; this vector xCLS can be seen as a latent semantic
representation of the whole input text and is forwarded as input to the classifier. The
classifier, in turn, is a single-layer feed-forward network: ŷ = softmax (Wcl·xCLS+bcl);
Wcl ∈ Rc×d and bcl ∈ Rc are the trainable parameters of the classifier (c is the num-
ber of classes in the classification task) and softmax is the function commonly used to
convert real-valued vectors into probability distributions—the final output ŷ is thus
a probability distribution over the task’s classes. We train the model (jointly update
the parameters of both classifier and encoder in end-to-end fashion) by minimizing
the widely used cross-entropy loss, i.e., the negative logarithm of the probability that
the model predicted for the true class of the input instance.

T-SAD and A-SAD are binary classification tasks (i.e., c = 2) in which the model
predicts whether the traces and ordered activity pairs, respectively, are Valid or
Anomalous. S-NAP is a multi-class classification task in which the set of classes is
defined by the activities in AM of the process model M from which the input record
was created.

5For more frequent words in the language, a token will commonly correspond to the whole word; less
frequent words, on the other hand, will often be broken down into more frequent subtokens (e.g., “tokeniza-
tion” may be segmented into “token” and “ization”). The exact subword vocabulary is model dependent,
i.e., each LM comes with its own tokenizer.

14

Generative Fine-Tuning of Decoder (L)LMs. Autoregressively trained decoder LLMs
cast classification tasks as language generation tasks. Concretely, each class into which
the preceding text is to be classified is assigned one token from the vocabulary and the
LLM’s language modeling head (a classifier over the LLM’s vocabulary) is supposed to
generate the token of the correct class. For example, for the T-SAD task, we convert
individual training instances into prompts that couple (1) the set of process activities
with (2) the concrete trace (or activity sequence) that is to be judged as Valid or
Anomalous. Then we append the prompt that asks whether the sequence is anomalous,
with the token true assigned to the Anomalous sequences and token false to the Valid
sequences. The whole input for the decoder LLM for a single sequence is shown below
(the label token is underlined and in blue):

Activities: {create order, approve order, reject order, create invoice, make payment}
Activity sequence: [create order, reject order, create invoice, make payment]
Anomalous: true

We fine-tune a decoder LLM via constrained text generation: given the entire pre-
ceding context (everything except the last token that indicates the class), we predict
the next token, but allow the language modeling head to only predict the probabilities
for the allowed class tokens (in the above example, only true, false), as opposed to
LLM pretraining in which the next token is predicted over the entire vocabulary of the
LLM. We illustrate constrained generative fine-tuning of a decoder LM in Figure 4.
The Transformer network of the decoder produces the output representation by con-

LM Head (ΘLM)
 (classifier)

Decoder (Θdec)

…Activities : { create Sequence Anomalous :…

“true”
“false”

[0.7, 0.3]
P(“false”)

P(“true”)

Fig. 4: Illustration of constrained generative fine-tuning of a decoder LM.

textualizing all preceding tokens; the resulting vector is next compared against the
representations of the allowed class tokens (in the example, true, false) to produce
scores that are then converted into probabilities using softmax. We minimize the neg-
ative log likelihood of the probability assigned to the correct class token: as updating
all LLM parameters is computationally infeasible, we resort to parameter-efficient
fine-tuning via low-rank adaptation (LoRA) [27].6

6For brevity, we refer the reader to the original work for details on LoRA.

15

Fine-Tuning LLMs on Generation Tasks. In contrast to constraining text gen-
eration for classification tasks, for the generation tasks we allow the LLM to produce
output freely, conditioned on the provided input context. This requires the LLM to
develop a more holistic understanding of the S-DFD and S-PTD tasks. While for clas-
sification the outputs are limited to one of a set of predefined labels, the generation
tasks involve creating complete answers. The model must account for what parts of
the answer have already been generated and what remains to be completed.

The decoder LLMs we employ are pre-trained to solve tasks based on minimal
context during instruction tuning. To adapt these models for our tasks, we fine-tune
them on labeled instances comprising a textual description and a single task instance
with the correct solution, i.e., a true DFG or process tree. This approach leverages
both the extensive knowledge gained during pre-training and the instruction-following
capabilities developed through post-hoc alignment. For example, for the S-PTD task,
the input provided to the LLM for a single sequence includes the following components
(with the label underlined and highlighted in blue):

Given the list of activities that constitute an organizational process, determine the
process tree of the process. A process tree is a hierarchical process model.
[description of the process tree notation]
Make sure that you use each activity exactly once in the tree and that you set
parentheses are correctly.
Activities: create order, approve order, reject order, create invoice
Process Tree: →(create order, ×(approve order, reject order), create invoice)

As illustrated, we provide a detailed textual description of the task (as for ICL),
followed by the list of activities for the specific task instance, and conclude with the
expected output.

Decoder (Θdec)Decoder (Θdec)

Given a list of activities … . A process tree is… \n Process Tree: → Create(

Decoder (Θdec)

…

Fig. 5: Illustration of generative fine-tuning of a decoder LM.

Importantly, the model is not trained to predict the next token for the provided con-
text (the task description and the list of activities). Instead, it is fine-tuned to predict
all the next tokens that belong to the label, conditioned on the previous tokens in the
correct order. The procedure is depicted in Figure 5. It ensures that the Transformer
network generates output tokens iteratively, while taking into account the tokens it
already produced as part of its answer. As for the classification tasks, we use LoRA
to fine-tune LLMs for the generative tasks as well (cf. Section 5.2).

16

6 Experimental Setup

In this section, we first explain how the datasets are split into training, validation,
and testing sets, followed by an introduction to the specific language models we use.
We then detail our ICL and fine-tuning setups. To ensure reproducibility, we make all
training and evaluation scripts publicly available.7

Dataset Portions. We split all datasets based on the process models from which the
samples originate using 70% of instances for training, 20% for validation, and 10%
for final performance evaluation. For these splits, we ensure that no activity sequence
from a model in the training set appears in any of the process models in the validation
or test sets. This prevents any leakage of process behavior knowledge between the sets,
allowing for an accurate assessment of the LMs’ generalization abilities. Additionally,
we use stratified sampling based on the number of unique activities in the models to
ensure a comparable complexity distribution across the splits. The sizes of all splits
for the five tasks are shown in Table 2.8

Table 2: Training, validation, and test split charac-
teristics per task.

Task Total Train Validation Test

T-SAD 291,251 227,892 43,609 19,750
A-SAD 316,308 229,402 56,154 30,752
S-NAP 1,289,081 1,071,529 166,811 50,741

S-DFD 15,780 11,397 2,775 1,528
S-PTD 15,780 11,397 2,775 1,528

Large Language Models. We utilize two widely used open decoder-based LLMs
that have demonstrated impressive performance on NLP benchmarks: (1) Llama-3
(Llama) in its 8 billion parameter version9 and (2) Mistral-2 (Mistral) in its 7 billion
parameter version10. We evaluate both models in few-shot ICL and fine-tuning setups.

Baselines. We use the following baselines to put the performance of LLMs on the
proposed tasks into context:

Classification. For the classification tasks, we use three baselines:
(1) For T-SAD and A-SAD, we compare LLMs with the state-of-the-art approach
for rule-based semantic anomaly detection [1]. It is important to note that this base-
line can only detect semantic anomalies if the respective activities refer to same
business object. Consequently, it automatically classifies pairs of activities with dis-
tinct business objects as valid. We evaluate our approach against the best-performing
configuration from the original paper, referred to as SEM4 in their experiments.

7https://github.com/a-rebmann/llms4pm; this repository also includes examples of how to use LLMs to
solve individual instances of the five tasks.

8Note that the distributions of process types and industries in the dataset portions are similar to the
corpus. For the full details, we refer to our repository.

9https://huggingface.co/meta-llama/Meta-Llama-3-8B
10https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

17

https://github.com/a-rebmann/llms4pm
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

(2) We compare LLMs in an ICL setting (i.e., without task-specific fine-tuning) against
a random classification baseline, which assigns one of the classes of the respective task
to each test instance with equal probability per class.
(3) We compare generatively fine-tuned LLMs against a discriminatively fine-tuned
encoder LM: specifically, we use RobERTa [21] in its large version,11 a strong and
widely used English-only bidirectional encoder LM. Note that fine-tuning RoBERTa
on A-SAD corresponds to the state-of-the-art approach for detecting anomalous
eventually-follows relations [2], with the difference being that for our experiments, we
used a more powerful base model.

Generation. For the generation tasks, we established a baseline that randomly selects
one of the behavioral footprint relations (defined in Section 2) for all pairs of activi-
ties in the respective set of possible activities. Note that the encoder baseline cannot
be used for the generation tasks, due to the non-autoregressive pretraining and
discriminative modeling objectives (cf. Section 5).
Note that direct comparison with statistical baseline methods (e.g., [11] for anomaly
detection) is not feasible since these tackle different tasks that take different inputs.
In particular, statistical approaches consider an entire event log, capturing data on
numerous cases, in order to infer statistical patterns based on occurrence frequencies.
Therefore, these approaches cannot be applied to the data that we have, where such
frequencies are not available. Any comparison to statistical approaches would thus not
be meaningful and will have a strong self-fulfilling character.

Performance Measures. We use the following established performance measures to
evaluate the classification and discovery tasks.

Classification. We measure classification performance using the macro F1-score, so
that classes equally contribute to the performance regardless of their size. Macro F1 is
the simple average of per-class F1 scores, with F1 of class c being the harmonic mean
between c’s precision and recall.

Generation. We measure generation quality with the well-known footprint-based fit-
ness [28], which can be used to compare sets of allowed execution sequences based on
the pairwise behavioral footprint relations introduced in Section 2. In case of the S-
DFD task, we establish the footprint of the gold standard DFG and the footprint of
the LLM-generated DFG, according to the definition of a footprint in Section 2. Then,
the footprint-based fitness is the fraction of equal footprint relations in both footprints.
For the S-PTD task, we first play-out the gold-standard and LLM-generated process
trees to obtain sets of allowed execution sequences. We use these sets to establish
DFGs and then proceed as for the S-DFD task to obtain the fitness score.

In-Context Learning and Prompt Optimization. We tested multiple task for-
mulation prompts for each task and selected the one that yielded the best performance
on the validation set. We evaluated 6-shot, 10-shot, and 20-shot ICL for the three clas-
sification tasks: for the binary T-SAD and A-SAD tasks, we evenly balance positive
and negative instances; for S-NAP we sample one instance from randomly chosen 6,
10, or 20 process models, respectively. For the generation tasks, we evaluated 3-shot,
5-shot, and 10-shot ICL, which is required due to the longer prompt lengths compared

11https://huggingface.co/FacebookAI/roberta-large

18

https://huggingface.co/FacebookAI/roberta-large

to the classification tasks. Different task description prompts led to marginal perfor-
mance differences. Somewhat surprisingly, prompts with fewer shots produced better
validation performance: thus, we finally evaluate 6-shot ICL on our test data for the
classification and 5-shot for generation tasks.12

Fine-Tuning. We fine-tune Llama and Mistral in batches of two instances with gra-
dient accumulation over 16 batches, resulting in an effective batch size of 32. We
fine-tune the RoBERTa classification baseline in batches of 32 instances as well. All
models are trained using the AdamW algorithm [29], with an initial learning rate
of 1e-5. We fine-tune the LLMs for three epochs and RoBERTa for ten epochs. We
run each combination of task and model three times using different random seeds,
corresponding to different random initialization of model parameters and shuffling of
training data in each run.

7 Results and Discussion

We first present the performance of LLMs on the classification tasks, followed by their
performance on the generation tasks. Next, we provide an in-depth analysis of the
language models’ results, and conclude with a discussion of the training effort.

7.1 Classification-Task Results

Table 3 shows the results of our experiments on the classification tasks, along with
the rule-based SAD baseline, the random classification baseline, the two LLMs (Llama
and Mistral) using the ICL approach, as well as RoBERTa and the LLMs using the
fine-tuning approach (FT). We report mean macro F1 scores as well as (±) standard
deviation variance over three runs for ICL and three different random seeds for FT.

Table 3: Classification Results (macro F1 scores).

Approach
Task

T-SAD A-SAD S-NAP

Rule-based [1] 0.45 ± 0.000 0.33 ± 0.000 -
Random 0.50 ± 0.000 0.50 ± 0.000 0.13 ± 0.000
ICL Mistral 0.49 ± 0.022 0.44 ± 0.011 0.18 ± 0.018
ICL Llama 0.51 ± 0.015 0.53 ± 0.021 0.32 ± 0.054

FT RoBERTa 0.77 ± 0.006 0.85 ± 0.003 0.63 ± 0.048
FT Mistral 0.79 ± 0.010 0.88 ± 0.002 0.68 ± 0.039
FT Llama 0.79 ± 0.011 0.88 ± 0.000 0.69 ± 0.049

7.1.1 In-Context Learning Results

For ICL, we find that while the performance of the LLMs is consistently better than
the rule-based baseline, it is at best marginally better (Llama) at worst (Mistral)
slightly worse than random performance for the two semantic anomaly detection tasks,

12See https://github.com/a-rebmann/llms4pm for the task prompts we used.

19

https://github.com/a-rebmann/llms4pm

T-SAD and A-SAD. Specifically, Llama achieves a macro F1-score of 0.51 for T-SAD
and 0.53 for A-SAD, while Mistral scores 0.44 resp. 0.49. These results indicate that
the LLMs have not effectively learned these tasks from the few examples provided
in the context. For the S-NAP task, ICL with LLMs does outperform the random
baseline, with Llama exhibiting much stronger performance (19-point gain over the
random baseline) than Mistral (only 5-point gain). The performance is nonetheless
fairly poor in absolute terms (mere 0.32 with Llama). These results suggest that these
process mining tasks drastically differ from the language processing tasks on which
the LLM instruction-tuning was carried out.

7.1.2 Fine-Tuning Results

Poor ICL performance shows that LLMs a priori know very little about how to solve
the proposed classification tasks and thus need to be explicitly trained for them. The
fine-tuned encoder-LM baseline, i.e., RoBERTa, already achieves drastically better
performance than ICL with LLMs: for example, it obtains the F1-score of 0.77 on the
T-SAD task, which is an improvement of massive 26 points over the best ICL perfor-
mance (0.51 by Llama). Fine-tuning the LLMs yields even better performance, with
Llama and Mistral achieving an F1-score of 0.79, a further 2-point improvement over
RoBERTa’s performance. The same trend holds for the other two tasks: on A-SAD,
both Mistral and Llama yield very strong performance F1-scores of 0.88, outperform-
ing RoBERTa by 3 points; on S-NAP, Llama and Mistral achieve F1-scores of 0.69
and 0.68, respectively (6- and 5-point respective gains over RoBERTa).

These results show that decoder-based LLMs can effectively acquire the missing
process knowledge through explicit task-specific fine-tuning, yielding better results
than their (smaller) encoder-based counterparts such as RoBERTa. The fine-tuned
LLMs consistently outperform RoBERTa on all proposed classification tasks, which
points to the benefits of much larger-scale pretraining to which they have been
comparatively exposed.

7.1.3 Task Comparison

The results also demonstrate considerable differences in difficulty between the classifi-
cation tasks. For A-SAD, the LLMs achieve an impressive F1-score of 0.88, while the
maximum score for T-SAD is 0.79, and the best model scores only 0.69 for S-NAP.
This aligns with expectations. Solving T-SAD requires the model to identify whether
process behavior is valid within the context of an entire trace, whereas A-SAD only
requires assessing a single behavioral relation. The S-NAP task is by far the most
challenging of the classification tasks and simply unsolvable for many instances. For
example, consider a process that allows for parallel execution of activities. Then, it is
indeterminable—for both humans and automated approaches—which activity occurs
next in a trace based solely on a prefix, as there are multiple valid options.

20

7.2 Generation-Task Results

Table 4 shows the results for the generation-based process discovery tasks, along with
the random generation baseline. We report mean fitness scores and (±) standard
deviation variance over three runs for ICL and three different random seeds for FT.

Table 4: Generation Results (Fitness
scores).

Approach
Task

S-DFD S-PTD

Random 0.32 ± 0.008 0.32 ± 0.008
ICL Mistral 0.61 ± 0.008 0.56 ± 0.031
ICL Llama 0.60 ± 0.020 0.52 ± 0.044

FT Mistral 0.81 ± 0.002 0.84 ± 0.004
FT Llama 0.80 ± 0.001 0.83 ± 0.015

7.2.1 In-Context Learning Results

The ICL results for the discovery tasks reveal considerable improvements over gen-
erating random behavioral relations for both the S-DFD and S-SPT variations. For
example, while the random baseline achieves a fitness score of 0.32, Mistral attains
a score of 0.61 for S-DFD, representing an improvement of nearly 100%. For S-PTD,
the performance gains are slightly smaller, with Mistral achieving a 0.24 increase
and Llama a 0.2 increase. Interestingly, Mistral outperforms Llama on the generation
tasks, whereas Llama performed better on classification tasks.

Overall, these findings suggest that the process knowledge encoded in LLMs during
pretraining enhances their ability to address semantic discovery tasks compared to
the baseline. The weaker ICL results on the classification tasks further indicate that
LLMs grasp the process-related generation tasks better when provided with a handful
of examples compared to the classification tasks. This difference likely stems from the
closer resemblance of the generation tasks to the types of tasks the LLMs encountered
during pretraining. Although performance gains compared to the random baseline
are substantial, a fitness value of 0.6 on average still leaves room for improvement,
suggesting that fine-tuning is also required for semantic process discovery tasks.

7.2.2 Fine-Tuning Results

Fine-tuning the LLMs on the generation tasks yields considerable performance gains,
similar as for the classification tasks. In particular, Mistral and Llama achieve aver-
age fitness scores of 0.81 resp. 0.8 for S-DFD and 0.84 resp. 0.83 for S-DPT. These are
massive improvements of up to 20 points for S-DFD and even 28 points for S-PTD
compared to the best ICL performance. When looking at the stability of the results
across evaluation runs, we find that on average results vary only marginally, with a
standard deviation of less than 0.02 for both tasks and LLMs. Given that different
models may be possible for a given set of activities, we also assess the stability of

21

results for the same activity sets across the three evaluation runs. The results indi-
cate that in more than 60% of the cases the results are stable, leading to a standard
deviation of 0 across runs. However, in the remaining cases, we observe a positive
standard deviation between 0.007 and 0.43, with a median of 0.12. This indicates the
presence of ambiguous activity sets in relation to the resulting model. When examin-
ing the results in detail, we find that deviations of more than 0.25 primarily occur for
small activity sets of up to four activities. These sets typically correspond to relatively
sequential processes, yet the LLMs generate models that allow for numerous inter-
leaving relationships between them. Thus, the ambiguity with respect to the resulting
model has a more significant impact on fitness in smaller activity sets, which is in line
with expectations.13

These results underscore the advantages of fine-tuning LLMs also for process-
related generation tasks. The notable performance improvement in the process tree
discovery task demonstrates that fine-tuning is especially beneficial for tasks with
multiple facets. In particular, solving S-PTD requires not only a grasp of process
semantics but also an understanding of a process-specific representation format. LLMs
can effectively acquire both capabilities through targeted task-specific fine-tuning.

7.2.3 Task Comparison

The ICL results show that the LLMs can solve the S-DFD task better than S-PTD,
which is in line with expectations, given that the discovery of DFGs is less complex
than the discovery of process trees. For instance Llama achieves 0.6 fitness on average
for S-DFD, yet, only 0.52 for S-PTD. This is in line with expectations, since the
former requires an LLM to grasp only pairwise relations, whereas the latter requires
understanding how entire process parts relate to each other, while, in addition, the
representation format is not trivial.

However, after fine-tuning the LLMs, this trend flips as shown by the performance
for the S-PTD task, which exceeds the performance on S-DFD. For example, Llama
achieves an average fitness score of 0.8 for S-DFD but an impressive 0.83 for S-PTD.
This not only shows that complex process-related generation tasks can be effectively
learned by LLMs, but also suggests that, by means of fine-tuning, LLMs can learn the
relatively few global behavioral relations in a process more effectively than the many
local pair-wise relations.

7.3 In-Depth Analysis

To assess whether the fine-tuned language models handle certain processes of different
types and industries more effectively than others, we conducted an in-depth analysis
of their performance. Our primary focus is on S-PTD, the most intricate semantics-
aware process mining task, where we provide a detailed breakdown across the different
process types and industries. To ensure comprehensive coverage, we also include an
analysis of T-SAD—as a representative classification task—offering detailed insights
into model performance for this task category as well.

13We provide the raw results of this analysis in our repository.

22

7.3.1 In-Depth Analysis of S-PTD

We aim to understand whether performance generally differs between process types
and industries. To this end, we report on the results of FT Mistral for S-PTD, which
align with those for FT Llama. Table 5 shows the results per process type and Table 6
per industry.

Table 5: Process type fitness scores of FT Mistral for S-PTD
and the share of the type in the test set (min. 0.5%).

Process Type Fitness Share (%)

Manage Enterprise Risk, Compliance, . . . 0.89 3.80
Market and Sell Products and Services 0.86 2.53
Manage External Relationships 0.86 6.33
Deliver Physical Products 0.86 16.79
Deliver Services 0.85 8.10
Manage Customer Service 0.85 8.95
Other 0.82 27.59
Manage Financial Resources 0.82 10.55
Develop and Manage Business Capabilities 0.80 1.77
Acquire, Construct, and Manage Assets 0.78 1.77
Manage Information Technology 0.78 4.05
Develop and Manage Human Capital 0.77 5.49
Develop and Manage Products and Services 0.73 1.86

We find that for Deliver Physical Products, with a substantial share of 17%, the
model achieved a solid fitness score of 0.86. In contrast, Manage Financial Resources
saw a lower score of 0.82, indicating relatively weaker model performance on more
abstract financial processes compared to tangible operational ones. The model also
appears to struggle with more knowledge-intensive processes, such as Develop and
Manage Products and Services, scoring below 0.75. Overall, there is no clear correlation
between a process type’s share in the test set and its fitness score, though.

Table 6: Industry fitness scores of FT Mistral for S-PTD and the share of the
industry in the test set (min. 0.5%).

Industry Fitness Share (%) Industry Fitness Share (%)

Insurance 0.93 7.00 Other 0.81 37.64
Media, . . . 0.90 1.01 Healthcare 0.81 9.11
Retail 0.88 9.03 Pro. services 0.81 2.11
Retail 0.88 9.03 Automotive 0.81 2.53
Logistics, . . . 0.87 2.19 Edu., Research 0.80 5.40
Travel 0.85 5.06 Cons. products 0.78 1.52
High tech 0.85 0.68 Government 0.73 1.01
Banking 0.84 9.11 Real estate, . . . 0.66 0.76
Indust. manuf. 0.82 3.80

23

Among the industries, Retail and Banking, with shares of 9.03% and 9.11% respec-
tively, achieved good fitness scores of 0.88 and 0.84, indicating solid model performance
on processes of these industries. In contrast, lower scores were observed for industries
such as Government (0.73), suggesting difficulties in handling sectors with poten-
tially more complex or specialized processes, which are also underrepresented in both
training and test data. Interestingly, the model also struggled with knowledge-driven
industries such as Education and Research (0.80) and Professional Services (0.81).

Looking at individual task instances, we find that in many cases, the LLM-
generated process trees allow for the same execution sequences as the true process
trees, which demonstrates the LLMs’ ability to generate semantic process trees.

For instance, for the true tree →(Complete purchase request, Send to clerk, Enter
into system, Fax PO, Ship Product, Receive Shipment), Mistral generated an identical
tree, yielding a fitness of 1. But also beyond purely sequential processes in stan-
dard domains such as purchasing, the LLMs produce perfect outcomes. Examples
of this include the grocery checkout process →(Scan Items, Scan Rewards Card and
request payment, ×(Process Credit Card, Accept Cash), Bag Grocery items) and the
risk assessment process →(Risk threshold assessment, ×(Advanced risk assessment,
Simple risk assessment), Passed assessment, ∧(Notify customer with result, Organize
disbursement)). In both cases, only syntactical differences were present (such as inverse
ordering in exclusive or parallel structures).

Even for more challenging cases such as a prescription-fulfillment process, the LLM
achieves high fitness scores (here 0.85). In this case the true tree, →(×(Collect walk-
in prescription, →(Drop prescription in the appropriate box, Pick up prescriptions in
the box)), Enter prescription details, Validate prescription, Check insurance coverage,
Fill prescription, Prescription pick-up request), only differs from the generated tree,
→(×(Collect walk-in prescription, →(Drop prescription in the appropriate box, Pick
up prescriptions in the box), →(Enter prescription details, Validate prescription, Fill
prescription)), Check insurance coverage, Prescription pick-up request), in that insur-
ance coverage must be checked before the prescription is filled in the true tree, whereas
the inverse is the case in the generated tree.

There are also cases where the LLM generates process trees that diverge from
the true tree. For instance, while the true tree →(Process trip information, Check
credit card information, Process request, Notify customer) is purely sequential, the
LLM generated a tree with a parallel construct (∧), implying that Process trip infor-
mation and Check credit card information can happen in any order. This is one on
many instances where the generated tree arguably represents a reasonable process,
yet, only yields a low fitness score (in this case 0.625). Other examples include a
travel-reconciliation process with a fitness score of only 0.2. According to the true
tree, ∧(Verify accounts, Verify payment information, Archive the form, Authorize the
travel-advance-reconciliation form, Accept payment), all activities can be performed
in any order, which is clearly problematic. For instance, the verification of payment
information should precede the acceptance of payment. In contrast, the generated
tree arranges the process in a purely sequential order: →(Verify Accounts, Verify
Payment Information, Accept Payment, Authorize the Travel-Advance-Reconciliation
Form, Archive the Form). Although this sequential arrangement is not ideal either,

24

both this and the previous example illustrate that the process models in the employed
collection do not always represent semantically correct models14, and that there are
cases where multiple acceptable solutions exist.

7.3.2 In-Depth Analysis of T-SAD

For the T-SAD classification task, we find that the LLMs accurately detect anomalous
traces across a wide range of process types and industries as well. For this classification
task, we also relate the performance to encoder baseline, RoBERTa. Both the LLM
and RoBERTa appear to be particularly effective in identifying anomalies for stan-
dard process types. For example, in a claim-handling process, they correctly identify
anomalies such as ⟨Enter and verify claim, Handle payment, Assess claim⟩, where the
claim should be assessed before sending a payment. They also correctly detect that the
trace ⟨Confirm order, Ship product, Get shipment address, Emit Invoice, Receive Pay-
ment⟩ is anomalous given that the product is shipped before the address is determined
in this order-handling process.

For more specialized industries such as healthcare, LLMs often outperform
RoBERTa. For instance, Llama correctly identifies the trace ⟨Arrival, Treatment,
Triage, Discharge, Invoicing⟩ of a hospital process as anomalous, since Triage should
occur before Treatment. In contrast, RoBERTa fails to detect this anomaly. Conversely,
RoBERTa incorrectly flags the trace ⟨Disassemble system, Refurbish materials, Clean
and paint covers,Mount materials,Move to bay, Calibrate, Handover⟩ of a refurbishing
process as anomalous, even though it is valid, whereas the fine-tuned LLM correctly
classifies this trace as valid.

Finally, there are instances where both the LLMs and RoBERTa incorrectly iden-
tify valid traces as anomalous. For example, both LLM and RoBERTa flag the trace
⟨Receive invoices of partners, Handle payment of customer, Receive review, Send
payment to partners⟩ as anomalous, even though it is valid. According to the corre-
sponding process model in the corpus, a review can be received at any point during
an execution of the process, making this trace valid. However, this specificity might
also be challenging for a human to determine without further contextual information.

7.4 Training Effort

Finally, we consider the effort required to train the language models on the tasks. Since
in-context learning does not require any training effort, as the task-specific knowledge
is provided at inference time, we focus on the training effort of fine-tuning an LLMs.
For the classification tasks, we can also put this effort into context by comparing
against fine-tuning an encoder (RoBERTa).

Table 7 shows the run times for fine-tuning the LLMs (Llama and Mistral) for
the different tasks per epoch, i.e., pass over all training samples. As shown, the LLMs
require a considerable amount of time for training across tasks. The training time
varies between three hours per epoch for the semantic process tree discovery task and
up to 23 hours for the next activity prediction task. This variance is predominantly

14We aim to mitigate this issue in the future by establishing additional evaluation data based on a
quality-assured model collection (see also Section 9).

25

caused by the considerably different number of training samples per task, which ranges
from roughly 16 thousand for the generation tasks and 1.3 million for the next activity
prediction task.

When comparing the training effort for Llama on the classification tasks with the
encoder baseline, we observe substantial differences. In particular, training Llama on
the tasks takes up to 25 times longer than training RoBERTa per epoch on the same
data. For instance, while fine-tuning Llama for A-SAD takes 15 hours, RoBERTa
requires only around 40 minutes per epoch. This difference can be attributed to the
huge number of parameters that need to be updated for the LLM during fine-tuning,
even when using parameter-efficient fine-tuning. However, it is worth stressing that
the LLM requires considerably fewer epochs to converge in terms of validation loss
across tasks. This indicates that it not only learns the tasks better (as shown in the
previous subsections), but also with fewer passes over the training data.

Table 7: Average run times for fine-tuning (per epoch).

Approach
Task

T-SAD A-SAD S-NAP S-DFD S-PTD

FT Mistral 9.9h 14.3h 21.9h 4.6h 3.3h
FT Llama 11.1h 15.0h 23.0h 4.2h 3.0h

FT RoBERTa 0.5h 0.6h 1.3h - -

8 Related Work

The natural language understanding capabilities of neural language models have been
applied to various process analysis tasks, such as, extracting process information from
text [30, 31], annotating event logs with semantic information [32], detecting semantic
anomalies [2, 4], and generating event logs from textual records of process steps [33].

Application of LLMs for Process Analysis.With the advent of LLMs, researchers
have increasingly explored their potential in process analysis [7]. Key applications
include transforming textual process descriptions into formal process models [34–
38], generating textual descriptions from process data such as models and event
logs [5], identifying bottlenecks or undesired process behaviors [5], and abstract-
ing fine-granular events into higher-level ones [39]. However, much of this research
has been conducted using closed-source GPT models or proprietary software prod-
ucts like ChatGPT, which limits the ability to perform structured and reproducible
evaluations [7].

Evaluation of LLMs on Process Analysis Tasks. The lack of rigorous evaluations
of LLMs for process mining tasks has recently been highlighted within the process
mining community [7, 40]. In response, Berti et al. introduced a benchmark for process
mining analysis questions [41]. This benchmark comprises 52 prompts used to query
various LLMs, with their responses evaluated by a closed-source GPT model. Although
the benchmark provides interesting insights, using an LLM to rate the results can
yield biased outcomes. Such bias arises, e.g., from the tendency of LLMs to favor their

26

own output [42]. Beyond this process-mining-specific effort, Busch and Leopold [43]
present a LLM-benchmark for a set of business process management tasks, including
the recommendation of activities during the modeling of processes and the identifica-
tion candidates for robotic process automation. Focusing on process modeling, Kourani
et al. [44] present a benchmark that evaluates various LLMs using a set of 20 curated
business processes.

In contrast to these works, we define process mining tasks that benefit from an
understanding of process behavior. Furthermore, we evaluate LLMs using extensive
task-specific benchmarking datasets in both, in-context learning and fine-tuning set-
tings. The latter has not been investigated by other works, yet, as our experiments
show, can be highly beneficial for challenging process-related tasks. Finally, it is
important to note that our datasets provide gold standards, which allows for using
established evaluation measures for classification tasks, eliminating the need for a
proxy LLM to assess output quality.

9 Conclusion

In this paper, we investigated the capabilities of LLMs to solve semantics-aware pro-
cess mining tasks, i.e., tasks that benefit from an understanding of the meaning of
process steps and their relationships. We defined five such tasks and provide an exten-
sive benchmarking dataset for each of them. Our evaluation experiments that use
these datasets show that LLMs fail to solve the tasks in in-context learning settings.
However, our results demonstrate that LLMs achieve accurate performance when fine-
tuned for these tasks. Furthermore, they surpass smaller, encoder-based language
models in both scope (the types of tasks they can solve) and accuracy (the quality of
how they solve tasks).

In the future, we want to investigate the integration of state-of-the-art process min-
ing approaches with LLMs. Since we have shown that LLMs can solve semantics-aware
process mining tasks through encoded knowledge of process semantics, integrating
existing process mining approaches with LLMs may yield performance improvements
for classical process mining tasks they address. For example, an existing next-activity
prediction approach could be extended by an LLM-based semantic check that rejects
predictions that do not make sense, thereby improving the overall prediction perfor-
mance. Furthermore, we plan to perform evaluation experiments on additional data.
In particular, we want to generate a process behavior corpus and benchmarking data
sets based on a large cross-domain collection of real-world reference process models,
in order to investigate the generalizability of our results beyond the academic process
model collection that we employed in this work. Finally, we aim to take first steps
towards process fine-tuning, i.e., creating LLMs that are specialized for handling not
one, but many process analysis tasks. More concretely, instead of fine-tuning an LLM
for a specific semantics-aware process mining task that it can then solve better, our
goal is to fine-tune a model on task-solution pairs of many process analysis tasks,
improving its performance on process-related tasks in general, such as, for instance,
envisioned as part of a Large Process Model [45].

27

Declarations

Ethical Approval. Not applicable.

Funding. Not applicable.

Availability of data and materials. Our training and evaluation scripts are acces-
sible via the project repository linked in Section 6. The process behavior corpus and
benchmarking datasets are published separately [16].

Competing Interests. The corresponding author works for a company that builds
process mining software.

Acknowledgment. Our research was supported by the state of Baden-Württemberg
through bwHPC.

References

[1] van der Aa, H., Rebmann, A., Leopold, H.: Natural language-based detection of
semantic execution anomalies in event logs. Information Systems 102, 101824
(2021)

[2] Caspary, J., Rebmann, A., van der Aa, H.: Does this make sense? machine
learning-based detection of semantic anomalies in business processes. In: BPM,
pp. 163–179 (2023). Springer

[3] Norouzifar, A., Kourani, H., Dees, M., Aalst, W.M.: Bridging domain knowl-
edge and process discovery using large language models. arXiv preprint
arXiv:2408.17316 (2024)

[4] Busch, K., Kampik, T., Leopold, H.: xsemad: Explainable semantic anomaly
detection in event logs using sequence-to-sequence models. In: International
Conference on Business Process Management, pp. 309–327 (2024). Springer

[5] Berti, A., Schuster, D., van der Aalst, W.M.: Abstractions, scenarios, and prompt
definitions for process mining with llms: A case study. In: BPM, pp. 427–439
(2023). Springer

[6] Jessen, U., Sroka, M., Fahland, D.: Chit-chat or deep talk: Prompt engineering
for process mining. preprint arXiv:2307.09909 (2023)

[7] Estrada-Torres, B., del-Ŕıo-Ortega, A., Resinas, M.: Mapping the landscape:
Exploring large language model applications in business process management. In:
BPMDS, pp. 22–31 (2024). Springer

[8] Rebmann, A., Schmidt, F.D., Glavaš, G., van der Aa, H.: Evaluating the ability
of llms to solve semantics-aware process mining tasks. In: 2024 6th International
Conference on Process Mining (ICPM), pp. 9–16 (2024). IEEE

[9] van der Aalst, W.M.: Foundations of process discovery. In: Process Mining
Handbook, pp. 37–75 (2022). Springer

28

[10] van der Aalst, W.M.P., Medeiros, A.K.A.: Process mining and security: Detect-
ing anomalous process executions and checking process conformance. Electronic
Notes in Theoretical Computer Science 121, 3–21 (2005)

[11] Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Information Systems 38(1), 33–44 (2013)

[12] van der Aalst, W.M.: Process mining: a 360 degree overview. In: Process Mining
Handbook, pp. 3–34 (2022). Springer

[13] Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-
art deep learning methods for process prediction. Artificial Intelligence Review
55(2), 801–827 (2022)

[14] Evermann, J., Rehse, J.-R., Fettke, P.: Predicting process behaviour using deep
learning. Dec. Support Systems 100, 129–140 (2017)

[15] Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate business process representation
learning utilizing gramian angular fields and convolutional neural networks. In:
BPM, pp. 327–344 (2021). Springer

[16] Rebmann, A., Schmidt, F.D., Glavaš, G., van der Aa, H.: Process Behavior Cor-
pus and Benchmarking Datasets. Zenodo (2024). https://zenodo.org/records/
14273161

[17] Sola, D., Warmuth, C., Schäfer, B., Badakhshan, P., Rehse, J.-R., Kampik,
T.: SAP Signavio academic models: A large process model dataset. In: ICPM
Workshops, pp. 453–465 (2023). Springer

[18] Leemans, S.J., Fahland, D., Van Der Aalst, W.M.: Discovering block-structured
process models from event logs-a constructive approach. In: Application and The-
ory of Petri Nets and Concurrency: 34th International Conference, PETRI NETS
2013, Milan, Italy, June 24-28, 2013. Proceedings 34, pp. 311–329 (2013). Springer

[19] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in neural
information processing systems 30 (2017)

[20] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: NAACL, pp. 4171–
4186 (2019). ACL

[21] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining
approach. arXiv:1907.11692 (2019)

[22] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P.,

29

https://zenodo.org/records/14273161
https://zenodo.org/records/14273161

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models
are few-shot learners. Advances in neural information processing systems 33,
1877–1901 (2020)

[23] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv:2302.13971 (2023)

[24] Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunk-
umar, A., Ashok, A., Dhanasekaran, A.S., Naik, A., Stap, D., et al.: Super-
naturalinstructions: Generalization via declarative instructions on 1600+ nlp
tasks. In: EMNLP (2022)

[25] Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R.,
Zhang, T., Wu, F., et al.: Instruction tuning for large language models: A survey.
arXiv:2308.10792 (2023)

[26] Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., Sui, Z.:
A survey on in-context learning. arXiv:2301.00234 (2022)

[27] Hu, E.J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al.:
Lora: Low-rank adaptation of large language models. In: International Conference
on Learning Representations (2021)

[28] Carmona, J., Dongen, B., Solti, A., Weidlich, M.: Conformance Checking vol. 56,
(2018). Springer

[29] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Interna-
tional Conference on Learning Representations (2018)

[30] Bellan, P., Dragoni, M., Ghidini, C.: Extracting business process entities and
relations from text using pre-trained language models and in-context learning.
In: International Conference on Enterprise Design, Operations, and Computing,
pp. 182–199 (2022). Springer

[31] Bellan, P., Dragoni, M., Ghidini, C., Aa, H., Ponzetto, S.P.: Process extraction
from text: benchmarking the state of the art and paving the way for future
challenges. arXiv preprint arXiv:2110.03754 (2021)

[32] Rebmann, A., van der Aa, H.: Enabling semantics-aware process mining through
the automatic annotation of event logs. Inf. Syst. 110, 102111 (2022)

[33] Kecht, C., Egger, A., Kratsch, W., Röglinger, M.: Event log construction from
customer service conversations using natural language inference. In: ICPM, pp.
144–151 (2021). IEEE

[34] Grohs, M., Abb, L., Elsayed, N., Rehse, J.-R.: Large language models can

30

accomplish business process management tasks. In: BPM, pp. 453–465 (2023).
Springer

[35] Kourani, H., Berti, A., Schuster, D., van der Aalst, W.M.: Process modeling with
large language models. arXiv:2403.07541 (2024)

[36] Klievtsova, N., Benzin, J.-V., Kampik, T., Mangler, J., Rinderle-Ma, S.: Con-
versational process modelling: state of the art, applications, and implications
in practice. In: International Conference on Business Process Management, pp.
319–336 (2023). Springer

[37] Ziche, C., Apruzzese, G.: Llm4pm: A case study on using large language models
for process modeling in enterprise organizations. In: International Conference on
Business Process Management, pp. 472–483 (2024). Springer

[38] Nour Eldin, A., Assy, N., Anesini, O., Dalmas, B., Gaaloul, W.: A decom-
posed hybrid approach to business process modeling with llms. In: International
Conference on Cooperative Information Systems, pp. 243–260 (2024). Springer

[39] Fani Sani, M., Sroka, M., Burattin, A.: Llms and process mining: Challenges in
rpa: Task grouping, labelling and connector recommendation. In: International
Conference on Process Mining, pp. 379–391 (2023). Springer

[40] Berti, A., Kourani, H., Häfke, H., Li, C.-Y., Schuster, D.: Evaluating large
language models in process mining: Capabilities, benchmarks, and evaluation
strategies. In: BPMDS, pp. 13–21 (2024). Springer

[41] Berti, A., Kourani, H., van der Aalst, W.M.: PM-LLM-Benchmark: Evaluating
large language models on process mining tasks. arXiv:2407.13244 (2024)

[42] Panickssery, A., Bowman, S.R., Feng, S.: LLM evaluators recognize and favor
their own generations. preprint arXiv:2404.13076 (2024)

[43] Busch, K., Leopold, H.: Towards a benchmark for large language models for
business process management tasks. arXiv preprint arXiv:2410.03255 (2024)

[44] Kourani, H., Berti, A., Schuster, D., Aalst, W.M.: Evaluating large language mod-
els on business process modeling: Framework, benchmark, and self-improvement
analysis. arXiv preprint arXiv:2412.00023 (2024)

[45] Kampik, T., Warmuth, C., Rebmann, A., Agam, R., Egger, L.N., Gerber, A.,
Hoffart, J., Kolk, J., Herzig, P., Decker, G., et al.: Large process models: A
vision for business process management in the age of generative AI. KI-Künstliche
Intelligenz, 1–15 (2024)

31

	Introduction
	Preliminaries
	Semantics-Aware Process Mining Tasks
	Semantic Anomaly Detection
	Semantic Next Activity Prediction
	Semantic Process Discovery

	Datasets
	A Corpus of Process Behaviors
	Corpus Creation
	Corpus Characteristics

	Task-Specific Benchmarking Datasets
	Classification-Task Datasets
	Generation-Task Datasets

	LLM-Based Process Mining
	Few-Shot In-Context Learning
	Fine-Tuning LMs

	Experimental Setup
	Results and Discussion
	Classification-Task Results
	In-Context Learning Results
	Fine-Tuning Results
	Task Comparison

	Generation-Task Results
	In-Context Learning Results
	Fine-Tuning Results
	Task Comparison

	In-Depth Analysis
	In-Depth Analysis of S-PTD
	In-Depth Analysis of T-SAD

	Training Effort

	Related Work
	Conclusion

