
LLMs that Understand Processes: Instruction-tuning
for Semantics-Aware Process Mining
Vira Pyrih

Faculty of Computer Science
University of Vienna

Vienna, Austria
a12228590@unet.univie.ac.at

Adrian Rebmann
SAP Signavio

Berlin, Germany
adrian.rebmann@sap.com

Han van der Aa
Faculty of Computer Science

University of Vienna
Vienna, Austria

han.van.der.aa@univie.ac.at

Abstract—Process mining is increasingly using textual infor-
mation associated with events to tackle tasks such as anomaly
detection and process discovery. Such semantics-aware process
mining focuses on what behavior should be possible in a process
(i.e., expectations), thus providing an important complement to
traditional, frequency-based techniques that focus on recorded
behavior (i.e., reality). Large Language Models (LLMs) provide
a powerful means for tackling semantics-aware tasks. However,
the best performance is so far achieved through task-specific fine-
tuning, which is computationally intensive and results in models
that can only handle one specific task. To overcome this lack
of generalization, we use this paper to investigate the potential
of instruction-tuning for semantics-aware process mining. The
idea of instruction-tuning here is to expose an LLM to prompt-
answer pairs for different tasks, e.g., anomaly detection and next-
activity prediction, making it more familiar with process mining,
thus allowing it to also perform better at unseen tasks, such as
process discovery. Our findings demonstrate a varied impact of
instruction-tuning: while performance considerably improved on
process discovery and prediction tasks, it varies across models on
anomaly detection tasks, highlighting that the selection of tasks
for instruction-tuning is critical to achieving desired outcomes.

Index Terms—semantics-aware, large language models,
anomaly detection, next-activity prediction, process discovery

I. INTRODUCTION

Process mining leverages event data to analyze and improve
the execution of business processes, supporting tasks such as
process discovery, anomaly detection, and next-activity pre-
diction. Traditionally, process mining techniques have relied
heavily on frequency-based methods, focusing on how often
certain sequences of activities occur in event logs. Recently, a
growing body of research has begun to explore semantics-
aware process mining, which incorporates the meaning of
activities—often expressed through textual labels—into anal-
ysis [1], [2], [3]. This shift is driven by advances in natural
language processing (NLP), particularly the emergence of
large language models (LLMs) with strong capabilities in
understanding and generating human language.

Despite the promise of semantics-aware process mining and
initial work using fine-tuned LLMs for individual tasks [2], [4],
[5], such as anomaly detection and process discovery, current
approaches remain limited by their lack of generalization.
Fine-tuning requires separate models for each task and format,
leading to inflexible solutions that cannot be used across tasks.

These issues can be overcome through instruction-tuning,
which is a method for fine-tuning LLMs using exemplary
pairs of prompts and desired outputs [6], covering different
NLP tasks. This enables LLMs to generalize across tasks, by
aligning their internal representations with the meaning of the
instructions, rather than solely relying on patterns seen in task-
specific fine-tuning. As a result, instruction-tuned models can
adapt to tasks and prompts not seen during training. Although
instruction-tuning has shown success in other domains [7], its
effectiveness has not yet been explored in process mining.

Therefore, we present the first systematic investigation of
instruction-tuned LLMs for semantics-aware process mining,
aiming to answer the question: Can instruction-tuning be used
to improve the performance of LLMs on unseen process mining
tasks? Essentially, we thus assess whether exposing an LLM to
certain process mining tasks, such as anomaly detection and
next-activity prediction, helps it learn underlying behavioral
relations among activities, which can then be leveraged for
other tasks, like process discovery. To operationalize this,
we build on previous work that introduced benchmark tasks
and datasets for evaluating LLMs in this domain [5]. In this
manner, we evaluate the ability of instruction-tuned LLMs
to generalize across various, control-flow-oriented process
mining tasks, including classification tasks such as anomaly
detection and next-activity prediction, and generative tasks
in the form of process discovery (for both DFGs and pro-
cess trees). Our experiments compare models that have been
instruction-tuned to both untuned and task-specific models.

Our findings suggest that instruction-tuning is a promising
path toward more scalable applications of LLMs for semantics-
aware process mining, particularly for discovery and predic-
tive tasks. For these tasks, instruction-tuned models exhibit
improved generalization capabilities, but our results also re-
veal challenges in generalization for anomaly detection. The
main contribution of this work is the first empirical evidence
that a single, instruction-tuned LLM can generalize across
multiple semantics-aware process mining tasks, challenging
the paradigm of single-task fine-tuning. This has the practical
implication of enabling more flexible and scalable process
analysis tools, while also defining the research challenge of
improving generalization for classification-oriented tasks.

The remainder of this paper is organized as follows: Sec-



tion II introduces key concepts and Section III outlines the tar-
geted process mining tasks. Section IV details our instruction-
tuning approach for LLMs. Section V and Section VI describe
the experimental setup and results, respectively. We discuss
related work in Section VII and conclude in Section VIII.

II. PRELIMINARIES

This section introduces preliminaries used in the remainder.
Event Data. We adopt a simple event model that focuses
on the control-flow of a process. A trace σ = ⟨a1, . . . , an⟩
captures a single process instance as a sequence of activities
ai ∈ A, where A is the universe of possible activities. An
event log L is a finite multi-set of traces. AL ⊂ A denotes
the set of activities that appear in the traces of L.
Directly-Follows Graphs. A directly-follows graph (DFG)
captures which activities in a process can (or have been
observed to) directly succeed each other. We define a DFG
as a tuple D = (A,F ), with A as the DFG’s nodes and F as
a set of ordered pairs corresponding to its edges. Each edge
(x, y) ∈ F indicates that an activity x ∈ A can be directly
followed by activity y ∈ A, which we also denote as x > y.
Process Trees. A process tree is a hierarchical representa-
tion of a process, using activities and a set of operators
O = →,×,∧,⟲, denoting sequence, choice, parallelism, and
looping. Leaves are activities (or silent activity τ ); internal
nodes define behavior recursively [8].
Eventually-Follows Relations. An eventually-follows relation
is a more relaxed ordering relation than the directly-follows
relation used in DFGs, focusing on activities that can either
directly or indirectly follow each other. For a trace σ =
⟨a1, ..., an⟩, any activity pair ai, aj with 1 ≤ i < j ≤ n is said
to be in an eventually-follows relation, denoted as ai ≺ aj .

III. SEMANTICS-AWARE PROCESS MINING TASKS

Our work builds on five semantics-aware mining tasks
introduced in earlier work [5]. These are designed to assess
the ability of language models to reason about control-flow
behavior based solely on the semantics of activities, without
access to historical event data. They are defined as follows:
Trace-Level Semantic Anomaly Detection (T-SAD). Seman-
tic anomaly detection involves assessing whether observed
process behavior makes logical sense or not. In this regard,
T-SAD is a classification task where a trace σ, provided along
with a set of possible process activities A ⊆ A, must be clas-
sified as being either semantically correct or anomalous. For
instance, trace σ = ⟨register application, approve application,
review application⟩ should be classified as anomalous, since
an application should be reviewed before it is approved. Note
that including the set A as input enables the identification of
anomalies involving missing activities.
Activity-Level Semantic Anomaly Detection (A-SAD). A-
SAD is a more fine-granular task, where, given a trace σ =
⟨a1, . . . , an⟩ and a set of possible activities A, each eventually-
follows relation ai ≻ aj , with 1 ≤ i < j ≤ n, should be
classified as semantically correct or anomalous. For instance,
for the aforementioned trace, the relation register application

≻ approve application should be recognized as valid and
approve application ≻ review application as anomalous.
Semantic Next-Activity Prediction (S-NAP). S-NAP is a
classification task in which, given a incomplete trace σ =
⟨a1, . . . , an⟩, the task is to select the most suitable activity
an+1 from a set of possible activities A. For instance, given
σ = ⟨create PO, approve PO⟩ and A = {create PO, approve
PO, create invoice, make payment}, the next activity should
be create invoice.
Semantic Directly-Follows Graph Discovery (S-DFD). S-
DFD is a generation task1 in which, given a set of activities A,
the goal is to produce a graph D = (A,F ), where F contains
all valid directly-follows relations between activities in A. For
instance, given a set of activities {create PO, approve PO,
reject PO, create invoice}, the semantic DFG should include
edges such as (create PO, approve PO) and (create PO, reject
PO), whereas it should not include (reject PO, create invoice).
Semantic Process Tree Discovery (S-PTD). S-PTD is a more
complex discovery task than S-DFD. Specifically, given a set
of activities A, the goal is to generate a process tree whose
structure reflects the behavioral constraints in a process, such
as parallelism, choices, and sequential behavior. For instance,
given the set {create PO, approve PO, reject PO, create
invoice}, the generated tree should be equivalent to →(create
PO, ×(reject PO, →(approve PO, create invoice))), capturing
that, after creating a PO, it can be either rejected or approved,
where the latter case leads to an invoice being created.

IV. INSTRUCTION-TUNING FOR SEMANTICS-AWARE
PROCESS MINING

In this section, we explain how to specialize LLMs
for semantics-aware process mining tasks using instruction-
tuning, also contrasting it to the in-context learning and fine-
tuning methods that have been used in previous works. We
begin by outlining these different specialization strategies
(Section IV-A), before describing the development of our
process mining instruction dataset (Section IV-B).

A. Specializing LLMs for Semantics-Aware Process Mining

Neural language models based on the Transformer architec-
ture [9], [10] generally fall into two categories. Bidirectional
models, often called encoders, are typically pretrained using
masked language modeling, where they predict masked tokens
using context from both directions. Unidirectional models,
known as decoders, are trained with autoregressive language
modeling, predicting the next token based solely on the pre-
ceding ones. LLMs represent large instances of these decoder
models, with billions of parameters. Their initial development
involves large-scale autoregressive pretraining, which equips
them with broad natural language understanding capabilities.
After initial pretraining, LLMs can be specialized for specific
tasks. Three common strategies for this are illustrated in
Figure 1 and described next.

1This is a generation task because an answer must be generated, rather than
selected from a set of options, as done for the classification tasks.



Pretrained LLM Test on Task A

Improve performance via few-shot prompting

Pretrained LLM Fine-tune on 
Task A

Model learns to perform many tasks 
via natural language instructions

Pretrained LLM Fine-tune on various 
tasks (B, C, D,…)

One specialized model for each task
Requires many task-specific examples

Test on Task A

Test on Task A

In-Context Learning

Fine-Tuning

Instruction-Tuning

Test on 
unseen task

Fig. 1. Comparison between in-context learning, fine-tuning, and instruction-
tuning. Adapted from Wei et al. [6]

In-Context Learning. ICL offers a mechanism to elicit task-
specific capabilities from an LLM without modifying its
underlying parameters. This is done using a prompt that
typically includes a natural language description of the task,
followed by a few illustrative examples (“shots”), consisting
of input-output pairs that demonstrate the desired solution.
The actual query instance for which a solution is needed is
appended to this context, and the LLM generates the output
autoregressively, leveraging the provided examples to infer the
task pattern [11]. ICL relies on a model’s pretrained knowledge
to perform tasks. The model’s reasoning is prompted based on
a few provided examples. For instance, for the A-SAD task, an
LLM is asked to classify a set of eventually-follows pairs as
anomalous or not, while also providing it with a few examples
of valid and invalid pairs.
Fine-Tuning. Fine-tuning adapts a pretrained language model
to a specific task by continuing its training on a labeled
dataset relevant to that task, updating the model’s parameters
accordingly. This is done by providing the model with an
extensive set of labeled task instances, such as eventually-
follows pairs of activities along with the correct label (Valid
or Anomalous) for A-SAD, yet typically without providing
task instructions. In this manner, fine-tuning allows models
to achieve considerably higher performance on the targeted
task compared to ICL [5]. However, a clear downside of this
strategy is that obtained models can only be used for the
specific task they were fine-tuned on.
Instruction-Tuning. Instruction-tuning enables LLMs to fol-
low natural language instructions and provide solutions to
described tasks. Typically, LLMs are already instruction-tuned
following their initial autoregressive pretraining, using datasets
containing a wide array of common NLP tasks that are
described via natural language instructions [7] . This step aims
to improve generalization across diverse capabilities, covering
tasks such as text classification, summarization, question an-
swering, information extraction, and text rewriting [12].

While such general instruction-tuning provides broad
instruction-following competence, domain-specific instruction-

tuning represents a more focused specialization strategy. This
involves further training the model on a curated dataset
comprising instructions for solving tasks that are relevant
to the domain, which, in our case, is process analysis.
Domain-specific tasks thus include, e.g., “Classify this trace
as anomalous or valid” and “Given this partial trace and
list of possible activities, predict the next one”, paired with
corresponding domain-specific inputs such as traces or activity
lists and the desired outputs. Unlike single-task fine-tuning,
which primarily optimizes performance for a fixed input-
output format, domain-specific instruction-tuning focuses on
enhancing the model’s ability to interpret the intent behind
various instructions phrased using process mining terminology
and concepts. The goal is to improve the LLM’s zero-shot or
few-shot generalization capabilities across different types of
process analysis tasks, making it more versatile compared to
models relying solely on generic instruction following learned
during initial training or adapted via ICL.

B. Creating a Process Mining Instruction Dataset

A prerequisite for instruction-tuning is a dataset of labeled
instruction-task instances. This section describes how we es-
tablished such a dataset for semantics-aware process mining
tasks, which is publicly available [13].
Labeled-instance Datasets. As a basis for generating our
instruction dataset, we use five datasets from our earlier
work [5], each consisting of labeled instances of one of the
semantics-aware process mining tasks (Section III). They were
derived from a collection of over 15,000 process models
from the SAP-SAM collection [14], covering a wide range
of process types and domains.2

To avoid the inclusion of duplicate task instances, we
cleaned these available datasets using task-specific rules:
• T-SAD: Filtered for unique (activity, full trace) combina-

tions (184,004 instances).
• A-SAD: Filtered for unique (activity, activity pair) combi-

nations (316,308 instances).
• S-NAP: Removed completed traces and duplicate prefixes

for the same next activity, preserving cases with multiple
valid outcomes (575,339 instances).

• S-DFD/S-PTD: Filtered for unique input activity sets
(15,580 instances).

Creating Instruction-Task Instances. Since the labeled-
instance datasets only include input and output pairs (t, o)
(e.g., for T-SAD, t is a trace with its corresponding output
label o as Valid or Anomalous), rather than prompts, we create
instruction-task instances by enriching the available instances
with natural language instructions to be used by an LLM.

To this end, we follow the human-oriented instructions
approach [15], which aims to establish instructions that are
understandable by non-expert users and typically take the
form of descriptive, paragraph-style text. They include a brief
statement that frames the identity of the model, contextual
information such as task descriptions, definitions, and specific

2For details on their establishment and characteristics, we refer to [5].



instructions, which has been shown to enhance generalization
particularly well [15].

In line with the state of the art [12], [16], each labeled
instruction-task instance is a pair ϕ = (i, o) consisting of an
instruction i, which we detail below, and an expected output o,
which we directly derive from the output label o of the original
task instance (reformatted as a natural language response). As
illustrated in Figure 2 for S-NAP, an instruction-task instance
is a tuple i = (f, c). The task formulation f is a natural
language description of the task, including the role description
of the LLM, requirements for the output format, and a closing
phrase prompting the model to generate the desired result. The
context c is a textual representation of the task instance (e.g., a
trace or activity set) and any additional contextual information
(e.g., examples) that the model must process.

<Role description for the LLM>

You are given a list of activities that constitute an 
organizational process and a sequence of activities that 
have been performed in the given order.

Which activity from the list should be performed next in the 
sequence? The answer should be one activity from the list 
and nothing else.

Answer:

Task form
ulation f (n variations per task type)

C
on

te
xt

 c

<Optional Examples>

Set of process activities: 
{receive application, assess documents, accept 
application, notify applicant} 

Sequence of activities: 
[receive application]

Fig. 2. Instruction-task-instance for the S-NAP task.

To increase the diversity and robustness of the resulting in-
struction dataset, we adhere to the following best practices [7]:
Varying task formulations. We establish six formulations for
each task. This exposes the model to different phrasings of the
same underlying problem, thereby improving its generalization
capabilities to new, unseen instructions. For instance, task
formulations for A-SAD range from a formal instruction to
“Determine whether it is valid for the first activity to occur
before the second”, which presents the activities separately and
constrains the output to “Provide either True or False as the
answer and nothing else” to more direct phrasings that embed
the activities within the prompt, such as “Is the order (first:
act1, second: act2) acceptable...?” while requesting the model
to simply “Answer with True or False.” The complete set of
variations for all tasks is available in our repository.
Incorporating instructions about negative or undesired behav-
ior. Real-world process mining often involves identifying or
reasoning about undesired, incorrect, or incomplete process
behavior. To reflect this, we create instructions that focus on
such negative aspects where appropriate. Here, negative refers
to instructions prompting the model to identify, complete,
or reason about incorrect, incomplete, or undesirable process
elements or sequences. For example, for S-NAP, a negative
task instance might describe an ongoing process execution

that is missing an important activity that should have occurred
earlier. The model is then tasked to identify this missing
activity from any point in the prior sequence leading up to
the last observed activity. This helps prevent LLMs from
overfitting solely to desired process behavior and ensures they
can handle the variance seen in practical applications.
Inverting task objectives. We generate reversed versions of a
given task by flipping its objective, if the task structure allows.
This can lead to both positive and negative inversions.
• Positive inversion typically involves the model generating

or identifying correct, preceding, or completing elements
for an assumed valid partial context. For example, for S-
NAP, a positive inversion involves providing the model
with a known subsequent activity in a trace and asking it
to generate a plausible sequence of activities that might
have occurred before this given activity. For A-SAD, a
positive inversion might involve completing a valid partial
activity pair by having the model choose an activity that
can legitimately follow a given one.

• Negative inversion involves the model identifying elements
that render a task instance incorrect, highlight what should
not occur, or complete a scenario in a way that demonstrates
an invalid or undesirable path. For instance, a negative
inversion of A-SAD, could involve asking the model to
choose an activity that would create an invalid eventually-
follows pair if it followed a given activity.

For T-SAD and A-SAD, the nature of the inversion depends
on whether the original task instance presented is valid or
anomalous. For instance, if an A-SAD instance is an anoma-
lous pair, a negative inversion asks to create an activity pair
such that it is anomalous, while a positive inversion for a valid
pair asks to create a valid pair. For S-NAP, the inversion is
chosen to be positive or negative with equal probability. For
the discovery tasks, since generating a positively inverted task
is not meaningful (e.g., generating a set of activities from a
given DFG), we only apply negative inversions.

Following these best practices, we transform each original
task instance into a labeled instruction-task instance ϕ. We
begin by randomly selecting a task formulation f from the
available ones. The original task instance t is then transformed
into a corresponding context description c (occassionally using
inversion). These components, f and c, form the instruction
pair i = (f, c), which, together with the original output label
o, constitutes the labeled instruction-task instance ϕ = (i, o).
In this way, we obtain an instruction data set, made publicly
available [13], whose characteristics are shown in Table I.

TABLE I
CHARACTERISTICS OF THE INSTRUCTION DATASET.

Task Samples
(Total)

Normal
(%)

Neg. Inv.
(%)

Pos. Inv.
(%)

A-SAD 316,308 80 10 10
T-SAD 184,004 80 10 10
S-NAP 575,339 80 10 10
S-DFD 15,580 80 20 0
S-PTD 15,580 100 0 0



V. EXPERIMENTAL SETUP

We evaluate the generalization capabilities of LLMs in
solving semantics-aware process mining tasks, primarily ex-
amining the difference between models with and without
domain-specific instruction-tuning. To this end, this section
details our experimental setup; the code used to conduct the
experiments is available in our repository.3

Task Grouping. We evaluate the LLMs’ ability to generalize
across different process mining objectives by grouping the
tasks into three coherent groups: Anomaly (A-SAD and T-
SAD), Prediction (S-NAP), and Discovery (S-DFD and S-
PTD). This enables a leave-one-group-out evaluation setup,
where models are trained on two groups (e.g., Anomaly and
Prediction) and tested on the held-out group (e.g., Discovery).
By using groups rather than individual tasks, we avoid bias
caused by having an anomaly detection (or discovery) task in
both the training and the test set.
Dataset Splitting. To ensure reproducibility and consistent
comparisons, we construct our leave-one-group-out folds using
fixed data splits for each task, adopted from our previous
work [5]. For each task, instruction instances are derived from
a distinct set of underlying process models. These models are
partitioned to allocate 70% for generating training instances,
20% for validation, and 10% for testing. These pre-defined,
task-specific splits are then combined to form the datasets for
each leave-one-group-out fold as follows:
Training. For a given fold, the training data is formed by
combining the training splits of the tasks belonging to the
two in-fold groups.
Validation. The combined validation splits of tasks in the held-
out group guide model checkpoint selection during training.
Test. The combined test splits of tasks in the held-out group
guide the evaluation of final model performance.
Building on fixed individual task splits guarantees that, for
instance, the test set for the Discovery group remains identical,
whether used in our leave-one-group-out evaluation or by other
researchers for direct comparisons on S-DFD and S-PTD tasks.
Training Data Sampling. To balance task representation for
instruction-tuning, we sample training sets using examples-
proportional mixing [17] from constituent tasks, generally
capping contributions at 30,000 samples per task. This cap
is adjusted when holding out the Discovery group: S-NAP
contributes 60,000 samples to balance the 60,000 from two
anomaly detection tasks. The characteristics of the resulting
training folds are shown in Table II.
Large Language Models. For our instruction-tuning exper-
iments, we selected two powerful decoder language models:
Llama 3 70B Instruct4 and Mistral Large 2 Instruct (v. 2407)5.
These were chosen for their robust instruction-following ca-
pabilities, model size, and open-source availability.
Instruction-Tuning Procedure. We use parameter-efficient
fine-tuning based on quantized low-rank adaptation

3https://github.com/pirogtm7/it4pm
4https://huggingface.co/unsloth/Llama-3.3-70B-Instruct-bnb-4bit
5https://huggingface.co/unsloth/Mistral-Large-Instruct-2407-bnb-4bit

TABLE II
TRAINING SAMPLE DISTRIBUTION PER TEST GROUP

Test Training Samples Share Prompt Types (%)
Group Task Norm. Neg.Inv. Pos.Inv.

Anomaly

S-NAP 30,000 49.05 31.39 9.81 7.85
S-DFD 15,580 25.47 20.38 5.09 -
S-PTD 15,580 25.47 25.47 - -
Total 61,160 100.0 77.25 14.90 7.85

Prediction

A-SAD 30,000 32.91 26.33 3.24 3.35
T-SAD 30,000 32.91 26.33 3.29 3.29
S-DFD 15,580 17.09 17.09 - -
S-PTD 15,580 17.09 17.09 - -
Total 91,160 100.00 86.84 6.53 6.64

Discovery

A-SAD 30,000 25.00 20.00 2.46 2.54
T-SAD 30,000 25.00 20.00 2.50 2.50
S-NAP 60,000 50.00 40.00 - 10.00
Total 120,000 100.00 80.00 4.96 15.04

(LoRA) [18], using pre-quantized 4-bit models, configuring
LoRA with rank r = 16 and scaling factor α = 16 to balance
model expressiveness while minimizing the risk of overfitting.
We verified that higher ranks did not lead to consistent
improvements. We set the learning rate to 1×10−5 and adjust
it dynamically using a linear scheduler. We perform training
with a batch size of 8 per GPU and 4 gradient accumulation
steps, resulting in an effective batch size of 326. We fine-tune
for 3 epochs, using a maximum sequence length of 1024
tokens. We use the AdamW optimizer with a weight decay
of 0.01 to improve regularization.

During training, we use standard cross-entropy as the loss-
function and monitor validation performance every 250 steps
using the combined validation splits of tasks in the held-out
group. For model selection, instead of relying solely on cross-
entropy loss, we compute task-specific custom metrics that are
better aligned with the target tasks. When validating multiple
tasks simultaneously (for the Anomaly and Discovery groups),
we average the metric improvements across tasks and select
the checkpoint achieving the highest overall improvement.
Performance Measures. We assess the obtained results using
established performance measures:
Anomaly Detection and Prediction Performance. Since
anomaly detection (T-SAD and A-SAD) and next-activity pre-
diction (S-NAP) involve classification, we assess them using
the macro F1-score. This measure ensures that all classes of the
respective task contribute equally to the overall performance,
irrespective of their size. The macro F1-score is the simple
average of the F1-scores for each individual class (e.g., valid
and anomalous traces in T-SAD), where the F1-score for a
class is the harmonic mean of its precision and recall.
Discovery Performance. For the discovery tasks (S-DFD and
S-PTD), we measure performance through footprint-based
fitness [19]. This measure facilitates the comparison of sets
of allowed execution sequences by using pairwise behavioral
relations. As such, it considers whether a discovered model
allows for the same behavior as the ground-truth model.

6For Mistral’s prediction and anomaly tasks, the batch size was reduced to
4 (effective size 16) due to memory constraints.

https://github.com/pirogtm7/it4pm
https://huggingface.co/unsloth/Llama-3.3-70B-Instruct-bnb-4bit
https://huggingface.co/unsloth/Mistral-Large-Instruct-2407-bnb-4bit


VI. EXPERIMENTAL RESULTS

We report on the LLMs’ performance on the five tasks,
comparing their performance with and without instruction-
tuning, followed by an in-depth analysis of the results.

A. Main Results

Table III reports on the overall results.7 We observe
mixed impacts of instruction-tuning on performance. While
the instruction-tuned models consistently outperform the base
models for the prediction (S-NAP) and discovery (S-DFD and
S-PTD) tasks, the effect on anomaly detection tasks (A-SAD
and T-SAD) differs between models.

TABLE III
PERFORMANCE ACROSS MODELS AND TASKS.

Task (Metric) Llama Llama Mistral Mistral
Base IT Base IT

A-SAD (macro F1) 0.594 0.562 0.421 0.679
T-SAD (macro F1) 0.558 0.480 0.347 0.620

S-NAP (macro F1) 0.525 0.651 0.624 0.868

S-DFD (Fitness) 0.630 0.714 0.658 0.770
S-PTD (Fitness) 0.621 0.697 0.649 0.763

Specifically, on anomaly detection, Llama IT’s performance
decreases (T-SAD F1: 0.558 to 0.480), whereas Mistral IT’s
improves substantially (T-SAD F1: 0.347 to 0.620). For ex-
ample, given the sequence of activities ⟨Approve application,
Apply for trip, Buy transport tickets, Book accommodation,
Archive trip documents⟩, the Llama Base correctly identifies
the trace as invalid, whereas the Llama IT model incorrectly
flags it as valid. This suggests that instruction-tuning on
discovery and predictive tasks may have overwritten some of
Llama’s semantic anomaly capabilities. However, this effect
is not universal, as Mistral IT consistently improves perfor-
mance compared to its base version. Conversely, for S-NAP,
instruction-tuning boosts performance for both models. Llama
IT’s F1 score increases from 0.525 to 0.651. For instance,
given the prefix ⟨Check stock availability, Retrieve product⟩,
Llama Base suggests Emit invoice, whereas Llama IT, more
logically, predicts Confirm order, i.e., that an order must be
confirmed before an invoice is issued.

Moving to process discovery, instruction-tuning shows sub-
stantial benefits for both tasks. For Llama, the fitness score
improves from 0.630 (Base) to 0.714 (IT) for S-DFD. Mistral
exhibits even larger gains, with fitness increasing from 0.658
(Base) to 0.770 (IT). Similarly, for the S-PTD task, instruction-
tuning leads to considerable improvements. Llama’s fitness
score rises from 0.621 to 0.697 after instruction-tuning. Mistral
sees its fitness score increase from 0.649 to 0.763.

Overall, the results reveal a varied impact of instruction-
tuning. While Llama IT shows decreased macro F1 scores on

7These results should be considered in light of Mistral’s considerably longer
tuning times due to its larger architecture (123B vs. 70B parameters). For
instance, an epoch for the Discovery test group took 37h vs 21h for Llama.

A-SAD and T-SAD, Mistral IT shows a considerable improve-
ment. Both models, however, achieve notable improvements
on S-NAP. For tasks requiring structured output generation,
namely S-DFD and S-PTD, instruction-tuning consistently
yields substantial gains in fitness scores for both Llama
and Mistral. These improvements confirm that both models
considerably benefit from domain-specific instruction-tuning
in these scenarios. The enhancement suggests that instruction-
tuning not only facilitates task-specific adaptation for struc-
tured output but also helps models grasp higher-level process
representations, particularly where multiple plausible outputs
exist. Notably, Mistral IT consistently outperforms Llama IT
on these tasks, as expected from its larger size. For instance,
Llama IT incorrectly placed Analyze claim in sequence after
×(Handle easy claim, Handle complex claim), whereas Mistral
IT correctly placed it before, resulting in higher fitness.

B. In-Depth Analysis

Beyond the aggregate performance metrics (Section VI-A),
we report on qualitative results of instruction-tuned models
and their base counterparts, providing more detailed insights
into their understanding of process behavior.
Improved Instruction Adherence. We find that instruction-
tuned models consistently show improved adherence to spec-
ified instruction formats and produce cleaner, more direct
outputs compared to base models. For instance, in the T-
SAD task, Llama IT provided clear True or False responses,
whereas Llama Base often returned ambiguous or irrelevant
text. Similarly, for S-NAP, Llama IT generated concise next-
activity predictions, a considerable improvement over the base
model’s tendency to generate boilerplate text or code-like
structures. This enhanced clarity also extends to the discovery
tasks: the instruction-tuned models produced better-formatted
directly-follows pairs (S-DFD) and more structurally coherent
process trees (S-PTD), largely avoiding malformed or incom-
plete outputs that are common with base models. This suggests
that instruction-tuning effectively guides the models’ focus on
the core process analysis task and desired output structure.
Superiority in Semantic Discovery Tasks. The benefits of
instruction-tuning are particularly visible in semantic dis-
covery tasks (S-DFD and S-PTD), which require a more
holistic understanding of the underlying process and activity
relationships. While the base models capture basic relations,
instruction-tuned models demonstrate a more developed grasp
of higher-level process representations. For example, in S-
PTD, Mistral IT not only achieved higher fitness but also
exhibited a qualitatively better interpretation of control-flow
operators such as exclusion (×) and sequence (→) compared
to its base version, leading to more semantically sound process
trees. This suggests that exposure to diverse process-related
instructions helps instruction-tuned models develop a better
internal representation of process structures.
Challenges in Classification-Oriented Tasks. For classifica-
tion tasks such as anomaly detection (A-SAD and T-SAD),
the impact of instruction-tuning was model-dependent. For



Llama IT, the impact was unfavorable, with the model under-
performing its base counterpart. In contrast, Mistral IT showed
considerable performance gains on these same tasks. A reason
for Llama’s less favorable performance lies in a prediction bias
for A-SAD and T-SAD towards predicting True (valid) for
the instruction-tuned model, which Mistral could compensate,
likely due to its larger size. For T-SAD, Llama’s bias became
particularly clear, with 89.1% of predictions being True, while
the test data has an even label distribution. This indicates that
while the IT model improves instruction adherence, it does not
resolve issues such as label bias if not carefully managed in the
instruction dataset design and task formulation. The difficulty
of these tasks, requiring an inference based solely on activity
semantics without context information, likely contributes to
these challenges. Investigating how to address them remains
an important direction for future research.
Domain-Specific Differences. To assess model performance
across process domains, we categorized the instruction source
process models by industry.8 Both base and instruction-tuned
models exhibit varying performance across different process
industries. Instruction-tuned models generally performed well
in domains such as Logistics and Education, which are often
characterized by more structured, procedural, and clearly de-
fined processes (e.g., shipment handling, course registration)
aligning well with patterns that are learnable by LLMs.
Conversely, domains such as Healthcare and IT/Software
present greater challenges. These areas are characterized by
flexible workflows, high variability across cases (e.g., pa-
tient treatment, software development), and frequent ad-hoc
decisions, making it more difficult for LLMs to generalize
behavioral patterns. This underscores that while instruction-
tuning enhances adaptability, inherent domain complexity and
variability remain substantial challenges.

In summary, instruction-tuning is a promising path to more
flexible semantics-aware process mining. It particularly en-
hances performance on semantic discovery and instruction
adherence. Challenges persist in classification and highly
variable domains, indicating a need for task refinement and
additional model context.

C. Comparison to Fine-Tuning

To put the results of our instruction-tuning experiments into
context, we compare them with the task-specific fine-tuned
(FT) smaller language models from our previous work [5],
i.e., the small encoder model RoBERTa9 and the Mistral 7B
and Llama 8B decoder LLMs.

Comparing IT results (Table III) with FT results (Table IV)
shows FT models achieve consistently higher scores. For
instance, the FT Llama 8B scores 0.88 on the A-SAD task,
far surpassing the IT Llama 70B’s 0.562. This gap persists
even for the much smaller RoBERTa model (scoring 0.85).
The smaller fine-tuned LLMs also outperform their 70B+

8The detailed categorization procedure and quantitative results are available
in our repository.

9Note that encoder models do not have text completion capabilities, thus
RoBERTa cannot be used for the discovery tasks.

TABLE IV
PERFORMANCE OF FINE-TUNED (FT) LLMS.

Task (Metric) RoBERTa Mistral 7B Llama 8B

T-SAD (macro F1) 0.77 0.79 0.79
A-SAD (macro F1) 0.85 0.88 0.88

S-NAP (macro F1) 0.63 0.68 0.69

S-DFD (Fitness) - 0.81 0.80
S-PTD (Fitness) - 0.84 0.83

IT counterparts on both discovery tasks. These results are
unsurprising, as FT models are trained on large amounts of
in-task data, whereas the IT models have observed none.

However, this superior performance has a substantial draw-
back: each FT model is a non-generalizing specialist. This
requires creating extensive labeled datasets for every task and
introduces considerable operational challenges in deploying,
maintaining, and updating these models. Furthermore, for
classification tasks, the performance gains of fine-tuning large
decoder models over encoders are often marginal. As shown
in Table IV, the RoBERTa encoder achieves scores that the
FT LLMs only slightly surpass, suggesting a smaller encoder
may be a more efficient choice for these tasks.

In contrast, the key advantage of IT models is their ability
to generalize to unseen tasks, the capability evaluated in our
leave-one-group-out setup. Moreover, the crucial advantage of
the LLM (decoder) architecture is its suitability for instruction-
tuning, as encoders cannot be instruction-tuned to handle
diverse, unseen tasks in the same way.

Overall, the choice between FT and IT thus depends on the
desired outcome: maximizing performance on a single, static
task, or building a more versatile process analysis tool.

VII. RELATED WORK

The advent of LLMs has resulted in a range of works that
explore their potential in the broader process analysis domain,
including various applications in process mining [20].

Our work focuses on process mining tasks that can be
evaluated using gold-standard benchmarks, enabling rigorous
methodological evaluation and fine-tuning. Existing work in
this category has predominantly addressed semantic anomaly
detection [2], [21], next activity prediction [22], [23] and the
discovery of declarative process constraints [4], thus aligning
with our A-SAD, T-SAD, S-NAP, and S-PTD tasks (though,
the latter only to some extent).

In contrast, a range of studies apply LLMs to tasks lacking
gold-standard assessments. While this makes it harder to
objectively evaluate model performance, it allows exploration
of a broader set of process mining applications. Such works
include those focused on identifying bottlenecks or undesired
process behaviors [24], abstracting fine-granular events into
higher-level ones [25], incorporating domain knowledge into
process discovery [3], and providing explanations in prescrip-
tive process monitoring [26]. To address the lack of standard-
ized evaluation in such settings, Berti et al. [27] proposed a
benchmark of process mining analysis questions that enables



self-evaluation of LLM performance. While promising, the
use of self-evaluation has been shown to introduce potential
biases [28], thus requiring careful interpretation of results.

VIII. CONCLUSION

Summary. This work presented the first experimental study
evaluating the potential of instruction-tuning to enhance the
process mining capabilities of LLMs, aiming to overcome
the downsides of task-specific fine-tuning. Our results demon-
strate that instruction-tuned models outperform their untuned
counterparts on several key process mining tasks. However,
the observed performance varies across models in anomaly
detection highlights the critical need for careful task selection
during the instruction-tuning phase. Notably, the most sub-
stantial performance gains were observed in process discovery
tasks, which demand a deep understanding of behavioral
dependencies within processes. This suggests that exposing
LLMs to a diverse set of process mining tasks can significantly
improve their process comprehension.
Limitations. The main limitation of our study stems from its
controlled experimental design. While necessary for rigorous
evaluation, this setup does not fully capture the complexity
of real-world settings, as our tasks intentionally focused on
the control-flow perspective using structured inputs. Conse-
quently, the robustness of our instruction-tuned models re-
mains untested on noisy, real-world event logs that contain
incomplete data or require other perspectives like time and
resources. Furthermore, our results for instruction-tuning itself
reveal a critical challenge: while it is beneficial for generative
tasks, it can hinder performance on anomaly detection. This
suggests that the selection of instruction-tuning tasks for
classification requires further investigation.
Outlook. Future research should further investigate the ap-
plicability of instruction-tuned LLMs to other areas of pro-
cess mining. In particular, it would be valuable to examine
whether the benefits of instruction-tuning on well-defined,
gold-standard tasks transfer to tasks lacking such benchmarks
(cf. Section VII). This would involve leveraging structured
instruction-tuning to improve performance in more subjective
or exploratory settings. Additionally, we plan to explore how
instruction-tuned LLMs can be integrated with traditional
process mining techniques, such as combining frequency-
based process discovery with semantic assessments.
Open science: Our evaluation scripts, instruction-tuned mod-
els, and more detailed evaluation results are available
through our project repository: https://github.com/pirogtm7/
it4pm. Our instruction dataset is published separately [13].

REFERENCES

[1] H. van der Aa, A. Rebmann, and H. Leopold, “Natural language-based
detection of semantic execution anomalies in event logs,” Information
Systems, vol. 102, p. 101824, 2021.

[2] J. Caspary, A. Rebmann, and H. van der Aa, “Does this make sense?
machine learning-based detection of semantic anomalies in business
processes,” in BPM. Springer, 2023, pp. 163–179.

[3] A. Norouzifar, H. Kourani, M. Dees, and W. M. van der Aalst, “Bridging
domain knowledge and process discovery using large language models,”
arXiv preprint arXiv:2408.17316, 2024.

[4] K. Busch, T. Kampik, and H. Leopold, “xSemAD: Explainable semantic
anomaly detection in event logs using sequence-to-sequence models,” in
BPM. Springer, 2024, pp. 309–327.

[5] A. Rebmann, F. D. Schmidt, G. Glavaš, and H. van der Aa, “On the
potential of large language models to solve semantics-aware process
mining tasks,” Process Science, 2025.

[6] J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.
Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,”
in ICLR, 2021.

[7] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu et al., “Instruction tuning for large language models:
A survey,” arXiv:2308.10792, 2023.

[8] W. M. van der Aalst, “Foundations of process discovery,” in Process
Mining Handbook. Springer, 2022, pp. 37–75.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS,
vol. 30, 2017.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
NAACL. ACL, 2019, pp. 4171–4186.

[11] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and
Z. Sui, “A survey on in-context learning,” arXiv:2301.00234, 2022.

[12] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei,
A. Arunkumar, A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap et al.,
“Super-naturalinstructions: Generalization via declarative instructions on
1600+ nlp tasks,” in EMNLP, 2022.

[13] V. Pyrih, A. Rebmann, and H. van der Aa, “Instruction datasets
for process mining,” May 2025. [Online]. Available: https://doi.org/10.
5281/zenodo.15498373

[14] D. Sola, C. Warmuth, B. Schäfer, P. Badakhshan, J.-R. Rehse, and
T. Kampik, “SAP Signavio academic models: A large process model
dataset,” in ICPM Workshops. Springer, 2023, pp. 453–465.

[15] R. Lou, K. Zhang, and W. Yin, “Large language model instruction
following: A survey of progresses and challenges,” Computational
Linguistics, vol. 50, no. 3, pp. 1053–1095, 2024.

[16] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou,
Q. V. Le, B. Zoph, J. Wei et al., “The flan collection: Designing data
and methods for effective instruction tuning,” in ICML. PMLR, 2023,
pp. 22 631–22 648.

[17] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning
research, vol. 21, no. 140, pp. 1–67, 2020.

[18] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen
et al., “Lora: Low-rank adaptation of large language models,” in ICLR,
2021.

[19] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance
checking, 2018, vol. 56.

[20] B. Estrada-Torres, A. del Rı́o-Ortega, and M. Resinas, “Mapping the
landscape: Exploring large language model applications in business
process management,” in BPMDS. Springer, 2024, pp. 22–31.

[21] W. Guan, J. Cao, J. Gao, H. Zhao, and S. Qian, “Dabl: Detecting
semantic anomalies in business processes using large language models,”
in AAAI, vol. 39, no. 11, 2025, pp. 11 735–11 744.

[22] V. Pasquadibisceglie, A. Appice, and D. Malerba, “Lupin: A LLM
approach for activity suffix prediction in business process event logs,”
in ICPM. IEEE, 2024, pp. 1–8.

[23] A. Oved, S. Shlomov, S. Zeltyn, N. Mashkif, and A. Yaeli, “Snap:
semantic stories for next activity prediction,” in AAAI, vol. 39, no. 28,
2025, pp. 28 871–28 877.

[24] A. Berti, D. Schuster, and W. M. van der Aalst, “Abstractions, scenarios,
and prompt definitions for process mining with LLMs: A case study,”
in BPM. Springer, 2023, pp. 427–439.

[25] M. Fani Sani, M. Sroka, and A. Burattin, “LLMs and process mining:
Challenges in RPA: Task grouping, labelling and connector recommen-
dation,” in ICPM. Springer, 2023, pp. 379–391.

[26] K. Kubrak, L. Botchorishvili, F. Milani, A. Nolte, and M. Dumas, “Ex-
planatory capabilities of large language models in prescriptive process
monitoring,” in BPM, vol. 14940. Springer, 2024, pp. 403–420.

[27] A. Berti, H. Kourani, and W. M. van der Aalst, “PM-LLM-
Benchmark: Evaluating large language models on process mining tasks,”
arXiv:2407.13244, 2024.

[28] A. Panickssery, S. R. Bowman, and S. Feng, “LLM evaluators recognize
and favor their own generations,” preprint arXiv:2404.13076, 2024.

https://github.com/pirogtm7/it4pm
https://github.com/pirogtm7/it4pm
https://doi.org/10.5281/zenodo.15498373
https://doi.org/10.5281/zenodo.15498373

	Introduction
	Preliminaries
	Semantics-aware Process Mining Tasks
	Instruction-tuning for Semantics-Aware Process Mining
	Specializing LLMs for Semantics-Aware Process Mining
	Creating a Process Mining Instruction Dataset

	Experimental Setup
	Experimental Results
	Main Results
	In-Depth Analysis
	Comparison to Fine-Tuning

	Related Work
	Conclusion
	References

